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Free energy calculations play a crucial role in simulating chemical processes, enzymatic reactions, and drug
design. However, assessing the reliability and convergence of these calculations remains a challenge. This
study focuses on single-step free-energy calculations using thermodynamic perturbation. It explores how
the sample distributions influence the estimated results and evaluates the reliability of various convergence
criteria, including Kofke's bias measure IT and the standard deviation of the energy difference AU, g,y. The
findings reveal that for Gaussian distributions, there is a straightforward relationship between IT and g,
free energies can be accurately approximated using a second-order cumulant expansion, and reliable
results are attainable for g,y up to 25 kcal mol~!. However, interpreting non-Gaussian distributions is

more complex. If the distribution is skewed towards more positive values than a Gaussian, converging
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Accepted 8th May 2024 e free energy becomes easier, rendering standard convergence criteria overly stringent. Conversely,
distributions that are skewed towards more negative values than a Gaussian present greater challenges
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Introduction

Free energies play a pivotal role in determining the thermody-
namic feasibility of processes. Therefore, there has been much
interest in both measuring and calculating free energies. The
most accurate technique to calculate the free-energy difference
between two thermodynamic states involves performing
a gradual transformation along a pathway connecting these
states. During this process, the energy difference is accumu-
lated while conformations are sampled, typically through
molecular dynamics or Monte Carlo simulations using molec-
ular mechanics (MM) potential. However, the accuracy of MM
calculations is known to be limited.®® Consequently, many
scientists are actively engaged in developing methods to
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the convergence of estimated free energies.

calculate free energies using quantum mechanical (QM)
methods, which promise enhanced accuracy and reliability.*™*

The reference-potential approach, also known as the dual-
Hamiltonian approach, is an efficient method to calculate
free-energy differences and profiles at either a QM or hybrid QM
and molecular mechanics (QM/MM) level (hereafter collectively
referred to as QM for simplicity). This approach, which avoids
direct sampling at the QM level, was independently proposed by
Gao and by Warshel in 1992.''” Since its introduction, it has
seen widespread applications and enhancements by various
groups for predicting binding affinities, solvation free energies,
and reaction barriers."'>**** The method involves performing
sampling at a lower theoretical level, such as MM, and then
obtaining the free-energy difference at the QM level through
a free-energy correction from the change of the energy function
from MM to QM. As depicted in the thermodynamic cycle in
Fig. 1, the free-energy difference between states A and B at the
QM level can be calculated as AGRM ;, = AGY™,; — AGY™M M ¢+
AGY™M ™M exploiting the fact that the free energy is a state
function.

The primary objective of reference-potential methods is to
achieve high accuracy at an affordable computational cost.
Simulations on a QM potential-energy surface are exceedingly
time-intensive, often making the direct calculation of the free-
energy difference AGR™  prohibitively expensive. In contrast,
calculating AGY™}; at the MM level is more feasible. Therefore,
the free-energy differences AGY™ ™ and AGY™ ™™ need to
be obtained without QM simulations, achievable through

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The reference-potential approach.

AG

single-step thermodynamic perturbations (TP; also known as
exponential averaging or free-energy perturbation). This is in
stark contrast to other methods like thermodynamic integration
(TI),*” Bennett acceptance ratio (BAR)® or its multi-state variant
(MBAR),* which require at least one simulation on the QM
potential-energy surface, resulting in substantially higher
computational demands.

Unfortunately, computing A is problematic.
Numerous studies have highlighted that the convergence of
free-energy differences calculated using TP is often slow and the
reliability of the results is frequently questionable.'®?%3¢3>
Therefore, it is essential to rigorously verify the convergence of
the AGM ™M calculations to ensure their trustworthiness
before relying on the results. This is crucial to ensure the overall
accuracy and reliability of the reference-potential methods.

Therefore, establishing reliable convergence measures for
the calculated AG™ ™ is highly valuable. Numerous studies
have explored various convergence criteria for TP
calculations.'**%” 1t has been noted that convergence is
influenced by the variance of the energy difference between the
two Hamiltonians, oa;” (AU = U™ — UMM). Some studies®®*
have recommended that oy should be kept below 1-2 kg7,
where kg is Boltzmann's constant and T is the absolute
temperature. This recommendation translates at 300 K to 0.6-
1.2 keal mol ™!, which is quite stringent. Later studies propose
that 4 kT (equivalent to 2.3 kecal mol ") may be a more practical

threshold.** Additionally, the weight of each configuration in
—AU; ks T

GMM— QM

e
N
> e—AUi/ksT

i=0

considered for assessing convergence. If the average is domi-
nated by one or only a few values, it may indicate unreli-

ability.**** Another proposed metric is the reweighting

the exponential average, w; = has also been

1 X
entropy,."” S, = N Zwi In w;. It has been suggested that
i=0

an S, value less than 0.65 could signal that the predicted result
might be unreliable.*

The bias measure II, formulated by Kofke and co-
workers,***” serves as another tool for quantifying the conver-
gence of TP calculations. It is advised that the value of IT should
exceed 0.5 for converged calculations.'??***** However, it is
important to note that the IT bias measure is based on certain

© 2024 The Author(s). Published by the Royal Society of Chemistry
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assumptions, such as the energy difference AU follows
a Gaussian distribution. Consequently, this criterion might not
be universally applicable in all scenarios, especially in cases
where AU deviates from a Gaussian distribution. This high-
lights the importance of understanding the underlying
assumptions and limitations of convergence measures in TP
calculations.

Identifying a unique comprehensive convergence criterion
for TP is nontrivial. In the current study, we establish the rela-
tionship between the bias metrics IT and g,y. Subsequently, we
employ various statistical probability distributions to examine
the influence of both distribution and ¢, on the convergence
of TP calculations. Ultimately, this leads us to propose a prac-
tical approach for assessing the accuracy of computed free
energy values.

Theory and methods
Free-energy estimators

As mentioned in the introduction, TP is the only practically
feasible method to obtain AG™ ™2 in the reference-potential
method if time-consuming QM simulations should be avoided.
With TP, the free-energy difference is calculated by

AGMM™M — LT ln<exp( - £)> ,
ksT ) [ um

where (-)uym denotes an average over the conformations
sampled on the MM potential energy surface.

