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teria for single-step free-energy
calculations: the relation between the P bias
measure and the sample variance†

Meiting Wang, ab Ye Mei *cde and Ulf Ryde *b

Free energy calculations play a crucial role in simulating chemical processes, enzymatic reactions, and drug

design. However, assessing the reliability and convergence of these calculations remains a challenge. This

study focuses on single-step free-energy calculations using thermodynamic perturbation. It explores how

the sample distributions influence the estimated results and evaluates the reliability of various convergence

criteria, including Kofke's bias measure P and the standard deviation of the energy difference DU, sDU. The

findings reveal that for Gaussian distributions, there is a straightforward relationship between P and sDU,

free energies can be accurately approximated using a second-order cumulant expansion, and reliable

results are attainable for sDU up to 25 kcal mol−1. However, interpreting non-Gaussian distributions is

more complex. If the distribution is skewed towards more positive values than a Gaussian, converging

the free energy becomes easier, rendering standard convergence criteria overly stringent. Conversely,

distributions that are skewed towards more negative values than a Gaussian present greater challenges

in achieving convergence, making standard criteria unreliable. We propose a practical approach to assess

the convergence of estimated free energies.
Introduction

Free energies play a pivotal role in determining the thermody-
namic feasibility of processes. Therefore, there has been much
interest in both measuring and calculating free energies. The
most accurate technique to calculate the free-energy difference
between two thermodynamic states involves performing
a gradual transformation along a pathway connecting these
states.1–5 During this process, the energy difference is accumu-
lated while conformations are sampled, typically through
molecular dynamics or Monte Carlo simulations using molec-
ular mechanics (MM) potential. However, the accuracy of MM
calculations is known to be limited.6–8 Consequently, many
scientists are actively engaged in developing methods to
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calculate free energies using quantum mechanical (QM)
methods, which promise enhanced accuracy and reliability.9–15

The reference-potential approach, also known as the dual-
Hamiltonian approach, is an efficient method to calculate
free-energy differences and proles at either a QM or hybrid QM
and molecular mechanics (QM/MM) level (hereaer collectively
referred to as QM for simplicity). This approach, which avoids
direct sampling at the QM level, was independently proposed by
Gao and by Warshel in 1992.16,17 Since its introduction, it has
seen widespread applications and enhancements by various
groups for predicting binding affinities, solvation free energies,
and reaction barriers.13,15,18–25 The method involves performing
sampling at a lower theoretical level, such as MM, and then
obtaining the free-energy difference at the QM level through
a free-energy correction from the change of the energy function
from MM to QM. As depicted in the thermodynamic cycle in
Fig. 1, the free-energy difference between states A and B at the
QM level can be calculated as DGQM

A/B = DGMM
A/B − DGMM/QM

A +
DGMM/QM

B , exploiting the fact that the free energy is a state
function.

The primary objective of reference-potential methods is to
achieve high accuracy at an affordable computational cost.
Simulations on a QM potential-energy surface are exceedingly
time-intensive, oen making the direct calculation of the free-
energy difference DGQM

A/B prohibitively expensive. In contrast,
calculating DGMM

A/B at the MM level is more feasible. Therefore,
the free-energy differences DGMM/QM

A and DGMM/QM
B need to

be obtained without QM simulations, achievable through
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The reference-potential approach.
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single-step thermodynamic perturbations26 (TP; also known as
exponential averaging or free-energy perturbation). This is in
stark contrast to othermethods like thermodynamic integration
(TI),27 Bennett acceptance ratio (BAR)28 or its multi-state variant
(MBAR),29 which require at least one simulation on the QM
potential-energy surface, resulting in substantially higher
computational demands.

Unfortunately, computing DGMM/QM is problematic.
Numerous studies have highlighted that the convergence of
free-energy differences calculated using TP is oen slow and the
reliability of the results is frequently questionable.13,25,30–32

Therefore, it is essential to rigorously verify the convergence of
the DGMM/QM calculations to ensure their trustworthiness
before relying on the results. This is crucial to ensure the overall
accuracy and reliability of the reference-potential methods.

Therefore, establishing reliable convergence measures for
the calculated DGMM/QM is highly valuable. Numerous studies
have explored various convergence criteria for TP
calculations.15,25,33–37 It has been noted that convergence is
inuenced by the variance of the energy difference between the
two Hamiltonians, sDU

2 (DU = UQM − UMM). Some studies38,39

have recommended that sDU should be kept below 1–2 kBT,
where kB is Boltzmann's constant and T is the absolute
temperature. This recommendation translates at 300 K to 0.6–
1.2 kcal mol−1, which is quite stringent. Later studies propose
that 4 kBT (equivalent to 2.3 kcal mol−1) may be a more practical
threshold.34 Additionally, the weight of each conguration in

the exponential average, wi ¼ e�DUi=kBT

PN
i¼0

e�DUi=kBT

has also been

considered for assessing convergence. If the average is domi-
nated by one or only a few values, it may indicate unreli-
ability.40,41 Another proposed metric is the reweighting

entropy,.15 Sw ¼ � 1
ln N

XN
i¼0

wi ln wi. It has been suggested that

an Sw value less than 0.65 could signal that the predicted result
might be unreliable.15

The bias measure P, formulated by Koe and co-
workers,42–47 serves as another tool for quantifying the conver-
gence of TP calculations. It is advised that the value ofP should
exceed 0.5 for converged calculations.13,34,43,44 However, it is
important to note that the P bias measure is based on certain
© 2024 The Author(s). Published by the Royal Society of Chemistry
assumptions, such as the energy difference DU follows
a Gaussian distribution. Consequently, this criterion might not
be universally applicable in all scenarios, especially in cases
where DU deviates from a Gaussian distribution. This high-
lights the importance of understanding the underlying
assumptions and limitations of convergence measures in TP
calculations.

Identifying a unique comprehensive convergence criterion
for TP is nontrivial. In the current study, we establish the rela-
tionship between the bias metrics P and sDU. Subsequently, we
employ various statistical probability distributions to examine
the inuence of both distribution and sDU on the convergence
of TP calculations. Ultimately, this leads us to propose a prac-
tical approach for assessing the accuracy of computed free
energy values.
Theory and methods
Free-energy estimators

As mentioned in the introduction, TP is the only practically
feasible method to obtain DGMM/QM in the reference-potential
method if time-consuming QM simulations should be avoided.
With TP, the free-energy difference is calculated by

DGMM/QM ¼ �kBT ln

�
exp

�
� DU

kBT

��
MM

; (1)

where h$iMM denotes an average over the conformations
sampled on the MM potential energy surface.

