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Recent advancements in artificial intelligence and automation are transforming catalyst discovery and
design from traditional intelligent, high-throughput digital
methodologies. This transformation is driven by four key components, including high-throughput

trial-and-error manual mode into
information extraction, automated robotic experimentation, real-time feedback for iterative optimization,
and interpretable machine learning for generating new knowledge. These innovations have given rise to

the development of self-driving labs and significantly accelerated materials research. Over the past two
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1 Introduction

The field of catalyst design and discovery is undergoing
a profound transformation, facilitated by the convergence of
artificial intelligence (AI)'"* and automation systems,** as well
as utilization of large data. This shift is propelled by advance-
ments in four crucial areas: high-throughput information
extraction,”"® automated robotic systems for chemical
experimentation,* " real-time active machine learning (ML)
with on-line data processing and feedback for iterative
optimization,***** and interpretable machine learning for
generating knowledge,***® each playing a pivotal role in
evolving traditional methodologies. Central to this modern era
are self-driving labs*’ that are further integrated with theoretical
simulations and extensive databases, revolutionizing how
catalysts are created and optimized.

Recently, large language models (LLMs) such as GPT-=x,
ERNIE Bot, Claude-x, and Lamma-x,"* have begun to dramati-
cally enhance these four technological pillars. By processing
natural language, automating code generation and data anal-
ysis, optimizing design of experiment (DoE) algorithms, and
facilitating human-computer interaction,'>*** LLMs are
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setting new standards for efficiency and innovation in catalysis
research (Fig. 1). These capabilities allow for the extraction and
utilization of data from diverse and unstructured sources such
as scattered texts, videos, and images, previously inaccessible to
more traditional ML technologies that relied on well-organized
datasets.

Moreover, automated and intelligent robotic systems, which
have seen significant adoption over the last decade, spanning
from flow systems'*** to desktops®*®* and humanoid mobile
robots,*® now seamlessly integrate with advanced LLMs. This
synergy is reshaping decision-making strategies within the field,
transitioning from traditional methods like Bayesian optimiza-
tion* and active learning® to more sophisticated, LLM-enhanced
approaches,** towards more talented self-driving labs for
closed-loop discovery. This is only the beginning of a shifting
paradigm to on-demand catalyst development and in silico
performance scanning for catalyst design and optimization.

Despite these technological advances, the role of the human
researcher remains indispensable. The interpretability of ML
methods is crucial for harnessing human intellectual engage-
ment and deriving scientific insights that can inform new
design principles for high-performance catalysts.>*** Artificial
neural networks (ANNs)*®> used to be regarded as black-box
models that are hard to explain, but recent innovations such as
SHapley Additive exPlanations (SHAP)* for graph neural
networks (GNNs) and attention mechanisms in transformer
models are enhancing the transparency of artificial neural
networks, which were previously considered opaque. In addi-
tion, LLMs have also showcased their capabilities in extracting
data mapping and articulating them in a clear plain language
format.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The workflow of catalyst design and discovery with information extraction, automated chemical experimentation, active machine

learning, and interpretable machine learning.

Given the rapid pace of these advancements, it is timely to
review the revolutionary shift in AI applications for catalysis
research and development. This review will delve into how the
integration of LLMs is redefining the four foundational ML
technologies in catalysis, providing a historical perspective and
discussing recent implementations that foreshadow the future
of Al-assisted catalyst design.

2 High-throughput chemical
information extraction

Traditionally, data extraction required manual efforts, which
has successfully underpinned the establishment of chemical
databases like Reaxys® and SciFinder.>® With the increasing
demand to autonomously gather and standardize chemical
information effectively, the development of automated data
extraction methods has split into two primary directions: the
extraction of chemical information from figures including
optical chemical structure recognition (OCSR),”™® and text
information extraction. Both avenues benefit significantly from
enhancements provided by pre-trained LLMs.">**

2.1 Information extraction from figures

A considerable amount of chemical information resides in
figures, rendering Optical Chemical Structure Recognition
(OCSR) essential for converting these complex visual data into

© 2024 The Author(s). Published by the Royal Society of Chemistry

accessible and interpretable formats. The primary task of OCSR
is to transform visual representations of chemical structures
into formats ready for computer processing. We now list and
briefly discuss these different computer-ready formats.