Such an exponential average suffers from a slow convergence
with a finite number of samples.***”*® In particular, the average
may be dominated by a small number of terms with the most
negative AU values. Therefore, many studies have suggested
avoiding the use of Zwanzig's equation directly.*****>*° An
alternative is to employ the cumulant approximation (CA):

(1)

* _lk—l
AG = —C(
; (ke T) k1 o
2
G'AUZ _lk—l

— _ C
= (AU) +Z(kBT)k71k!Uk'

2T 4~

Here, Cy is the kth cumulant, of which the first two terms are the
sample mean, (AU), and the variance, o, of the energy
differences AU, as indicated in the second line of eqn (2). If AU
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follows a Gaussian distribution, the cumulants of the third and
higher order terms vanish, and thus eqn (2) can be written as

2

OAU
2kpT" (3)

AG = (AU) —

The CA truncated after the second-order term usually shows
much better convergence properties than the exponential
average in eqn (1). However, if AU deviates from a Gaussian
distribution, the convergence and accuracy of the truncated CA
are unclear.

The bias measure I

For a real simulation, the free-energy difference is estimated
from finite samples. The distribution of AU may not be
Gaussian and the phase-space overlap may not be sufficient. To
check the reliability of the free-energy calculation, reliable
convergence criteria are needed. Based on an idea from infor-
mation theory, Wu and Kofke*>** suggested the IT bias measure,
which is calculated from:

Here, Wy, is the Lambert function, and N is the sample size. It
should be emphasized that the derivation of eqn (4) was based
on two conditions: viz. that the distributions of forward and
backward directions (i.e. in our case MM — QM and QM —
MM) have identical variances and that AU follows a Gaussian
distribution.

Analytical model data

In general, the underlying distribution of AU is unknown, and
therefore also the convergence properties of AG. We have eval-
uated the convergence of AG by numerical simulations using
several assumed statistical distributions, testing different
shapes of the distributions. We typically test three different
values of Ay, 0.5, 1.0 and 2.0 kecal mol ', representing values
below, within and outside the previously suggested convergence
limit of 1-2 kgT (0.6-1.2 keal mol ™). We used five distributions,
which are described by the probability density function, p(AU)
below. However, we first note that in terms of p(AU), eqn (1) can
be rewritten as:

+oo

AG = —ksT an ¢ InTp(4UYA(4U) )

—o0

First, we used Gaussian distributions with the probability
density function:

1 e’
pGaus(x; 2 J) = 0'\/%6 2 (6)
where pu and o are the mean and standard deviation

respectively.
Second, we used two types of Gumbel distributions. They are
asymmetric distributions but do not deviate very much from

8788 | Chem. Sci, 2024, 15, 8786-8799

View Article Online

Edge Article

a Gaussian distribution. Compared to a Gaussian distribution,
Gumb_r decays slower on the right (positive) side of the main
peak but faster on the left (negative) side, whereas the opposite
applies to the Gumb_l distribution, as is shown in Fig. 2. The
probability density functions of these two distributions are:

1 x— _a—{x—1)/8
pGumbﬁr(X;:U'a 6) = Be%i #)/ﬂ ¢ ) (7)

and
1 x— _e(x—n)/8
pGumb_l(X; 122 6) = Ee( #)/ﬂ ¢ ) [8)

respectively, where u is a location parameter and ( is a scale
parameter. We adapted 8 so that the distributions have stan-
dard deviations of 0.5, 1, and 2.

Third, we used Student's t-distribution. It is similar to the
Gaussian distribution, but it has slightly wider distributions on
both sides (cf Fig. 2):

y )('?), o)

v+ x2

pi(x,v) = (

where v is the degrees of freedom. In this work, we used » = 10,
which gives a distribution with a standard deviation of 1.12.

Fourth, we used the Beta distribution, which is a versatile set
of asymmetric distributions:

p11l(a+Db)

pBeta(57 a, b) = 5”71(1 - E) m

(10)
where I'(z) is the gamma function. It is defined over the range
0 <& <1 (weused & = x/5,s00 <x <5). We selected a = 15 and
b = 4, which give ¢ = 0.46 and a single peak but with more
positive outliers compared to a Gaussian distribution.

All model distributions used in this work are summarized in
Table 1 and they are shown in Fig. 2.

We employed simple Python programs to simulate these
distributions of the energy differences AU. Numpy was
employed to generate random numbers that follow these
distributions. Autocorrelation functions were used to ensure
that the random numbers were uncorrelated (¢f Fig. S17).
Moreover, the QUADPACK numerical quadrature routines were
used to integrate eqn (5). The free-energy differences were
calculated with both the exponential average and the second-
order cumulant expansion (eqn (1) and (3)). Finally, the corre-
sponding IT bias measure was calculated according to eqn (4).
The Python codes employed are available upon request. Of
course, all model distributions are unitless. The kcal mol™*
energy units are introduced by the kg7 term, e.g. in eqn (5).

It should be pointed out that for the Gaussian, Gumb_r and
Beta distributions, eqn (5) can be integrated numerically.
However, the integration diverges for Gumb_I and Student ¢-10
distributions. In this work, the integration limits for Gumbo0_l
and Gumb1_] were set to —15 and 15, whereas for the Stud. ¢-10
and Gumb2_l distributions, the limits were [-20 20] and [-30
30], respectively. The probability for numbers outside these
ranges is extremely small. This is confirmed by our random-
number simulations, using sample sizes from 100 to 10

© 2024 The Author(s). Published by the Royal Society of Chemistry
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—— Gaus,u=0,0=1
—— Gumb_r,u=0,8=0.779(0c=1)
— Gumb_|,u=0,=0.779(c=1)
—— Stud t-10(0=1.12)

0.4 { — Beta(x/5,a=15,b=4)(0=0.46)
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Fig.2 The probability density of the model distributions employed. The probability of the Beta distribution was scaled (dividing the original value
by 10) and the distribution has been translocated to overlap with the other distributions.