Such an exponential average suffers from a slow convergence
with a nite number of samples.36,37,48 In particular, the average
may be dominated by a small number of terms with the most
negative DU values. Therefore, many studies have suggested
avoiding the use of Zwanzig's equation directly.30,36,49,50 An
alternative is to employ the cumulant approximation (CA):

DG ¼
XN
k¼1

�1k�1

ðkBTÞk�1
k!
Ck

¼ hDUi � sDU
2

2kBT
þ
XN
k¼3

�1k�1

ðkBTÞk�1
k!
Ck:

(2)

Here, Ck is the kth cumulant, of which the rst two terms are the
sample mean, hDUi, and the variance, sDU

2, of the energy
differences DU, as indicated in the second line of eqn (2). If DU
Chem. Sci., 2024, 15, 8786–8799 | 8787
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follows a Gaussian distribution, the cumulants of the third and
higher order terms vanish, and thus eqn (2) can be written as

DG ¼ hDUi � sDU
2

2kBT
: (3)

The CA truncated aer the second-order term usually shows
much better convergence properties than the exponential
average in eqn (1). However, if DU deviates from a Gaussian
distribution, the convergence and accuracy of the truncated CA
are unclear.
The bias measure P

For a real simulation, the free-energy difference is estimated
from nite samples. The distribution of DU may not be
Gaussian and the phase-space overlap may not be sufficient. To
check the reliability of the free-energy calculation, reliable
convergence criteria are needed. Based on an idea from infor-
mation theory, Wu and Koe43,44 suggested theP bias measure,
which is calculated from:

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WL

"
ðN � 1Þ2

2p

#vuut �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðhDUi � DGÞ

kBT

s
(4)

Here, WL is the Lambert function, and N is the sample size. It
should be emphasized that the derivation of eqn (4) was based
on two conditions: viz. that the distributions of forward and
backward directions (i.e. in our case MM / QM and QM /

MM) have identical variances and that DU follows a Gaussian
distribution.
Analytical model data

In general, the underlying distribution of DU is unknown, and
therefore also the convergence properties of DG. We have eval-
uated the convergence of DG by numerical simulations using
several assumed statistical distributions, testing different
shapes of the distributions. We typically test three different
values of sDU, 0.5, 1.0 and 2.0 kcal mol−1, representing values
below, within and outside the previously suggested convergence
limit of 1–2 kBT (0.6–1.2 kcal mol−1). We used ve distributions,
which are described by the probability density function, r(DU)
below. However, we rst note that in terms of r(DU), eqn (1) can
be rewritten as:

DG ¼ �kBT ln

ðþN

�N
e
� DU
kBTrðDUÞdðDUÞ (5)

First, we used Gaussian distributions with the probability
density function:

rGausðx;m; sÞ ¼
1

s
ffiffiffiffiffiffi
2p

p e�
ðx�mÞ2
2s2 (6)

where m and s are the mean and standard deviation
respectively.

Second, we used two types of Gumbel distributions. They are
asymmetric distributions but do not deviate very much from
8788 | Chem. Sci., 2024, 15, 8786–8799
a Gaussian distribution. Compared to a Gaussian distribution,
Gumb_r decays slower on the right (positive) side of the main
peak but faster on the le (negative) side, whereas the opposite
applies to the Gumb_l distribution, as is shown in Fig. 2. The
probability density functions of these two distributions are:

rGumb_rðx;m; bÞ ¼
1

b
e�ðx�mÞ=b�e�ðx�mÞ=b

; (7)

and

rGumb_lðx;m; bÞ ¼
1

b
eðx�mÞ=b�eðx�mÞ=b

; (8)

respectively, where m is a location parameter and b is a scale
parameter. We adapted b so that the distributions have stan-
dard deviations of 0.5, 1, and 2.

Third, we used Student's t-distribution. It is similar to the
Gaussian distribution, but it has slightly wider distributions on
both sides (cf. Fig. 2):

rtðx; nÞ ¼
�

n

nþ x2

��1þn
2

�
; (9)

where n is the degrees of freedom. In this work, we used n = 10,
which gives a distribution with a standard deviation of 1.12.

Fourth, we used the Beta distribution, which is a versatile set
of asymmetric distributions:

rBetaðx; a; bÞ ¼ xa�1ð1� xÞb�1Gðaþ bÞ
GðaÞGðbÞ (10)

where G(z) is the gamma function. It is dened over the range
0 < x < 1 (we used x = x/5, so 0 < x < 5). We selected a = 15 and
b = 4, which give s = 0.46 and a single peak but with more
positive outliers compared to a Gaussian distribution.

All model distributions used in this work are summarized in
Table 1 and they are shown in Fig. 2.

We employed simple Python programs to simulate these
distributions of the energy differences DU. Numpy was
employed to generate random numbers that follow these
distributions. Autocorrelation functions were used to ensure
that the random numbers were uncorrelated (cf. Fig. S1†).
Moreover, the QUADPACK numerical quadrature routines were
used to integrate eqn (5). The free-energy differences were
calculated with both the exponential average and the second-
order cumulant expansion (eqn (1) and (3)). Finally, the corre-
sponding P bias measure was calculated according to eqn (4).
The Python codes employed are available upon request. Of
course, all model distributions are unitless. The kcal mol−1

energy units are introduced by the kBT term, e.g. in eqn (5).
It should be pointed out that for the Gaussian, Gumb_r and

Beta distributions, eqn (5) can be integrated numerically.
However, the integration diverges for Gumb_l and Student t-10
distributions. In this work, the integration limits for Gumb0_l
and Gumb1_l were set to −15 and 15, whereas for the Stud. t-10
and Gumb2_l distributions, the limits were [–20 20] and [–30
30], respectively. The probability for numbers outside these
ranges is extremely small. This is conrmed by our random-
number simulations, using sample sizes from 100 to 10
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The probability density of the model distributions employed. The probability of the Beta distribution was scaled (dividing the original value
by 10) and the distribution has been translocated to overlap with the other distributions.