2.1.1 String representations. SMILES (Simplified Molecular
Input Line Entry System): known for its human readability,
SMILES translates chemical structures into linear text strings.

SMARTS (SMILES Arbitrary Target Specification): an exten-
sion of SMILES, SMARTS allows for defining substructural
patterns within molecules, enhancing search and analysis
capabilities.

InChl (International Chemical Identifier): provides a struc-
tured and layered representation of chemical data, facilitating
interoperability across different data systems.

SELFIES (Self-referencing Embedded Strings): designed to
ensure the validity of molecules represented, enhancing data
integrity.

These string representations, integral to systematic chemical
naming, have become increasingly valuable with the advent of
language models. The seamless integration of these formats
into LLMs enhances their utility, making them more than just
systematic nomenclature but a dynamic part of molecular data
processing. Furthermore, the development of multi-modal large
models allows for directly translating structural drawings to the
string representations without prior conversion, marking
a significant advancement in the field.>

Chem. Sci., 2024, 15, 12200-12233 | 12201
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2.1.2 Graph-based representations. Transforming chem-
ical drawings into graph-based representations views molecules
as nodes (atoms) and connections as edges (bonds), aligning
with computational analysis methods in machine learning and
network theory.

2.1.3 Evolution of OCSR technology. Initially, OCSR tech-
nology was predominantly rule-based, with the first systems
developed in the early 1990s.”” Today, state-of-the-art OCSR
systems combine rule-based methods with machine learning
techniques to improve accuracy and efficiency.>*®*>”® This
hybrid approach addresses the challenges of interpreting
complex chemical drawings and converting them into machine-
readable formats. We will delve into these technologies in more
detail, particularly focusing on recent advancements with
multimodal pre-trained large models.

2.1.4 Rule-based OCSR. Rule-based OCSR systems are
designed to automate the extraction of chemical data by
emulating human perceptual abilities. These systems perform
a range of tasks including character detection, shape recogni-
tion, and the identification of entity connections. They are
responsible for constructing chemical formulae, recognizing
atoms and bonds, vectorizing images, and reconstructing
complex patterns for accurate outputs.®***

2.1.4.1 Segmentation challenges. The initial and crucial step
in rule-based OCSR is the segmentation of chemical structures
from potentially complex images. This task is challenging and
critical as it sets the foundation for all subsequent analyses.
Early rule-based models such as optical recognition of chemical
structures (OROCS), chemical literature data extraction
(CLiDE),***” the optical structure recognition application
(OSRA) and Imago®**° faced significant challenges in accurately
segmenting chemical structures. These systems often struggled
with noisy data and the presence of fragmented characters or
text lines adjacent to the chemical structures.

In 2014, Simone Marinai et al.”® made an improvement by
introducing a Markov logic-based probabilistic logic inference
engine (Fig. 2). This development improved the ability to clean
up noisy extractions, although challenges with fragmented
elements persisted. More recently, in 2021, Yifei Wang et al.*
advanced the field further by employing a Single Shot MultiBox
Detector (SSD) neural network combined with a Non-Maximum
Area Suppression (NMAS) algorithm. This combination was
specifically designed to enhance object identification within
a single frame, significantly improving segmentation accuracy
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to 89.5% on a dataset of 2100 handwritten cyclic compound
samples.

2.1.4.2 Inherent limitations. Despite these advancements,
rule-based systems are often limited by two major factors:

(1) Insufficient understanding of embedded rules: the
complexity of the embedded rules can lead to misinterpreta-
tions and errors in data extraction.

(2) Susceptibility to noise: the intricate rules are prone to
interference from noisy data, which can degrade the quality of
the output.

2.1.5 Machine-learning-based OCSR. Machine-learning-
based OCSR systems leverage deep neural networks, which
require extensive training datasets to effectively automate the
extraction of chemical data.