Table 1 Overview of the employed model distributions

Abbreviation Distribution 4

Gaus0 Gaussian, u = 0 0.50
Gaus1 Gaussian, u = 0 1.00
Gaus2 Gaussian, u = 0 2.00
Gaus3 Gaussian, u = 0 3.00
GumbO0_r Gumbel_r, u = 0, 8 = 0.39 0.50
Gumb1_r Gumbel_r, u =0, 6 = 0.78 1.00
Gumb2_r Gumbel_r, u =0, 8 = 1.56 2.00
Gumbo0_l Gumbel_I, u = 0, 8 = 0.39 0.50
Gumb1_l Gumbel_l, u = 0, 8 = 0.78 1.00
Gumb2_l Gumbel_I, u =0, § = 1.56 2.00
Stud. ¢10 Student's ¢, v = 10 1.12
Beta Beta, £ =x/5,a=15,b =4 0.46

million data points. Thus, we have employed truncated distri-
butions in the same way as in previous studies.**

Results and discussion
Effect of distribution

To investigate the impact of sample distributions on the
calculated results, AG was estimated with both thermodynamic
perturbation (TP; eqn (1)) and the second-order cumulant
expansion (CA; eqn (3)). The result of the numerical integration
of eqn (5) (NI) was taken as the reference. AG was calculated
using 10 million data points for each distribution and the
calculation was repeated 1000 times to estimate the standard
deviation of the calculated values. The results are collected in
Table 2.

Many studies have reported that the convergence of TP is
strongly correlated to the variance (oa,”), and it has been

© 2024 The Author(s). Published by the Royal Society of Chemistry

suggested that converged results are obtained only if oay < 0.6-
1.2 kcal mol '.1525333 The results in Table 2 show that for
Gaussian distributions with ¢y = 0.5 and 1.0 kcal mol™?, both
the TP and CA methods give excellent estimated free energies
that coincide with that obtained with numerical integration.
The IT bias measure is also good, 3.5-4.4. However, when oy is
increased for the Gaussian distributions, the TP results start to
deteriorate. For ooy = 2 kcal mol ™', the error for TP is only
0.01 kecal mol *, and the corresponding standard deviation and
IT value are 0.03 kcal mol™" and 1.9, respectively, indicating
a satisfying convergence (with 10 million samples). However, for
oau = 3 keal mol™, the error of TP is 0.14 kcal mol™* and the
standard deviation is 0.28 kcal mol*, reflecting that the indi-
vidual 1000 estimates have errors between —1.64 and

Table 2 Estimated free energies from numerical integration of egn (5)
(NI), as well as TP (egn (1)) and CA (eqn (3)) based on 1000 random
simulations with 10 million data points for the various distributions. All
entries are in kcal mol™t. The last column gives II for the sample. The
reported uncertainties are standard deviations

Distribution oay AGni  AGrp AGca 11

Gaus 0.50 —0.21 —0.21 +£0.00 —0.21 £ 0.00 4.37 + 0.00
1.00 —0.84 —-0.84 £0.00 —0.84 £ 0.00 3.53 4+ 0.00
2.00 —3.36 —3.35+0.03 —3.36 £0.00 1.86 + 0.00
3.00 —-7.55 —7.41 +£0.28 —7.55 4 0.00 0.17 £ 0.00

Gumb_r 0.50 0.06 0.06 + 0.00 0.02 £ 0.00 4.46 + 0.00
1.00 —0.09 —-0.09 £0.00 —0.39 £ 0.00 3.86 *+ 0.00
2.00 —0.79 —0.79 £0.00 —2.46 £ 0.00 2.82 + 0.00

Gumb_1 0.50 —0.56 —0.56 &= 0.01 —0.44 4+ 0.00 4.15 %+ 0.00
1.00 —4.17 —4.13+0.65 —1.29+ 0.00 0.17 £+ 0.00

Stud. t-10 1.12 —-7.12 —4.15+1.61 -1.05=£0.00 0.32 4+ 0.00

Beta 0.46 3.75 3.74 £ 0.00 3.77 £ 0.00 4.39 + 0.00

Chem. Sci., 2024, 15, 8786-8799 | 8789
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0.58 keal mol™*. TT = 0.2 suggests that the result is unreliable.
Naturally, the CA result coincides with the numerical results,
because eqn (3) is exact for a Gaussian distribution. With 10
million samples, the sample mean and variance are estimated
very accurately with a standard deviation below
0.005 kcal mol .

On the other hand, the results are different for the other
distributions. For the three distributions with o,y =
0.5 kcal mol~" (Gumbo0_r, Gumbo0_l and Beta), TP gives excellent
results, with errors of 0.01 kcal mol " or less. The same applies
also to the Gumb_r distributions with o5, = 1 and 2 kcal mol ™"
II = 2.8-4.5 also indicates that the results are converged.
However, for all these distributions, the performance of CA is
worse, with errors of 0.02-0.12 kcal mol~* for the three distri-
butions with gay =< 0.5 keal mol™ and 0.3 kcal mol™* for
Gumb_r with o5y = 1 keal mol™ . Even worse, when the o,y
value of Gumb_r increases to 2 kcal mol !, the error of CA
becomes as high as 1.7 kecal mol ™. This is not reflected by the
standard deviation, which is always less than 0.005 kcal mol ™"
for CA.

For the remaining two distributions, Gumb_l with oy =
1 keal mol ™" and Student #-10 with ¢,y = 1.12 keal mol ™, the TP
results are poor, with errors of 0.04-3 kcal mol " and standard
deviations of 0.6-1.6 kcal mol~ " (indicating errors of up to 6.0
and 7.3 kcal mol™" in the 1000 individual simulations). The CA
results are even worse, with errors of 2.9-6.1 kcal mol ™, but the
standard deviation is still less than 0.005 kcal mol . TT = 0.2~
0.3 indicates that the results are unreliable. Compared to the
Gaussian distribution, both these two distributions have
a higher probability of negative values. Owing to the exponential
average in TP, the most negative AU values may lead to the
numerical instability of the results. With finite samples, there is
a large probability that the most negative values are over- or
undersampled, which may have a strong impact on the result.

We also repeated these calculations with different sample
sizes. The results in Fig. 3a show that for Gaussian distribu-
tions, the AG results of TP and CA are almost the same. More-
over, the CA results converge faster than the TP results, and this
becomes more pronounced when o, increases. With o5y = 2.0,
the convergence of TP is very slow, and it frequently gives too
negative estimates of AG.