Table 1 Overview of the employed model distributions

Abbreviation Distribution s

Gaus0 Gaussian, m = 0 0.50
Gaus1 Gaussian, m = 0 1.00
Gaus2 Gaussian, m = 0 2.00
Gaus3 Gaussian, m = 0 3.00
Gumb0_r Gumbel_r, m = 0, b = 0.39 0.50
Gumb1_r Gumbel_r, m = 0, b = 0.78 1.00
Gumb2_r Gumbel_r, m = 0, b = 1.56 2.00
Gumb0_l Gumbel_l, m = 0, b = 0.39 0.50
Gumb1_l Gumbel_l, m = 0, b = 0.78 1.00
Gumb2_l Gumbel_l, m = 0, b = 1.56 2.00
Stud. t-10 Student's t, n = 10 1.12
Beta Beta, x = x/5, a = 15, b = 4 0.46

Table 2 Estimated free energies from numerical integration of eqn (5)
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million data points. Thus, we have employed truncated distri-
butions in the same way as in previous studies.34
(NI), as well as TP (eqn (1)) and CA (eqn (3)) based on 1000 random
simulations with 10 million data points for the various distributions. All
entries are in kcal mol−1. The last column gives P for the sample. The
reported uncertainties are standard deviations

Distribution sDU DGNI DGTP DGCA P

Gaus 0.50 −0.21 −0.21 � 0.00 −0.21 � 0.00 4.37 � 0.00
1.00 −0.84 −0.84 � 0.00 −0.84 � 0.00 3.53 � 0.00
2.00 −3.36 −3.35 � 0.03 −3.36 � 0.00 1.86 � 0.00
3.00 −7.55 −7.41 � 0.28 −7.55 � 0.00 0.17 � 0.00

Gumb_r 0.50 0.06 0.06 � 0.00 0.02 � 0.00 4.46 � 0.00
1.00 −0.09 −0.09 � 0.00 −0.39 � 0.00 3.86 � 0.00
2.00 −0.79 −0.79 � 0.00 −2.46 � 0.00 2.82 � 0.00

Gumb_l 0.50 −0.56 −0.56 � 0.01 −0.44 � 0.00 4.15 � 0.00
1.00 −4.17 −4.13 � 0.65 −1.29 � 0.00 0.17 � 0.00

Stud. t-10 1.12 −7.12 −4.15 � 1.61 −1.05 � 0.00 0.32 � 0.00
Beta 0.46 3.75 3.74 � 0.00 3.77 � 0.00 4.39 � 0.00
Results and discussion
Effect of distribution

To investigate the impact of sample distributions on the
calculated results, DG was estimated with both thermodynamic
perturbation (TP; eqn (1)) and the second-order cumulant
expansion (CA; eqn (3)). The result of the numerical integration
of eqn (5) (NI) was taken as the reference. DG was calculated
using 10 million data points for each distribution and the
calculation was repeated 1000 times to estimate the standard
deviation of the calculated values. The results are collected in
Table 2.

Many studies have reported that the convergence of TP is
strongly correlated to the variance (sDU

2), and it has been
© 2024 The Author(s). Published by the Royal Society of Chemistry
suggested that converged results are obtained only if sDU < 0.6–
1.2 kcal mol−1.15,25,33–39 The results in Table 2 show that for
Gaussian distributions with sDU = 0.5 and 1.0 kcal mol−1, both
the TP and CA methods give excellent estimated free energies
that coincide with that obtained with numerical integration.
TheP bias measure is also good, 3.5–4.4. However, when sDU is
increased for the Gaussian distributions, the TP results start to
deteriorate. For sDU = 2 kcal mol−1, the error for TP is only
0.01 kcal mol−1, and the corresponding standard deviation and
P value are 0.03 kcal mol−1 and 1.9, respectively, indicating
a satisfying convergence (with 10million samples). However, for
sDU = 3 kcal mol−1, the error of TP is 0.14 kcal mol−1 and the
standard deviation is 0.28 kcal mol−1, reecting that the indi-
vidual 1000 estimates have errors between −1.64 and
Chem. Sci., 2024, 15, 8786–8799 | 8789

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4sc00140k


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

/8
/2

02
6 

3:
01

:4
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
0.58 kcal mol−1. P = 0.2 suggests that the result is unreliable.
Naturally, the CA result coincides with the numerical results,
because eqn (3) is exact for a Gaussian distribution. With 10
million samples, the sample mean and variance are estimated
very accurately with a standard deviation below
0.005 kcal mol−1.

On the other hand, the results are different for the other
distributions. For the three distributions with sDU #

0.5 kcal mol−1 (Gumb0_r, Gumb0_l and Beta), TP gives excellent
results, with errors of 0.01 kcal mol−1 or less. The same applies
also to the Gumb_r distributions with sDU = 1 and 2 kcal mol−1

P = 2.8–4.5 also indicates that the results are converged.
However, for all these distributions, the performance of CA is
worse, with errors of 0.02–0.12 kcal mol−1 for the three distri-
butions with sDU # 0.5 kcal mol−1 and 0.3 kcal mol−1 for
Gumb_r with sDU = 1 kcal mol−1. Even worse, when the sDU

value of Gumb_r increases to 2 kcal mol−1, the error of CA
becomes as high as 1.7 kcal mol−1. This is not reected by the
standard deviation, which is always less than 0.005 kcal mol−1

for CA.
For the remaining two distributions, Gumb_l with sDU =

1 kcal mol−1 and Student t-10 with sDU= 1.12 kcal mol−1, the TP
results are poor, with errors of 0.04–3 kcal mol−1 and standard
deviations of 0.6–1.6 kcal mol−1 (indicating errors of up to 6.0
and 7.3 kcal mol−1 in the 1000 individual simulations). The CA
results are even worse, with errors of 2.9–6.1 kcal mol−1, but the
standard deviation is still less than 0.005 kcal mol−1. P = 0.2–
0.3 indicates that the results are unreliable. Compared to the
Gaussian distribution, both these two distributions have
a higher probability of negative values. Owing to the exponential
average in TP, the most negative DU values may lead to the
numerical instability of the results. With nite samples, there is
a large probability that the most negative values are over- or
undersampled, which may have a strong impact on the result.

We also repeated these calculations with different sample
sizes. The results in Fig. 3a show that for Gaussian distribu-
tions, the DG results of TP and CA are almost the same. More-
over, the CA results converge faster than the TP results, and this
becomes more pronounced when sDU increases. With sDU= 2.0,
the convergence of TP is very slow, and it frequently gives too
negative estimates of DG.