2.1.5.1 Innovative developments in machine learning for OCSR

2.1.5.1.1 MSE-DUDL. Introduced in 2019 by Kyle Marshall
et al.,”* MSE-DUDL combines a convolutional neural network
(CNN) known for its prowess in visual pattern recognition, and
a long short-term memory (LSTM) network equipped with an
“attention” mechanism. This attention mechanism allows the
model to focus selectively on different parts of the molecular
structure, facilitating accurate SMILES prediction. While the
method achieved an accuracy of 83% on a specialized test set, it
faced limitations in recognizing certain complex chemical
structures and stereochemical details, and struggled with
images presented in inverted formats.

2.1.5.1.2 DECIMER. Developed by Christoph Steinbeck et al.
in 2020, DECIMER employs an autoencoder architecture that
includes a CNN encoder for converting images into vectors and
a gated recurrent unit (GRU)-based decoder for translating
these vectors into SMILES strings. Initially trained with data
images created by the Chemical Development Kit (CDK), DEC-
IMER has shown success in extracting structural representa-
tions from millions of examples. Enhancements such as
DECIMER segmentation were introduced in 2021 (ref. 73) to
improve chemical element detection in documents, and by
2023,74 DECIMER.ai further automated the segmentation,
classification, and translation of chemical structures from
printed literature into the SMILES format (Fig. 3).

2.1.5.1.3 MolMiner. In 2022, Jianfeng Pei et al. developed
MolMiner,” a deep learning-based OCSR system that directly
recognizes atoms and chemical bonds in images, circum-
venting traditional vectorization methods. It demonstrates

(MLN)
L Extractlo.n'of e Probabilistic e Molecular
level entities and IR »| molecular —
relations graphs grap
Evidence Query
ground atoms ground atoms

Fig. 2 Scheme of the Markov logic OCSR with low-level image information extraction and probabilistic logic inference. Reproduced with

permission from ref. 70 Copyright 2014, American Chemical Society.
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Fig. 3 Overview of the integrated DECIMER workflow including image segmentation, classification, and translation to obtain SMILES. Repro-

duced with permission from ref. 74 under CC BY license.

superior accuracy and speed by extracting chemical structures
from PDFs and outputting them in standardized formats,
showcasing its efficacy over other OCSR systems like MolVec,
OSRA, and Imago.

2.1.5.1.4 MolScribe. Representing the cutting edge, Mol-
Scribe is an image-to-graph generation model”® that merges
neural network capabilities with rule-based methods. It predicts
atoms and bonds along with their geometric layouts to
construct 2D molecular graphs, applying symbolic chemistry
constraints to recognize complex chemical patterns, including
chirality and abbreviations. Enhanced by data augmentation
strategies, MolScribe effectively handles domain shifts and
various drawing styles found in chemical literature. Its robust-
ness has been confirmed through testing, showing an accuracy
of 76-93% on public benchmarks.

The accuracy and reliability of OCSR continue to improve as
newer models are developed and refined. The use of multiple
models for cross-validation purposes enhances robustness,
offering better performance than what could be achieved by
a single model. This progress is vital as it addresses the
significant challenge of extracting organic reaction data on
a large scale, a task that is increasingly crucial due to the
exponential growth of available chemical data.

2.1.6 Other visual information extraction. The extraction
and analysis of experimental data, particularly data presented

© 2024 The Author(s). Published by the Royal Society of Chemistry

in figures, are critical yet challenging tasks in chemical
research. Beyond the mere detection of chemical structures,
there is a significant need for advanced capabilities to analyze
experimental data comprehensively. This task requires a multi-
modal approach that can integrate and cross-validate informa-
tion from both figures and textual descriptions, an area that
remains relatively underdeveloped.

2.1.6.1 Advancements in multimodal large models. Recent
advancements in Al have introduced multimodal large models,
such as GPT-4, Gemini, and Claude, which have demonstrated
promising capabilities in summarizing information from
diverse sources. These models can be adept at extracting and
synthesizing comprehensive experimental data from the scien-
tific literature on catalysis.