For the two Gumbel distributions, there is a significant
discrepancy between the results predicted by TP and CA, and
the difference increases with oay. For the Gumb_r distribution,
TP shows a faster convergence than CA, and CA always gives too
negative (incorrect) predictions of AG. For the Gumb_1 distri-
bution, the opposite is true: CA shows a faster convergence than
TP, and it always gives a too positive (and still incorrect)
prediction of AG. For g5y =1 and 2 kcal mol’l, TP shows a very
slow convergence towards the correct result, with a very large
range of the estimates and many occasionally too negative
estimates, reflecting oversampling of negative values of AU.
This shows that for non-Gaussian distributions, the effects of
the higher-order terms in the cumulant expansion cannot be
neglected.

8790 | Chem. Sci, 2024, 15, 8786-8799
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The relation between IT and oAy

As discussed in the Introduction, both ¢, and the Kofke IT bias
measure have often been used to check the convergence of
single-step calculations. It is therefore of interest to know the
relation between these two measures. If AU follows a Gaussian
distribution, so that AG can be calculated from the second-
order cumulant expansion (eqn (3)), then eqn (4) can be
written as:

(11)

directly showing the relationship between IT and oay. The first
term depends only on the sample size N. Thus, for a fixed
sample size, II is linearly related to o,y with a negative slope
given by

or 1

The relation is illustrated in Fig. 4. It can be seen that with
a constant sample size, IT decreases when o,y increases.
Moreover, for a certain oy, II becomes larger when the sample
size increases, but the rate of growth is slow.

For each value of g,y or N, we can set IT to the limiting value
of 0.5 and solve eqn (4) for the other variable. These solutions
are shown in Fig. 5 (and some numerical values are given in
Table S1 in the ESIT). For example, with 1000, 1 million, and 1
billion samples, o,y must be less than 1.6, 2.5, and
3.3 kecal mol™* for II to attain an acceptable value (=0.5).
Conversely, oay values of 1, 2, 3, and 4 keal mol ™" require 60, 16
thousand, 62 million, and 3.6 x 10> samples for convergence
according to IT = 0.5. This shows that the limit of o, depends
on N and should not be given without specifying N.

Convergence of the various distributions

A problem with the IT bias measure is that it does not indicate
the accuracy of the calculated AG values. Therefore, we per-
formed a number of numerical simulations with well-defined
convergence limits. We tested three types of distributions,
Gaussian, Gumb_l, and Gumb_r, and three o, values, 0.5, 1.0,
and 2.0 kcal mol™', which are below, within and out of the
recommended range (0.6-1.2 kcal mol ). For each distribution,
we performed numerical simulations with the aim to determine
the minimum sample size (Nyn) required to achieve converged
AG. We consider AG converged when the calculated value falls
within 0.5 kcal mol™* of the value obtained by numerical inte-
gration with a confidence of 95% (estimated by repeating the
simulation 1000 times). This is similar to what has been used in
earlier studies,**" and the simulations can, of course, easily be
repeated with other convergence criteria. When the minimum
sample size required has been obtained, the corresponding IT
value was calculated according to eqn (4), using AG obtained
from either TP, CA, or numerical integration. We repeated the
simulations 100 times to obtain the uncertainty of all estimates.
The results are listed in Table 3.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 AG estimated using different sample sizes. The solid black lines represent the numerical integration result, as well as an error range of
+0.5 kcal mol™. The calculated results with TP and CA are shown in red and blue curves, respectively. Results are shown for Gaussian, Gumb_r,
and Gumb_L distributions (in the left (a), middle (b), and right columns (c), respectively). Three values of a5 are used: 0.5 (top), 1.0 (middle) and 2.0

(bottom).

From Table 3, it can be seen that when oy = 0.5, Nynin for TP
and CA is almost the same for each distribution. Gumb_r
requires the smallest number of samples (4) and Gumb_I the
largest sample size (11-14). Naturally, when o,y increases, Ny
also increases. On the other hand, for Gaussian distributions
with equal o,y values, Ny, for CA is smaller than that for TP
and the difference increases with o,y. This reflects that CA
converges faster than TP for Gaussian distributions, as was
discussed before. On the other hand, for non-Gaussian distri-
butions, TP requires less samples than CA. In fact, CA converges
to an incorrect value (as we also saw before), which is outside
our convergence criterion (0.5 kcal mol™") for both Gumble
distributions when o, is high (therefore, no results are given
for CA in Table 3). With Gumb_l, very large values for Ny, are
required also with TP and the required sample size grows
rapidly with o,y Going from o,y = 0.5 to 0.8, the required
sample size increase from 14 to over 3 million and with larger
oay, we could not generate sufficient samples to reach
convergence.

The corresponding IT values are also listed in Table 3. Due to
the fluctuation, there are small differences between Il,, and
IIn;. For TP, I1,, is always slightly larger (more positive) than
IIx; (by up to 0.2). With CA and the Gumbel distributions, the
opposite is sometimes true, and the difference is slightly larger
(up to 0.3). For the Gaussian distributions, all IT values are less

© 2024 The Author(s). Published by the Royal Society of Chemistry

than 0.5. This is especially pronounced for CA and larger values
of oap (e.g —0.5 for Gaus2). This, of course, reflects that IT was
developed for TP and is unaware of what method is actually
used to estimate AG.

For the Gumb_r distribution with TP, II is always <0.5,
reflecting that IT and the convergence limit were developed
assuming a Gaussian distribution. Since Gumb_r is skewed
towards positive AU values, the TP convergence is faster than for
a Gaussian distribution, and therefore, lower values of Il are
acceptable (e.g. —0.2 for g5y = 2 keal mol ™). Conversely, the
opposite is true for the Gumb_1 distributions, which are skewed
towards more negative values. Here, the limiting II value is 2.7
for ooy = 0.8 kecal mol . For CA, the results are the opposite
because it converges towards incorrect estimates of AG.

These results with interesting
observations:

e The criterion for IT implicitly involves some convergence
and confidence thresholds. Those used by wus (within
0.5 kecal mol ™" of the correct result with 95% confidence) are
slightly less strict for a Gaussian distribution than IT = 0.5.

e For CA and Gaussian distributions, less strict values for IT
can be used.

e The limit for IT depends on the underlying distribution.

e CA is applicable for a Gaussian distribution but gives
incorrect results for other distributions. The difference in AG

provide us several

Chem. Sci., 2024, 15, 8786-8799 | 8791
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Fig. 5 Relation between o5y and the sample size N when IT = 0.5.

estimated with CA and TP can used to decide whether the
distribution is Gaussian or not.