For the two Gumbel distributions, there is a signicant
discrepancy between the results predicted by TP and CA, and
the difference increases with sDU. For the Gumb_r distribution,
TP shows a faster convergence than CA, and CA always gives too
negative (incorrect) predictions of DG. For the Gumb_l distri-
bution, the opposite is true: CA shows a faster convergence than
TP, and it always gives a too positive (and still incorrect)
prediction of DG. For sDU = 1 and 2 kcal mol−1, TP shows a very
slow convergence towards the correct result, with a very large
range of the estimates and many occasionally too negative
estimates, reecting oversampling of negative values of DU.
This shows that for non-Gaussian distributions, the effects of
the higher-order terms in the cumulant expansion cannot be
neglected.
8790 | Chem. Sci., 2024, 15, 8786–8799
The relation between P and sDU

As discussed in the Introduction, both sDU and the KoeP bias
measure have oen been used to check the convergence of
single-step calculations. It is therefore of interest to know the
relation between these two measures. If DU follows a Gaussian
distribution, so that DG can be calculated from the second-
order cumulant expansion (eqn (3)), then eqn (4) can be
written as:

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WL

"
ðN � 1Þ2

2p

#vuut � sDU

kBT
(11)

directly showing the relationship between P and sDU. The rst
term depends only on the sample size N. Thus, for a xed
sample size, P is linearly related to sDU with a negative slope
given by

vP

vs
¼ � 1

kBT
(12)

The relation is illustrated in Fig. 4. It can be seen that with
a constant sample size, P decreases when sDU increases.
Moreover, for a certain sDU,P becomes larger when the sample
size increases, but the rate of growth is slow.

For each value of sDU or N, we can setP to the limiting value
of 0.5 and solve eqn (4) for the other variable. These solutions
are shown in Fig. 5 (and some numerical values are given in
Table S1 in the ESI†). For example, with 1000, 1 million, and 1
billion samples, sDU must be less than 1.6, 2.5, and
3.3 kcal mol−1 for P to attain an acceptable value ($0.5).
Conversely, sDU values of 1, 2, 3, and 4 kcal mol−1 require 60, 16
thousand, 62 million, and 3.6 × 1012 samples for convergence
according to P $ 0.5. This shows that the limit of sDU depends
on N and should not be given without specifying N.
Convergence of the various distributions

A problem with the P bias measure is that it does not indicate
the accuracy of the calculated DG values. Therefore, we per-
formed a number of numerical simulations with well-dened
convergence limits. We tested three types of distributions,
Gaussian, Gumb_l, and Gumb_r, and three sDU values, 0.5, 1.0,
and 2.0 kcal mol−1, which are below, within and out of the
recommended range (0.6–1.2 kcal mol−1). For each distribution,
we performed numerical simulations with the aim to determine
the minimum sample size (Nmin) required to achieve converged
DG. We consider DG converged when the calculated value falls
within 0.5 kcal mol−1 of the value obtained by numerical inte-
gration with a condence of 95% (estimated by repeating the
simulation 1000 times). This is similar to what has been used in
earlier studies,33,51 and the simulations can, of course, easily be
repeated with other convergence criteria. When the minimum
sample size required has been obtained, the corresponding P

value was calculated according to eqn (4), using DG obtained
from either TP, CA, or numerical integration. We repeated the
simulations 100 times to obtain the uncertainty of all estimates.
The results are listed in Table 3.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 DG estimated using different sample sizes. The solid black lines represent the numerical integration result, as well as an error range of
±0.5 kcal mol−1. The calculated results with TP and CA are shown in red and blue curves, respectively. Results are shown for Gaussian, Gumb_r,
and Gumb_l distributions (in the left (a), middle (b), and right columns (c), respectively). Three values of sDU are used: 0.5 (top), 1.0 (middle) and 2.0
(bottom).

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 2

/8
/2

02
6 

3:
01

:4
1 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
From Table 3, it can be seen that when sDU = 0.5, Nmin for TP
and CA is almost the same for each distribution. Gumb_r
requires the smallest number of samples (4) and Gumb_l the
largest sample size (11–14). Naturally, when sDU increases, Nmin

also increases. On the other hand, for Gaussian distributions
with equal sDU values, Nmin for CA is smaller than that for TP
and the difference increases with sDU. This reects that CA
converges faster than TP for Gaussian distributions, as was
discussed before. On the other hand, for non-Gaussian distri-
butions, TP requires less samples than CA. In fact, CA converges
to an incorrect value (as we also saw before), which is outside
our convergence criterion (0.5 kcal mol−1) for both Gumble
distributions when sDU is high (therefore, no results are given
for CA in Table 3). With Gumb_l, very large values for Nmin are
required also with TP and the required sample size grows
rapidly with sDU. Going from sDU = 0.5 to 0.8, the required
sample size increase from 14 to over 3 million and with larger
sDU, we could not generate sufficient samples to reach
convergence.

The correspondingP values are also listed in Table 3. Due to
the uctuation, there are small differences between PAv and
PNI. For TP, PAv is always slightly larger (more positive) than
PNI (by up to 0.2). With CA and the Gumbel distributions, the
opposite is sometimes true, and the difference is slightly larger
(up to 0.3). For the Gaussian distributions, all P values are less
© 2024 The Author(s). Published by the Royal Society of Chemistry
than 0.5. This is especially pronounced for CA and larger values
of sDU (e.g. −0.5 for Gaus2). This, of course, reects that P was
developed for TP and is unaware of what method is actually
used to estimate DG.

For the Gumb_r distribution with TP, P is always <0.5,
reecting that P and the convergence limit were developed
assuming a Gaussian distribution. Since Gumb_r is skewed
towards positive DU values, the TP convergence is faster than for
a Gaussian distribution, and therefore, lower values of P are
acceptable (e.g. −0.2 for sDU = 2 kcal mol−1). Conversely, the
opposite is true for the Gumb_l distributions, which are skewed
towards more negative values. Here, the limiting P value is 2.7
for sDU = 0.8 kcal mol−1. For CA, the results are the opposite
because it converges towards incorrect estimates of DG.