2.1.6.2 Capabilities of multimodal large models in chemical
data analysis

2.1.6.2.1 Graphical data analysis. Many of these advanced
models are now capable of interpreting trends and patterns
directly from graphical representations, although the variability
in data presentation styles continues to challenge the accuracy
and reliability of the extractions.

2.1.6.2.2 Recognition of hand-drawn structures. Multimodal
LLMs have shown an ability to recognize even simple hand-
drawn chemical structures, which opens up possibilities for

Chem. Sci, 2024, 15, 12200-12233 | 12203
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more intuitive interfaces between researchers and computa-
tional systems.

2.1.6.2.3 Integration with OSRA. Efforts are ongoing to inte-
grate systems like the Optical Structure Recognition Application
(OSRA) with multimodal LLMs to enhance the extraction of
chemical structures from the literature. For instance, DP
Technology's introduction of the Uni-Finder module represents
a step forward (still at a testing stage on May 5th 2024). This
module is designed for the comprehensive reading of scientific
documents, including journal papers and patents, which facil-
itates a deeper understanding and utilization of published
research.

The continuous improvement of multimodal LLMs is ex-
pected to revolutionize how scientific results are communicated
and utilized. As these models become more sophisticated, they
will enable the scientific community to integrate vast amounts
of data in unprecedented ways. This integration is anticipated
to lead to the development of new tools that could dramatically
enhance the efficiency and creativity of catalyst design
processes. The ability to compile and analyze the extensive data
generated globally by researchers represents a transformative
shift towards data-driven science, promising significant
advancements in how we discover and develop new materials.

2.2 Text information extraction with language models

Before the advent of large language models (LLMs), there was
significant effort in natural language processing (NLP) dedi-
cated to extracting chemical information from texts. This
process involved several traditional NLP tasks such as named
entity recognition, relation extraction, and the construction of
knowledge graphs.”””® In named entity recognition, entities
(which could be single words or phrases) are identified and
categorized within the text, facilitating the detection of
reagents, products, catalysts, and other chemical entities.
Relation extraction focuses on identifying the connections
between these entities, while knowledge graphs organize these
entities and their relationships into structured representations.
This foundation has enabled the creation of catalysis datasets
related to topics like hydrogen production,* CO, reduction,****
and single-atom heterogeneous catalysis.”

2.2.1 Evolution of tools and techniques

2.2.1.1 ChemDataExtractor. The ChemDataExtractor
tool,**** developed as early as 2016, utilizes word tokenization,

View Article Online
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clustering, and traditional machine-learning models to extract
chemical knowledge from the literature. This tool can identify
compounds and their properties, setting a precedent for the
integration of more sophisticated models. In 2021, Regina
Barzilay et al. developed the ChemRxnExtractor,* a two-stage
deep learning architecture based on transformer models. This
system uses product extraction and reaction role labelling to
structure chemical data. The transformer architecture's atten-
tion mechanism allows the model to concentrate on relevant
parts of the data for different tasks, and its adaptive pre-training
on large-scale unlabelled text has significantly improved its
ability to identify and organize chemical information from
textual sources (Fig. 4). It achieved notable F1 scores of 76.2%
for product extraction and 78.7% for reaction role labelling on
a specialized dataset.

2.2.1.2 SciBERT. Introduced in 2019, SciBERT" leverages
the BERT (Bidirectional Encoder Representations from Trans-
formers) architecture, which is specifically trained on scientific
texts to enhance performance in tasks like entity recognition
and relation extraction.’*™ Following the surge in LLM
advancements in 2022, models such as SciBERT, GPT-3, GPT-
3.5, and GPT-4 have become integral to text-based data extrac-
tion in catalysis.”**® These models have effectively turned the
extraction of text-based data from scientific papers into a nearly
solved challenge.