Reliability of IT = 0.5

In practical applications of the reference-potential method, the
distribution and the reference value are unknown. The key
question is to decide whether an obtained AG result is reliable
or if additional energies should be sampled, i.e., to decide the
proper sample size. As mentioned several times, a frequently
used criterion for convergence of TP is IT = 0.5. In this section,

8792 | Chem. Sci, 2024, 15, 8786-8799

we evaluate whether we can use this criterion to decide the
required sample size and how this can be done practically. We
first tried the most natural approach, i.e., to increase the
number of samples until II = 0.5. This was tested with
numerical simulations using the same distributions as in the
previous section. The simulations were repeated 1000 times for
each of the distributions to gain confidence in the results.

The results in Table 4 show that, in general, it is not a good
procedure to accept the AG value as soon as IT = 0.5, because
this can happen by chance (because II depends on the calcu-
lated value of AG). In fact, at least one of the 1000 individual
simulations indicated that the results have converged already
with three samples (the lowest number tested) for all distribu-
tions. As a consequence, only the three Gumb_r distributions
(for which we know from the previous subsection that IT = 0.5 is
too strict) and the GausO distribution give AG results that are
correct within 0.5 keal mol ' in more than 95% of the simula-
tions (conf. column in Table 4). For the two Gumb_I distribu-
tions, the problem is that IT = 0.5 is too loose. However, for the
two Gaussian distributions, the problem is convergence by
chance, and the problem is very serious as only 53 and 0.3% of
the simulations give correct results within 0.5 kcal mol™" for
oay = 1 or 2 keal mol ™, respectively.

Therefore, we tested to use larger thresholds. Unfortunately,
it seems hard to suggest a threshold for I that works for all
distributions. For example, IT = 0.75 works quite well for Gaus1,
giving AG results that agree with the true value within
0.5 keal mol™" more than 95% of the simulations and giving
Nmin values of 12-152 (average 77) that are similar to the value

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 The minimum sample size required to achieve convergence (Npin; i.€., reproduce the numerical-integration result within 0.5 kcal mol ™t
with 95% confidence) in the numerical simulations of three distributions, each with three values of g, (for Gumb_l, no convergence was

obtained with up to 10 million samples for g,y > 0.9)¢

TP CA

Distribution oap keal mol™? NAY I, I NAY I, jj .

Gaus 0.5 5.4 £ 0.5 0.34 £ 0.04 0.19 £ 0.06 5.4 £ 0.5 0.32 £+ 0.04 0.19 £ 0.05
1.0 44.6 + 2.3 0.46 £ 0.02 0.38 £ 0.02 35.7 £ 1.5 0.33 £+ 0.02 0.29 £ 0.02
2.0 5732 + 291 0.30 £ 0.01 0.23 £+ 0.01 370 £ 10 —0.54 £+ 0.01 —0.55 + 0.01

Gumb_r 0.5 3.5 £ 0.5 0.17 £+ 0.07 0.00 £+ 0.10 3.5+ 0.5 0.12 £+ 0.07 —0.10 £ 0.10
1.0 10.9 + 0.7 0.16 £ 0.03 0.08 £+ 0.03 135 + 8 0.82 + 0.02 1.13 + 0.02
2.0 54.9 + 2.4 —0.19 £ 0.02 —0.24 £ 0.02

Gumb_1 0.5 14.2 £ 1.2 0.71 £ 0.03 0.50 £+ 0.04 11.4 £ 0.8 0.68 + 0.03 0.39 + 0.04
0.8 3106 100 £ 85 600 2.68 £ 0.01 2.49 £ 0.01

% The corresponding values of IT at Ny, are also given, using AG either from the simulation (II,,) or from numerical integration (IIy;). The
simulations were repeated 100 times, and the reported precision is the standard deviation over these 100 repeats (thus, the standard error is 10

times smaller).

Table4 Number of conformations needed to obtain IT = 0.5 (Nyin) in
numerical simulations using different distributions with different values
of agay. For each distribution, 1000 individual simulations were per-
formed and in each simulation, the number of samples was increased
by one untilIT = 0.5. The table lists the average, lower, and upper limits
of Nmin in these simulations, as well as the average of II, the
percentage of the simulations that give AG within 0.5 kcal mol™ of the
reference value from numerical integration (conf.), and the average
deviation of the calculated AG from this value (AAGa,, in kcal mol™)

Nmin
Distribution Av Low Up I, Conf. % AAG,,
Gaus0 6 3 12 0.63 96 0.13
Gaus1 18 3 43 0.61 53 0.52
Gaus2 4030 3 5425 0.52 0.3 0.71
GumbO0_r 6 3 10 0.63 100 0.01
Gumbil_r 13 3 29 0.61 95 0.08
Gumb2_r 229 3 338 0.53 98 0.17
Gumbo_l 6 3 11 0.65 75 0.38
Gumbi1_l 16 3 47 0.63 0 3.67

(45) listed in Table 3. However, for Gaus2, this threshold gives
Nnin values that are much too large: Even the lower limit is 2.5
times larger than the value in Table 3 (14 402 compared to 5732
+ 29; note that we here used the standard error, rather than the
standard deviation given in Table 3).

Third, we instead required that IT = 0.5 a certain number of
consecutive times (1mes) before AG is accepted. The results for
Niimes Tanging from 2 to 5 are listed in Table 5. It can be seen
that for the two Gaussian distributions, 7nimes = 4 Seems to be
appropriate - it gives results that are within 0.5 kcal mol™* of
the reference result 96% of the simulations (conf. in Table 5),
whereas the corresponding confidence for 7mes = 3 is only 89-
94%. For the Gausl distribution, the average number of
samples needed for convergence (Nyin(Av) = 56 in Table 5) is
only slightly larger than the value reported in Table 3 (45 & 0.2).
However, for Gaus2 even the lowest Ny, (6455) is larger than
the value reported in Table 3 (5732 £ 29).