These results provide us with several interesting
observations:

� The criterion for P implicitly involves some convergence
and condence thresholds. Those used by us (within
0.5 kcal mol−1 of the correct result with 95% condence) are
slightly less strict for a Gaussian distribution than P $ 0.5.

� For CA and Gaussian distributions, less strict values for P
can be used.

� The limit for P depends on the underlying distribution.
� CA is applicable for a Gaussian distribution but gives

incorrect results for other distributions. The difference in DG
Chem. Sci., 2024, 15, 8786–8799 | 8791
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Fig. 4 Relation between the P bias measure, sDU and the sample size N for a Gaussian distribution.

Fig. 5 Relation between sDU and the sample size N when P = 0.5.
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estimated with CA and TP can used to decide whether the
distribution is Gaussian or not.
Reliability of P $ 0.5

In practical applications of the reference-potential method, the
distribution and the reference value are unknown. The key
question is to decide whether an obtained DG result is reliable
or if additional energies should be sampled, i.e., to decide the
proper sample size. As mentioned several times, a frequently
used criterion for convergence of TP is P $ 0.5. In this section,
8792 | Chem. Sci., 2024, 15, 8786–8799
we evaluate whether we can use this criterion to decide the
required sample size and how this can be done practically. We
rst tried the most natural approach, i.e., to increase the
number of samples until P $ 0.5. This was tested with
numerical simulations using the same distributions as in the
previous section. The simulations were repeated 1000 times for
each of the distributions to gain condence in the results.

The results in Table 4 show that, in general, it is not a good
procedure to accept the DG value as soon as P $ 0.5, because
this can happen by chance (because P depends on the calcu-
lated value of DG). In fact, at least one of the 1000 individual
simulations indicated that the results have converged already
with three samples (the lowest number tested) for all distribu-
tions. As a consequence, only the three Gumb_r distributions
(for which we know from the previous subsection thatP$ 0.5 is
too strict) and the Gaus0 distribution give DG results that are
correct within 0.5 kcal mol−1 in more than 95% of the simula-
tions (conf. column in Table 4). For the two Gumb_l distribu-
tions, the problem is thatP$ 0.5 is too loose. However, for the
two Gaussian distributions, the problem is convergence by
chance, and the problem is very serious as only 53 and 0.3% of
the simulations give correct results within 0.5 kcal mol−1 for
sDU = 1 or 2 kcal mol−1, respectively.

Therefore, we tested to use larger thresholds. Unfortunately,
it seems hard to suggest a threshold for P that works for all
distributions. For example,P$ 0.75 works quite well for Gaus1,
giving DG results that agree with the true value within
0.5 kcal mol−1 more than 95% of the simulations and giving
Nmin values of 12–152 (average 77) that are similar to the value
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Theminimum sample size required to achieve convergence (Nmin; i.e., reproduce the numerical-integration result within 0.5 kcal mol−1

with 95% confidence) in the numerical simulations of three distributions, each with three values of sDU (for Gumb_l, no convergence was
obtained with up to 10 million samples for sDU > 0.9)a

Distribution sDU kcal mol−1

TP CA

NAV
min PAv PNI NAV

min PAv PNI

Gaus 0.5 5.4 � 0.5 0.34 � 0.04 0.19 � 0.06 5.4 � 0.5 0.32 � 0.04 0.19 � 0.05
1.0 44.6 � 2.3 0.46 � 0.02 0.38 � 0.02 35.7 � 1.5 0.33 � 0.02 0.29 � 0.02
2.0 5732 � 291 0.30 � 0.01 0.23 � 0.01 370 � 10 −0.54 � 0.01 −0.55 � 0.01

Gumb_r 0.5 3.5 � 0.5 0.17 � 0.07 0.00 � 0.10 3.5 � 0.5 0.12 � 0.07 −0.10 � 0.10
1.0 10.9 � 0.7 0.16 � 0.03 0.08 � 0.03 135 � 8 0.82 � 0.02 1.13 � 0.02
2.0 54.9 � 2.4 −0.19 � 0.02 −0.24 � 0.02

Gumb_l 0.5 14.2 � 1.2 0.71 � 0.03 0.50 � 0.04 11.4 � 0.8 0.68 � 0.03 0.39 � 0.04
0.8 3 106 100 � 85 600 2.68 � 0.01 2.49 � 0.01

a The corresponding values of P at Nmin are also given, using DG either from the simulation (PAv) or from numerical integration (PNI). The
simulations were repeated 100 times, and the reported precision is the standard deviation over these 100 repeats (thus, the standard error is 10
times smaller).

Table 4 Number of conformations needed to obtainP$ 0.5 (Nmin) in
numerical simulations using different distributions with different values
of sDU. For each distribution, 1000 individual simulations were per-
formed and in each simulation, the number of samples was increased
by one untilP$ 0.5. The table lists the average, lower, and upper limits
of Nmin in these simulations, as well as the average of P, the
percentage of the simulations that give DGwithin 0.5 kcal mol−1 of the
reference value from numerical integration (conf.), and the average
deviation of the calculated DG from this value (DDGAv, in kcal mol−1)

Distribution

Nmin

PAv Conf. % DDGAvAv Low Up

Gaus0 6 3 12 0.63 96 0.13
Gaus1 18 3 43 0.61 53 0.52
Gaus2 4030 3 5425 0.52 0.3 0.71
Gumb0_r 6 3 10 0.63 100 0.01
Gumb1_r 13 3 29 0.61 95 0.08
Gumb2_r 229 3 338 0.53 98 0.17
Gumb0_l 6 3 11 0.65 75 0.38
Gumb1_l 16 3 47 0.63 0 3.67
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(45) listed in Table 3. However, for Gaus2, this threshold gives
Nmin values that are much too large: Even the lower limit is 2.5
times larger than the value in Table 3 (14 402 compared to 5732
± 29; note that we here used the standard error, rather than the
standard deviation given in Table 3).