2.2.1.3 LLMs. Omar M. Yaghi et al.*® utilized OpenAl's GPT-
3.5 to extract and format synthesis information of metal-
organic frameworks (MOFs) from the literature. They addressed
the hallucination issue in LLMs through careful prompt engi-
neering and context provision (Fig. 5). The process involved
segmenting the text, creating numeric vectors to represent each
segment, comparing vectors to the ones of predefined synthesis
descriptions, and choosing the segments with high similarity.
GPT-3.5 then classified these segments as ‘synthesis’ or ‘non-
synthesis’ using in-context learning (ICL), before formatting the
synthesis information into tables. This approach, which also led
to the development of a chemistry chatbot, demonstrates
a promising framework for using LLMs for extracting and
organizing scientific information.

2.3 Summary

In the domain of chemical information extraction, advance-
ments have been marked by the development and deployment
of diverse methods and tools. These technologies are succinctly

Product ——> Reaction type

:
- —» Reactants
ChemRxnExtractor > Solvent
Journal ' Reaction » Catalysts/Reagents
Articles Product Reaction Database
Extraction Role Labeling —» Temperature
—> Time
> Yield

Fig. 4 Scheme of the automated chemical reaction extraction from scientific literature. Reproduced with permission from ref. 82 Copyright

2019, American Chemical Society.
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summarized in Table 1 and are broadly categorized into three
primary types based on the underlying technology: rule-based
OCSR, machine learning-based (ML-based) OCSR, and language
model-based (LM-based) systems.

The rule-based OCSR systems, once dominant, are now
increasingly complemented or surpassed by neural network-
based methods due to their flexibility and growing accuracy.
These machine learning-based systems are not only more
adaptable but also continue to improve as they learn from more
data. The incorporation of rule-based techniques as

Table 1 Comparison of methods for information extraction

a supplementary approach provides a layered methodological
depth that enhances the overall robustness and generalizability
of these technologies.

Language model-based systems, particularly those utilizing
advanced LLMs, represent the frontier of chemical information
extraction. Although their full potential is yet to be realized, the
rapid evolution into multimodal models suggests that trans-
formative developments could emerge shortly. These models
are particularly promising for handling the vast and complex
data typical in catalysis research.

Method Type Extracted content Supported modality Open source Reference
CLiDE Rule-based Molecular structures and charge Text & image Yes 66
OSRA Rule-based Molecular structures Text & image Yes 68
Imago Rule-based Depicted molecules with up and down Text & image Yes 69
stereo bonds and pseudostems
MSE-DUDL ML-based Structures of natural products and Image No 71
peptide sequences
DECIMER ML-based Chemical classes, species, organism Image Yes 72
parts, and spectral data
MolMiner ML-based Molecule structures Image No 75
ChembDataExtractor LM-based Identifiers, spectroscopic attributes, and Text Yes 80 and 81
chemical property attributes (e.g.,
melting point, oxidation/reduction
potentials, photoluminescence lifetime,
and quantum yield)
SciBERT LM-based Identifiers of chemicals Text Yes 11
ChemRxnExtractor LM-based Reactants, catalysts, and solvents for Text Yes 82
reactions
GPT-3.5 LM-based MOF synthesis Text No 16
GPT-4 LM-based Text & image No

© 2024 The Author(s). Published by the Royal Society of Chemistry
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The transition to open-source methods has also played
a critical role in this field. Beginning with systems like OSRA in
the 1990s, the move towards open-source has not only facili-
tated wider access to advanced tools but has also spurred
innovation and customization, enhancing the collective capa-
bility of the research community.

This evolving landscape of chemical information extraction
methods underscores the importance of continual adaptation
and development to harness the ever-increasing volumes of
data in catalysis and other fields of chemistry.

3 Automated and intelligent chemical
robotic system

Automation technologies have profoundly transformed modern
manufacturing, yet their integration into chemical research
remains limited. This is primarily due to the challenges in meeting
the diverse and flexible synthesis and characterization require-
ments of various chemical systems. Effective machine learning
applications in this context demand a densely populated dataset
within the search space to develop reliable models and derive
meaningful insights. Consequently, the experimental systems
employed must be both high-throughput and dependable.