© 2024 The Author(s). Published by the Royal Society of Chemistry

For the Gumbel distribution, we obtain the expected results:
Gumb_r always gives a very high confidence, 99-100%, because
IT = 0.5 is too strict, whereas Gumb1_I always gives a confi-
dence of 0%, because IT = 0.5 is too floppy (but Gumbo0_l
actually gives a confidence of 98% for n¢mes = 4, simply because
the variance is so small).

A practical procedure

The results in the previous section show that the limit of II
involves some implicit convergence limits and that it is hard to
suggest proper limits that are valid for different distributions.
Therefore, we in this section suggest another more practical
procedure. It is based on numerical simulations of Gaussian
distributions with different values of gy, the results of which
are presented in Table 6. For different values of oy, the
minimum sample size Ny, needed to converge AG within
0.5 kcal mol " of the reference value (from numerical integra-
tion) with a confidence of 95% over 1000 samples was estimated
(as in Table 3). This was done both for TP and CA. The simu-
lations were repeated 100 times to get uncertainties of Ny;,. For
each value of Ny, we also estimated the average value of I1. In
addition, we estimated the mean of the weight of the largest
term in the average in eqn (1), Wmax, as well as the mean abso-
lute difference in AG calculated with TP or CA, AAGc,a. Both can
be used to decide whether the distribution is Gaussian or not.

From the results in Table 6, it can be seen that wy,,, esti-
mated at Ny, for TP decreases slowly with ¢y, from 0.40 for
oay = 0.5 keal mol™ to 0.22 for o5, = 3.0 keal mol ™!, which is at
the practical upper limit for obtaining converged free energies
with TP. At the same time, AAGg, increases from 0.01 to
0.17 kecal mol . Fig. 6 shows histograms for wy,,, for Gumb_r,
Gaussian, and Gumb_l distributions with the same o,y =
1.0 kcal mol™". It can be seen that Gumb_r gives the lowest
values and Gumb_1 the highest values. Thus, wy,,x may give an
indication of the type of distribution.

Based on these results, we suggest the following practical
procedure for AG estimated with the reference-potential
method:

Chem. Sci., 2024, 15, 8786-8799 | 8793
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Table 5 Number of conformations (Nmin) needed to obtain IT = 0.5 nymes times in a row in numerical simulations using different distributions
with different values of g,

Nmin
Neimes Distribution Av Low Up II,, Conf. % AAG,, keal mol ™!
2 Gaus1 36 9 61 0.20 83 0.31
Gaus2 6444 3971 7919 0.09 51 0.50
Gumb1_r 22 4 39 0.64 99 0.04
Gumb2_r 347 219 428 0.54 100 0.09
Gumbo_l 9 4 17 0.71 90 0.28
Gumbi1_l 46 5 130 0.66 0 3.26
3 Gausl 47 7 76 0.20 94 0.22
Gaus2 8031 4969 9506 0.09 89 0.41
Gumb1_r 29 6 43 0.66 99 0.03
Gumb2_r 405 267 494 0.55 100 0.06
Gumbo_l 12 5 26 0.78 94 0.23
Gumbi1_l 89 11 222 0.69 0 3.00
4 Gausl 56 21 85 0.19 96 0.18
Gaus2 9105 6455 10616 0.10 96 0.36
Gumbi1_r 32 16 49 0.68 100 0.02
Gumb2_r 440 307 539 0.56 100 0.05
Gumbo_l 14 6 27 0.81 98 0.19
Gumb1_l 140 19 352 0.70 0 2.82
5 Gaus1 63 27 100 0.19 98 0.15
Gaus2 10 006 6966 11971 0.11 98 0.32
Gumbi1_r 36 17 51 0.69 100 0.01
Gumb2_r 468 353 554 0.56 100 0.04
Gumbo_l 17 8 35 0.86 98 0.17
Gumb1_l 203 29 512 0.71 0 2.28

“ The entries are the same as in Table 4.

Table 6 The minimum sampling size (Nmin) required to achieve convergence (AG estimated within 0.5 kcal mol™ of the reference value with
95% confidence over 1000 samples) in numerical simulations of Gaussian distributions with different values of gy, using both TP and CA®

TP CA

[N keal 1’1’10171 Nmin l-IAv Wmax AAGL‘A Nmin HAV Wmax AAGCA

0.50 5.4+ 0.5 0.34 = 0.04 0.40 £ 0.02 0.01 £ 0.00 5.4 + 0.5 0.32 £ 0.04 0.40 = 0.02  0.01 £ 0.00
0.75 15.8 £ 0.9 0.45 £0.02 0.31 £ 0.01 0.03 &+ 0.00 15.4 £ 0.8 0.40 £0.02 0.31 £0.01  0.03 £ 0.00
1.00 44.6 £ 2.3 0.46 £ 0.02 0.27 & 0.01 0.04 &= 0.00 35.7£1.5 0.33 £0.02 0.30 = 0.01  0.05 £ 0.00
1.25 125 £ 6 0.42 £0.01 0.26 £ 0.01 0.07 = 0.01 72.4 £2.6 0.18 £0.01 0.31 £0.01 0.09 £ 0.01
1.50 380 & 16 0.37 £0.01 0.25 £0.01 0.09 £ 0.01 134 £5 —0.03 +0.01 0.34 £0.01  0.14 4 0.01
1.75 1277 £+ 48 0.32 £0.01 0.25+0.01 0.11 + 0.01 228 =8 —0.27 £0.01 0.37 £0.01  0.23 & 0.01
2.00 5732 + 290 0.30 £0.01 0.24 &£ 0.01 0.12 & 0.01 370 £ 10 —0.54 +0.01 0.40 £0.01  0.35 4 0.01
2.25 24900 £ 1150 0.24 £0.01 0.23 +£0.00 0.14 + 0.01 565 + 16 —0.83 £0.01 0.43 +£0.01  0.52 £ 0.02
2.50 128200 =+ 5500 0.20 £ 0.01 0.23 &£ 0.01 0.16 &= 0.01 836 + 24 —1.13 +0.01 0.46 +0.01  0.73 £ 0.02
2.75 949 000 £ 4500 0.19 £0.00 0.22 +£0.01 0.16 + 0.01 1247 + 31 —1.43 £0.01 0.49 +0.01  1.00 £ 0.02
3.00 7489200 + 22000 0.18 £0.00 0.22 £0.01 0.17 &£ 0.01 1715 £ 52 —1.76 & 0.01 0.51 +0.01  1.34 £ 0.02
3.5 3091 + 87 —2.44 +£0.01 0.56 £0.01  2.22 4 0.03
4.0 45130 £ 140 —3.154+0.01 0.60 £0.01  3.41 4 0.03
5.0 12700 £ 360 —4.60 = 0.01 0.66 +0.01  6.76 £ 0.04
10.0 203 000 & 2700 —12.35+0.00 0.81 £0.01 45.7 = 0.8
15.0 984900 £ 12800  —20.41 +0.00 0.87 £0.01 124.0 £ 0.1
20.0 3306900 & 7700 —28.57 £ 0.00 0.89 £0.00 242.6 &+ 0.2
25.0 7698000 + 172000 —36.80 £0.00 0.91 £ 0.00 402.5+ 0.2