Third, we instead required that P $ 0.5 a certain number of
consecutive times (ntimes) before DG is accepted. The results for
ntimes ranging from 2 to 5 are listed in Table 5. It can be seen
that for the two Gaussian distributions, ntimes = 4 seems to be
appropriate – it gives results that are within 0.5 kcal mol−1 of
the reference result 96% of the simulations (conf. in Table 5),
whereas the corresponding condence for ntimes = 3 is only 89–
94%. For the Gaus1 distribution, the average number of
samples needed for convergence (Nmin(Av) = 56 in Table 5) is
only slightly larger than the value reported in Table 3 (45 ± 0.2).
However, for Gaus2 even the lowest Nmin (6455) is larger than
the value reported in Table 3 (5732 ± 29).
© 2024 The Author(s). Published by the Royal Society of Chemistry
For the Gumbel distribution, we obtain the expected results:
Gumb_r always gives a very high condence, 99–100%, because
P $ 0.5 is too strict, whereas Gumb1_l always gives a con-
dence of 0%, because P $ 0.5 is too oppy (but Gumb0_l
actually gives a condence of 98% for ntimes = 4, simply because
the variance is so small).
A practical procedure

The results in the previous section show that the limit of P

involves some implicit convergence limits and that it is hard to
suggest proper limits that are valid for different distributions.
Therefore, we in this section suggest another more practical
procedure. It is based on numerical simulations of Gaussian
distributions with different values of sDU, the results of which
are presented in Table 6. For different values of sDU, the
minimum sample size Nmin needed to converge DG within
0.5 kcal mol−1 of the reference value (from numerical integra-
tion) with a condence of 95% over 1000 samples was estimated
(as in Table 3). This was done both for TP and CA. The simu-
lations were repeated 100 times to get uncertainties of Nmin. For
each value of Nmin, we also estimated the average value of P. In
addition, we estimated the mean of the weight of the largest
term in the average in eqn (1), wmax, as well as the mean abso-
lute difference in DG calculated with TP or CA, DDGCA. Both can
be used to decide whether the distribution is Gaussian or not.

From the results in Table 6, it can be seen that wmax esti-
mated at Nmin for TP decreases slowly with sDU, from 0.40 for
sDU= 0.5 kcal mol−1 to 0.22 for sDU= 3.0 kcal mol−1, which is at
the practical upper limit for obtaining converged free energies
with TP. At the same time, DDGCA increases from 0.01 to
0.17 kcal mol−1. Fig. 6 shows histograms for wmax for Gumb_r,
Gaussian, and Gumb_l distributions with the same sDU =

1.0 kcal mol−1. It can be seen that Gumb_r gives the lowest
values and Gumb_l the highest values. Thus, wmax may give an
indication of the type of distribution.

Based on these results, we suggest the following practical
procedure for DG estimated with the reference-potential
method:
Chem. Sci., 2024, 15, 8786–8799 | 8793
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Table 5 Number of conformations (Nmin) needed to obtain P $ 0.5 ntimes times in a row in numerical simulations using different distributions
with different values of sDU

a

ntimes Distribution

Nmin

PAv Conf. % DDGAv kcal mol−1Av Low Up

2 Gaus1 36 9 61 0.20 83 0.31
Gaus2 6444 3971 7919 0.09 51 0.50
Gumb1_r 22 4 39 0.64 99 0.04
Gumb2_r 347 219 428 0.54 100 0.09
Gumb0_l 9 4 17 0.71 90 0.28
Gumb1_l 46 5 130 0.66 0 3.26

3 Gaus1 47 7 76 0.20 94 0.22
Gaus2 8031 4969 9506 0.09 89 0.41
Gumb1_r 29 6 43 0.66 99 0.03
Gumb2_r 405 267 494 0.55 100 0.06
Gumb0_l 12 5 26 0.78 94 0.23
Gumb1_l 89 11 222 0.69 0 3.00

4 Gaus1 56 21 85 0.19 96 0.18
Gaus2 9105 6455 10 616 0.10 96 0.36
Gumb1_r 32 16 49 0.68 100 0.02
Gumb2_r 440 307 539 0.56 100 0.05
Gumb0_l 14 6 27 0.81 98 0.19
Gumb1_l 140 19 352 0.70 0 2.82

5 Gaus1 63 27 100 0.19 98 0.15
Gaus2 10 006 6966 11 971 0.11 98 0.32
Gumb1_r 36 17 51 0.69 100 0.01
Gumb2_r 468 353 554 0.56 100 0.04
Gumb0_l 17 8 35 0.86 98 0.17
Gumb1_l 203 29 512 0.71 0 2.28

a The entries are the same as in Table 4.

Table 6 The minimum sampling size (Nmin) required to achieve convergence (DG estimated within 0.5 kcal mol−1 of the reference value with
95% confidence over 1000 samples) in numerical simulations of Gaussian distributions with different values of sDU, using both TP and CAa

sDU kcal mol−1

TP CA

Nmin PAv wmax DDGCA Nmin PAv wmax DDGCA

0.50 5.4 � 0.5 0.34 � 0.04 0.40 � 0.02 0.01 � 0.00 5.4 � 0.5 0.32 � 0.04 0.40 � 0.02 0.01 � 0.00
0.75 15.8 � 0.9 0.45 � 0.02 0.31 � 0.01 0.03 � 0.00 15.4 � 0.8 0.40 � 0.02 0.31 � 0.01 0.03 � 0.00
1.00 44.6 � 2.3 0.46 � 0.02 0.27 � 0.01 0.04 � 0.00 35.7 � 1.5 0.33 � 0.02 0.30 � 0.01 0.05 � 0.00
1.25 125 � 6 0.42 � 0.01 0.26 � 0.01 0.07 � 0.01 72.4 � 2.6 0.18 � 0.01 0.31 � 0.01 0.09 � 0.01
1.50 380 � 16 0.37 � 0.01 0.25 � 0.01 0.09 � 0.01 134 � 5 −0.03 � 0.01 0.34 � 0.01 0.14 � 0.01
1.75 1277 � 48 0.32 � 0.01 0.25 � 0.01 0.11 � 0.01 228 � 8 −0.27 � 0.01 0.37 � 0.01 0.23 � 0.01
2.00 5732 � 290 0.30 � 0.01 0.24 � 0.01 0.12 � 0.01 370 � 10 −0.54 � 0.01 0.40 � 0.01 0.35 � 0.01
2.25 24 900 � 1150 0.24 � 0.01 0.23 � 0.00 0.14 � 0.01 565 � 16 −0.83 � 0.01 0.43 � 0.01 0.52 � 0.02
2.50 128 200 � 5500 0.20 � 0.01 0.23 � 0.01 0.16 � 0.01 836 � 24 −1.13 � 0.01 0.46 � 0.01 0.73 � 0.02
2.75 949 000 � 4500 0.19 � 0.00 0.22 � 0.01 0.16 � 0.01 1247 � 31 −1.43 � 0.01 0.49 � 0.01 1.00 � 0.02
3.00 7 489 200 � 22 000 0.18 � 0.00 0.22 � 0.01 0.17 � 0.01 1715 � 52 −1.76 � 0.01 0.51 � 0.01 1.34 � 0.02
3.5 3091 � 87 −2.44 � 0.01 0.56 � 0.01 2.22 � 0.03
4.0 45 130 � 140 −3.15 � 0.01 0.60 � 0.01 3.41 � 0.03
5.0 12 700 � 360 −4.60 � 0.01 0.66 � 0.01 6.76 � 0.04
10.0 203 000 � 2700 −12.35 � 0.00 0.81 � 0.01 45.7 � 0.8
15.0 984 900 � 12 800 −20.41 � 0.00 0.87 � 0.01 124.0 � 0.1
20.0 3 306 900 � 7700 −28.57 � 0.00 0.89 � 0.00 242.6 � 0.2
25.0 7 698 000 � 172 000 −36.80 � 0.00 0.91 � 0.00 402.5 � 0.2