Over the past few decades, significant advancements in
automation have led to reductions in costs and enhancements
in the efficiency, accuracy, and reproducibility of
experiments.®**¢ The origins of chemical automation date back
to the 1960s and 1970s with the development of automated
devices like automated peptide synthesizers,*” DNA synthe-
sizers,*® and organic synthesis modules.* This was followed by
the emergence of high-throughput automated synthesis
systems in the era of combinatorial chemistry.®**® More
recently, the introduction of humanoid chemical robots** and
autonomous flow-based synthesis platforms'® has marked
a new era of innovation in intelligent chemical synthesis.

A notable feature of this latest advancement is the interactive
“ask and tell” process, such as active learning, where models are
continuously trained on current observations and actively request
additional data. This interactive approach can significantly accel-
erate discovery efficiency compared to traditional screening strat-
egies.” Therefore, experimental processes must be designed to be
not only high-throughput but also sufficiently flexible to allow
frequent access and modifications. This is also the stage where
LLMs can contribute, integrating crucial domain knowledge to
enhance exploration and decision-making processes.

In this section, we will discuss how advancements in hard-
ware design, coupled with LLMs, enhance operational flexi-
bility. Later, we will explore the promising potential of LLM-
driven active learning in the subsequent section.

3.1 Automated and intelligent chemical experiment
platform

To address diverse research tasks, various hardware design
principles and methods were employed in building automation
systems. This review will cover two categories of the systems:

12206 | Chem. Sci, 2024, 15, 12200-12233
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(1) Humanoid robotic systems: this approach relies on the
usage of multi-axis arms that provide a high degree of operation
flexibility, mimicking the behavior of human operators.

(2) Automated flow chemical systems: these systems are
designed on the foundation of fluid dynamics and transport
pipelines to achieve precise chemical operations, which can be
seamlessly interfaced with analytical instruments.

3.2 Humanoid robotic system

In a laboratory environment, a robotic arm coupled with auto-
mated guided vehicles (AGVs) and advanced computer vision
systems® can robustly complete tasks such as sample prepara-
tion and handling, control of instruments, and integration of
data recording, analysis, and experiment design. Key to this
scheme is the flexibility introduced by AGVs and robotic arms as
compared to that of their predecessors.

The AGV-based autonomous mobile robot system launched
by Andrew I. Cooper et al.* is a remarkable advance in chemical
automation. The team found improved photocatalysts for
producing hydrogen from water after autonomous running for 8
days, completing 688 experiments in a design space of 10 vari-
ables. The robot (Fig. 6) can handle sample vials among eight
workstations distributed around the lab, including a solid
reagent dispensing system, a mixed liquid dispensing system
and capping module, an ultrasound module, a photolysis
module, a gas chromatography (GC) analysis module, and three
separate sample storage modules to achieve a variety of exper-
imental tasks.

Despite the great advances, the mobile robotic chemist from
Cooper's group is purely driven by Bayesian algorithms and
does not capture existing chemical knowledge or include
theoretical or physical models. Later, a comprehensive artificial
intelligence chemistry laboratory (Fig. 7) was developed by Jun
Jiang's team.® This AI-Chemist consists of three modules,
including a machine-reading module, a mobile robot module,
and a computational module. The AI-Chemist system responds
to scientific questions posed by researchers by tapping into vast
amounts of literature. It digitizes and standardizes experi-
mental protocols, enriching its knowledge base. The platform
manages tasks, monitors the mobile robots, customizes exper-
iment workflows, and stores the data for future use. The
research team used the platform to find the best combinations
of several Martian meteorite rocks to synthesize efficient water
oxidation catalysts for future use in Martian exploration.®®

The recent A-lab, developed by Gerbrand Ceder et al,®
represents a significant advancement in the field of solid
material synthesis. Despite some controversy on the actual
phases of the fabricated materials, the hallmark of the A-lab is
its high degree of automation, which encompasses the entire
synthesis and characterization process, including critical steps
such as powder dosing, sample heating, and X-ray diffraction
(XRD) for product characterization.