% The corresponding values of Wy, IT, and AAGg, calculated for Ny, samples are also given. For each value of oay, 100 independent simulations
with different random seeds were performed to obtain averages and uncertainties of all the calculated values. The uncertainties are standard
deviations over these 100 simulations (thus, the standard errors are 10 times smaller).
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Fig. 6 Histograms of the wy,,4 for three distributions with o5y = 1.0 kcal.

1. Sample N, samples and calculate oay. In the following,
we used Ngare = 200.

2. Read N = NS4, for this value of o,y from Table 6 and
obtain this number of samples.

3. Use a standard normality test to decide whether the
distribution is Gaussian or not. We used the Shapiro-Wilk test
and a p-value of 0.05 to decide if the sample is Gaussian.

4. If the distribution is not Gaussian, read N=Np, from
Table 6. If 05y is larger than the tabulated values, use N = Nyax,
which was set to 1 x 107 in this study. If the distribution is
Gaussian, no additional samples are needed.

5. Obtain N samples and calculate o5y, AG with both CA and
TP, as well as Wy, and AAGc,. Calculate also the corresponding
standard errors with bootstrapping (allowing for repeated
samples).

6. Check that o,y has not increased significantly. If so, go
back to 2. Also check that the normality test still gives the same
result.

7. If the distribution is Gaussian, use AG from CA.

8. If the distribution is non-Gaussian, use AG from TP.

9. If Wyax + SE is less than wy,,, from Table 6 and SE is the
standard error from 1000 samples of bootstrapping, the esti-
mated AG is deemed to be reliable; otherwise it is deemed that
no reliable results can be obtained (the distribution is too much
skewed towards negative values).

This procedure is based on the results in Table 6 and
therefore on the convergence criteria used there (AG should
reproduce the reference results within 0.5 kcal mol™" in 95% of
the simulations). If a user is interested in other (e.g. more strict)
criteria, a new table could easily be constructed with our
programs. The advantage with our criteria, in contrast to the
criterion that IT = 0.5, is that they have an easy-to-interpret
meaning in terms of reproducing correct results and therefore
they can immediately be adapted to the need of the user.

We have tested this procedure for three different distribu-
tions (Gaussian, Gumb_r and Gumb_l) and 2-4 values of gay-
For each distribution and o4, we followed the procedure 1000
times and count how many times the procedure yielded a AG
that was judged reliable and also was within the numerical
result within 0.5 kcal mol ™" (true positive, TP) or a AG that
judged unreliable and it was not within 0.5 kcal mol™" of the
numerical results (true negative, TN).

© 2024 The Author(s). Published by the Royal Society of Chemistry

From the results in Table 7, it can be seen that the Shapiro-
Wilk test correctly identify the Gaussian and non-Gaussian
distributions with an accuracy of 95-100%. For the Gaussian
and Gumb_r distributions, we obtain the correct AG value
within 0.5 kecal mol™" in 94-100% of the simulations, with
average values that are within 0.02 kcal mol " of the numerical
reference. For the Gumb_l distribution, we judge that 91-92%
of the results are not reliable, but for the distributions with o
= 0.75 kcal mol™', many of the AG values are still within
0.5 kcal mol ' of the numerical results, giving a TP + TN
confidence of only 75%, whereas with g,y = 1.5 keal mol ™, the
proportion of correct predictions increases to 91%. The
problem with the former distribution is that much too few AU
values are sampled, giving too positive estimates of AG.
However, occasionally, unusually negative AU values are ob-
tained, which happen to give AG within the convergence limit,
i.e. a cancellation of two errors. It should also be noted that for
the Gumb_l distribution, the simulations with a restricted
number of samples, oay calculated from the sample may be
quite different from the analytical value of g, (the difference is
not significant for the other two distributions) and if we restrict
the investigation to samples that give a correct oy (within
0.005 keal mol "), the successful (TP + TN) predictions increase
to 81 and 93% for the Gumb_I distributions with g5, = 0.75 and
1.5 kcal mol ™", respectively. Thus, Gumb_I and other distribu-
tions with a skew towards left remain problematic for reference-
potential approaches.

Finally, we also performed an application with data from
a practical example of a single-step QM perturbation. We
employed data from our previous study of the binding of cyclic
carboxylate ligands to the octa-acid deep-cavity host using
semiempirical (SQM) and density functional theory (DFT)
methods.” We considered four ligands, benzoate (Bz), para-
methyl-benzoate (MeBz), para-ethyl-benzoate (EtBz) and meta-
chloride-benzoate (mClBz) and the free energy change of going
from SQM to DFT based on up to 5000 snapshots from a SQM/
MM molecular dynamics simulation, either for the ligands free
in water solution or when bound to the octa-acid host. We fol-
lowed the procedure suggested in this section and the results
are collected in Table 8.

It can be seen that for all four ligands in both surroundings,
oap is rather small, 1.3-1.9 kcal mol™. Likewise, all distribu-
tions of AU are Gaussian (four examples are shown in Fig. S27).