a The corresponding values of wmax,P, and DDGCA calculated for Nmin samples are also given. For each value of sDU, 100 independent simulations
with different random seeds were performed to obtain averages and uncertainties of all the calculated values. The uncertainties are standard
deviations over these 100 simulations (thus, the standard errors are 10 times smaller).

8794 | Chem. Sci., 2024, 15, 8786–8799 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Histograms of the wmax for three distributions with sDU = 1.0 kcal.
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1. Sample Nstart samples and calculate sDU. In the following,
we used Nstart = 200.

2. Read N = NCA
min for this value of sDU from Table 6 and

obtain this number of samples.
3. Use a standard normality test to decide whether the

distribution is Gaussian or not. We used the Shapiro–Wilk test
and a p-value of 0.05 to decide if the sample is Gaussian.

4. If the distribution is not Gaussian, read N=NTP
min from

Table 6. If sDU is larger than the tabulated values, use N = Nmax,
which was set to 1 × 107 in this study. If the distribution is
Gaussian, no additional samples are needed.

5. Obtain N samples and calculate sDU, DG with both CA and
TP, as well aswmax and DDGCA. Calculate also the corresponding
standard errors with bootstrapping (allowing for repeated
samples).

6. Check that sDU has not increased signicantly. If so, go
back to 2. Also check that the normality test still gives the same
result.

7. If the distribution is Gaussian, use DG from CA.
8. If the distribution is non-Gaussian, use DG from TP.
9. If wmax + SE is less than wmax from Table 6 and SE is the

standard error from 1000 samples of bootstrapping, the esti-
mated DG is deemed to be reliable; otherwise it is deemed that
no reliable results can be obtained (the distribution is too much
skewed towards negative values).

This procedure is based on the results in Table 6 and
therefore on the convergence criteria used there (DG should
reproduce the reference results within 0.5 kcal mol−1 in 95% of
the simulations). If a user is interested in other (e.g.more strict)
criteria, a new table could easily be constructed with our
programs. The advantage with our criteria, in contrast to the
criterion that P $ 0.5, is that they have an easy-to-interpret
meaning in terms of reproducing correct results and therefore
they can immediately be adapted to the need of the user.

We have tested this procedure for three different distribu-
tions (Gaussian, Gumb_r and Gumb_l) and 2–4 values of sDU.
For each distribution and sDU, we followed the procedure 1000
times and count how many times the procedure yielded a DG
that was judged reliable and also was within the numerical
result within 0.5 kcal mol−1 (true positive, TP) or a DG that
judged unreliable and it was not within 0.5 kcal mol−1 of the
numerical results (true negative, TN).
© 2024 The Author(s). Published by the Royal Society of Chemistry
From the results in Table 7, it can be seen that the Shapiro–
Wilk test correctly identify the Gaussian and non-Gaussian
distributions with an accuracy of 95–100%. For the Gaussian
and Gumb_r distributions, we obtain the correct DG value
within 0.5 kcal mol−1 in 94–100% of the simulations, with
average values that are within 0.02 kcal mol−1 of the numerical
reference. For the Gumb_l distribution, we judge that 91–92%
of the results are not reliable, but for the distributions with sDU

= 0.75 kcal mol−1, many of the DG values are still within
0.5 kcal mol−1 of the numerical results, giving a TP + TN
condence of only 75%, whereas with sDU = 1.5 kcal mol−1, the
proportion of correct predictions increases to 91%. The
problem with the former distribution is that much too few DU
values are sampled, giving too positive estimates of DG.
However, occasionally, unusually negative DU values are ob-
tained, which happen to give DG within the convergence limit,
i.e. a cancellation of two errors. It should also be noted that for
the Gumb_l distribution, the simulations with a restricted
number of samples, sDU calculated from the sample may be
quite different from the analytical value of sDU (the difference is
not signicant for the other two distributions) and if we restrict
the investigation to samples that give a correct sDU (within
0.005 kcal mol−1), the successful (TP + TN) predictions increase
to 81 and 93% for the Gumb_l distributions with sDU= 0.75 and
1.5 kcal mol−1, respectively. Thus, Gumb_l and other distribu-
tions with a skew towards le remain problematic for reference-
potential approaches.

Finally, we also performed an application with data from
a practical example of a single-step QM perturbation. We
employed data from our previous study of the binding of cyclic
carboxylate ligands to the octa-acid deep-cavity host using
semiempirical (SQM) and density functional theory (DFT)
methods.25 We considered four ligands, benzoate (Bz), para-
methyl-benzoate (MeBz), para-ethyl-benzoate (EtBz) and meta-
chloride-benzoate (mClBz) and the free energy change of going
from SQM to DFT based on up to 5000 snapshots from a SQM/
MM molecular dynamics simulation, either for the ligands free
in water solution or when bound to the octa-acid host. We fol-
lowed the procedure suggested in this section and the results
are collected in Table 8.

It can be seen that for all four ligands in both surroundings,
sDU is rather small, 1.3–1.9 kcal mol−1. Likewise, all distribu-
tions of DU are Gaussian (four examples are shown in Fig. S2†).
Chem. Sci., 2024, 15, 8786–8799 | 8795
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Table 7 Test of the suggested approach for statistical distributionsa

Distribution sDU DGNI NCA
min Gaus? NTP

min wmax DG % R TP + TN Conf.