Chem. Sci, 2024, 15, 8786-8799 | 8795
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Table 7 Test of the suggested approach for statistical distributions®

Distribution [N} AGn1 NSA, Gaus? NI Winax AG % R TP + TN Conf,
Gaussian 0.75 —0.47 200 95% —0.47 £+ 0.07 5% 100% 100%
Gaussian 1.50 —1.89 200 95% —1.86 £ 0.07 4% 97% 97%
Gaussian 2.50 —5.24 836 96% —5.21 £+ 0.06 3% 92% 93%
Gaussian 3.00 —7.55 1715 95% —7.54 £ 0.06 4% 93% 94%
Gumb_r 0.75 0.008 200 0% 200 0.03 4+ 0.01 0.01 £+ 0.02 100% 100% 100%
Gumb_r 1.50 —0.39 200 0% 380 0.05 + 0.01 —0.38 £ 0.07 100% 100% 100%
Gumb_r 2.50 —1.27 836 0% 128290 0.00 + 0.00 —1.28 £+ 0.01 100% 100% 100%
Gumb_r 3.00 —1.82 1715 0% 7502 341 0.00 £+ 0.00 —1.83 £ 0.00 100% 100% 100%
Gumb_l 0.75 —1.73 200 0% 200 0.19 4+ 0.11 —1.09 £+ 0.31 8% 75% 17%
Gumb_l 1.50 —-9.77 200 0% 380 0.44 + 0.13 —4.10 £ 0.98 9% 91% 0%

“ We used three different distributions with 2-4 different values of 7. The third column gives the target value (AGy; in kcal mol™") from numerical
integration. We followed the procedure described in the text. The fourth column shows either NSA, for this value of g5y, from Table 6 or Ny = 200 if
it is larger. The fifth column shows the results of the normality test. If it was considered to be Gaussian, the AGc¢, result was accepted (shown in the
eighth column). Otherwise, Niy,, samples were used (from Table 6 or Ny = 200 if it is still larger; shown in the sixth column) and wy,, and AGrp
were calculated. wy,, was compared to what is expected for a Gaussian distribution with this number of samples (from Table 6 or from Table S2 with
Ngtare = 200) and based on this, the results were deemed reliable (R in column eight) or unreliable. The ninth column shows the percentage of true
positive and true negative (TP + TN) when the approach was tested 1000 times for each distribution (all values in the table are averages over these
1000 repeats). The last column (conf.) shows the percentage of samples giving correct results within 0.5 kcal mol .

Table 8 Application of our suggested approach to the calculation of SQM — DFT AG for four ligands binding to the octa-acid host (kcal mol™).
Values marked with "All" employs all 5000 snapshots employed in the original study.?® Gaus? indicates whether the distribution was considered

Gaussian

Ligand Surrounding aﬁ"b‘?" aﬁlll, NSAL Gaus? AGév 1‘(;‘?" AGAL AGH
Bz bound 1.30 1.30 134 Y —4.02 —-3.79 —4.05
unbound 1.67 1.59 228 Y —5.39 —5.58 —6.07
MeBz bound 1.86 1.81 370 Y —2.18 —2.64 —2.70
unbound 1.91 1.84 370 Y —5.48 —5.29 —5.42
EtBz bound 1.77 1.83 370 Y —3.21 —3.47 —3.67
unbound 1.88 1.84 370 Y —5.59 —5.29 —5.28
mClBz bound 1.33 1.37 134 Y —3.89 —-3.90 —4.06
unbound 1.70 1.66 228 Y —6.01 —6.31 —7.29

Therefore, we can employ CA to calculate AG and 134-370
snapshots are enough to obtain results converged to within
0.5 keal mol . The resulting AG values are shown in Table 8. It
can be seen that they agree with the previously published CA
results (based on all available 5000 snapshots) within
0.5 keal mol ™, i.e. within our target accuracy of 0.5 kcal mol .
The agreement with the previously published TP results is
worse, with deviations of up to 1.3 kcal mol ™, but that mainly
reflect that the TP results are not converged (with 5000 samples,
IT for unbound mCIBz is only 0.2),® but it might also reflect
small deviations of the data from Gaussian (the old CA and TP
results show similar deviations). Thus, we can conclude that our
suggested approach works well also with real computational
data.

Conclusions

In this paper, we discuss how the reliability of single-step
exponential averaging (TP) can be judged. In particular, we
discuss Wu and Kofke's bias measure IT = 0.5 and its relation to
ogay. We show that for Gaussian distributions, they follow the

8796 | Chem. Sci, 2024, 15, 8786-8799

simple relation in eqn (12), as is illustrated in Fig. 4. For
Gaussian distributions, IT = 0.5 works fine as a convergence
criterion for AG estimated by TP and it is slightly stricter than
requiring that the estimated AG should reproduce the correct
results within 0.5 keal mol " with 95% confidence. However, for
Gaussian distributions, CA is a more effective method to esti-
mate AG, converging much faster with respect to the number of
samples.

Likewise, for distributions that are skewed more to the right
than Gaussian distributions (more positive values of AU; e.g.
Gumb_r), IT = 0.5 is too strict, as are other convergence criteria
based on Gaussian distributions. Therefore, TP shows a good
convergence and gives accurate estimates of AG, whereas CA
gives incorrect estimates. Conversely, for distributions that
skewed more to the left than Gaussian distributions (more
negative values; e.g. Gumb_l), IT = 0.5 is too floppy. CA still
gives incorrect estimates, whereas the TP estimates converge
towards the correct value, but for oay = 1 kecal mol™?, it
becomes practically impossible to converge the results. More-
over, a direct application of the IT = 0.5 criterion may be

© 2024 The Author(s). Published by the Royal Society of Chemistry
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problematic in practical applications, owing to the risk of
obtaining IT = 0.5 by chance.

Therefore, we have instead suggested a practical procedure
to judge the convergence of reference-potential calculations. It
is based on oy to estimate the number of samples needed for
convergence, a Shapiro-Wilk test to decide whether the distri-
bution is Gaussian or not, and wy,,, to decide whether a non-
Gaussian distribution is skewed to the left or to the right.
Using a set of distributions, we show that the approach works
reasonably well. It also works well for a set of practical appli-
cations of SQM — DFT perturbations. However, distributions
that are skewed towards negative values remain a challenge to
converge with TP methods. In the future, it would be interesting
to see if a similar approach can be used for nonequilibrium
methods based on Jarzynski's equality,”** which also involves
an exponential average.
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