Gaussian 0.75 −0.47 200 95% −0.47 � 0.07 5% 100% 100%
Gaussian 1.50 −1.89 200 95% −1.86 � 0.07 4% 97% 97%
Gaussian 2.50 −5.24 836 96% −5.21 � 0.06 3% 92% 93%
Gaussian 3.00 −7.55 1715 95% −7.54 � 0.06 4% 93% 94%
Gumb_r 0.75 0.008 200 0% 200 0.03 � 0.01 0.01 � 0.02 100% 100% 100%
Gumb_r 1.50 −0.39 200 0% 380 0.05 � 0.01 −0.38 � 0.07 100% 100% 100%
Gumb_r 2.50 −1.27 836 0% 128 290 0.00 � 0.00 −1.28 � 0.01 100% 100% 100%
Gumb_r 3.00 −1.82 1715 0% 7 502 341 0.00 � 0.00 −1.83 � 0.00 100% 100% 100%
Gumb_l 0.75 −1.73 200 0% 200 0.19 � 0.11 −1.09 � 0.31 8% 75% 17%
Gumb_l 1.50 −9.77 200 0% 380 0.44 � 0.13 −4.10 � 0.98 9% 91% 0%

a We used three different distributions with 2–4 different values of sDU. The third column gives the target value (DGNI in kcal mol−1) from numerical
integration. We followed the procedure described in the text. The fourth column shows eitherNCA

min for this value of sDU from Table 6 orNstart= 200 if
it is larger. The h column shows the results of the normality test. If it was considered to be Gaussian, the DGCA result was accepted (shown in the
eighth column). Otherwise, NTP

min samples were used (from Table 6 or Nstart = 200 if it is still larger; shown in the sixth column) and wmax and DGTP
were calculated. wmax was compared to what is expected for a Gaussian distribution with this number of samples (from Table 6 or from Table S2 with
Nstart = 200) and based on this, the results were deemed reliable (R in column eight) or unreliable. The ninth column shows the percentage of true
positive and true negative (TP + TN) when the approach was tested 1000 times for each distribution (all values in the table are averages over these
1000 repeats). The last column (conf.) shows the percentage of samples giving correct results within 0.5 kcal mol−1.

Table 8 Application of our suggested approach to the calculation of SQM/ DFT DG for four ligands binding to the octa-acid host (kcal mol−1).
Values marked with “All” employs all 5000 snapshots employed in the original study.25 Gaus? indicates whether the distribution was considered
Gaussian

Ligand Surrounding s
Nstart
DU sAllDU NCA

min Gaus? DG
NCA

min
CA DGAll

CA DGAll
TP

Bz bound 1.30 1.30 134 Y −4.02 −3.79 −4.05
unbound 1.67 1.59 228 Y −5.39 −5.58 −6.07

MeBz bound 1.86 1.81 370 Y −2.18 −2.64 −2.70
unbound 1.91 1.84 370 Y −5.48 −5.29 −5.42

EtBz bound 1.77 1.83 370 Y −3.21 −3.47 −3.67
unbound 1.88 1.84 370 Y −5.59 −5.29 −5.28

mClBz bound 1.33 1.37 134 Y −3.89 −3.90 −4.06
unbound 1.70 1.66 228 Y −6.01 −6.31 −7.29
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Therefore, we can employ CA to calculate DG and 134–370
snapshots are enough to obtain results converged to within
0.5 kcal mol−1. The resulting DG values are shown in Table 8. It
can be seen that they agree with the previously published CA
results (based on all available 5000 snapshots) within
0.5 kcal mol−1, i.e. within our target accuracy of 0.5 kcal mol−1.
The agreement with the previously published TP results is
worse, with deviations of up to 1.3 kcal mol−1, but that mainly
reect that the TP results are not converged (with 5000 samples,
P for unbound mClBz is only 0.2),25 but it might also reect
small deviations of the data from Gaussian (the old CA and TP
results show similar deviations). Thus, we can conclude that our
suggested approach works well also with real computational
data.
Conclusions

In this paper, we discuss how the reliability of single-step
exponential averaging (TP) can be judged. In particular, we
discuss Wu and Koe's bias measureP$ 0.5 and its relation to
sDU. We show that for Gaussian distributions, they follow the
8796 | Chem. Sci., 2024, 15, 8786–8799
simple relation in eqn (12), as is illustrated in Fig. 4. For
Gaussian distributions, P $ 0.5 works ne as a convergence
criterion for DG estimated by TP and it is slightly stricter than
requiring that the estimated DG should reproduce the correct
results within 0.5 kcal mol−1 with 95% condence. However, for
Gaussian distributions, CA is a more effective method to esti-
mate DG, converging much faster with respect to the number of
samples.

Likewise, for distributions that are skewed more to the right
than Gaussian distributions (more positive values of DU; e.g.
Gumb_r), P$ 0.5 is too strict, as are other convergence criteria
based on Gaussian distributions. Therefore, TP shows a good
convergence and gives accurate estimates of DG, whereas CA
gives incorrect estimates. Conversely, for distributions that
skewed more to the le than Gaussian distributions (more
negative values; e.g. Gumb_l), P $ 0.5 is too oppy. CA still
gives incorrect estimates, whereas the TP estimates converge
towards the correct value, but for sDU $ 1 kcal mol−1, it
becomes practically impossible to converge the results. More-
over, a direct application of the P $ 0.5 criterion may be
© 2024 The Author(s). Published by the Royal Society of Chemistry
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problematic in practical applications, owing to the risk of
obtaining P $ 0.5 by chance.

Therefore, we have instead suggested a practical procedure
to judge the convergence of reference-potential calculations. It
is based on sDU to estimate the number of samples needed for
convergence, a Shapiro–Wilk test to decide whether the distri-
bution is Gaussian or not, and wmax to decide whether a non-
Gaussian distribution is skewed to the le or to the right.
Using a set of distributions, we show that the approach works
reasonably well. It also works well for a set of practical appli-
cations of SQM/DFT perturbations. However, distributions
that are skewed towards negative values remain a challenge to
converge with TP methods. In the future, it would be interesting
to see if a similar approach can be used for nonequilibrium
methods based on Jarzynski's equality,52,53 which also involves
an exponential average.
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