One critical issue with the robotic arm system in laboratory
settings is its moderate capacity to parallelize experimental
tasks. While robotic arms bring automation and precision to
the table, they still mimic human researchers to conduct

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Autonomous mobile robot and experimental stations. The mobile robotic chemist (a), the roadmap of the whole laboratory (b) and several
workstations (c—e) are shown. Reproduced with permission from ref. 4 Copyright 2020, Springer Nature.

multiple operations one by one. This constraint is particularly
evident in high-throughput settings where speed and efficiency
are paramount. To address this, integrating robotic systems
with other automated solutions might be necessary.

3.3 Automated flow chemical system

Automated chemical synthesis systems based on flow pipelines
are widely applied in many fields such as chemical pharma-
ceuticals®'* and organic synthesis.'”"**'**"'% The reactors used
in the flow system can be categorized into two distinct types:
batch reactors connected by pipelines and continuous flow
reactors. The major advantage of the flow system comes from

© 2024 The Author(s). Published by the Royal Society of Chemistry

low-cost modularity, where the reaction module, product
separation module, and detection module can all be connected
to the same pipeline in sequence or parallel.

3.3.1 Batch reactors. An example of the batch reactor
system connected by pipelines is the Chemputer developed by
Leroy Cronin et al. in 2019." It is a general automated platform
for organic synthesis (Fig. 8) with a fluid backbone from a series
of syringe pumps and six-way valves. The materials can be
transported among modules. The modules support many
operations including mixing, filtration, liquid-liquid separa-
tion, evaporation, and chromatographic separation. The same
research team' has also introduced an autonomous workflow
to read the literature and execute experiments. A chemical

Chem. Sci., 2024, 15, 12200-12233 | 12207
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Fig. 7 Design of the all-round Al-Chemist with a scientific mind. It includes three modules for chemistry knowledge, autonomous experi-
mentation, and theoretical computation and machine learning (A). The workflow of the Al-Chemist to study various systems are shown in (B).
Reproduced with permission from ref. 5 Copyright 2022, China Science Publishing & Media Ltd.

description language (yDL) that aims to include all the
synthesis operations in a standard format was proposed.
Utilizing this system, the authors showcased the automated
synthesis of 12 compounds from the literature, encompassing
the painkiller lidocaine and several other pivotal molecules. By
now, the capability of the Chemputer has been demonstrated by
its implementations in more than 60 reactions, including Pd-
catalyzed Suzuki coupling.'”~**%

One drawback of many flow systems is the lack of flexibility
for different experiment tasks. One solution is to use general
modules and their combination to support wider experiments.
Alternatively, the modules can be reaction-specific as long as
they can be designed and fabricated efficiently. Leroy Cronin
et al.* showcased a portable, suitcase-sized chemical synthesis
platform with automated on-demand 3D printing of groups of
reactors for different reactions. Researchers demonstrated the
broad applicability of this system by synthesizing five organic

12208 | Chem. Sci, 2024, 15, 12200-12233

small molecules, four oligopeptides, and four oligonucleotides,
achieving good yields and purity.

The implementation of batch reactors with increased
throughput has accelerated the search for catalysts in more
complex systems that involve multiphase reactions. Cheng
Wang et al'®® developed a fast screening platform with
a coherent implementation of automated flow cell assembly
and GC characterization. It was used for parallel synthesis,
electrochemical characterization, and catalytic performance
evaluation of electrocatalysts for the reduction of CO, to C,,
products, which led to the discovery of a Mg-Cu bimetallic
catalyst with competitive CO, to C,, performance and good
stability compared to the top catalysts from other literature
reports (Fig. 9).

3.3.2 Continuous flow reactors. Continuous flow reac-
tors'” provide a scalable solution for organic molecule
synthesis,'**'*® inorganic material preparation,'*'*° colloidal
nanomaterial synthesis,"**'** and electrochemical

107
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Fig. 8 Physical implementation of the synthesis platform Chemputer. The scheme (A) and the actual set-up (B) of the Chemputer are shown
respectively. Reproduced with permission from ref. 17 Copyright 2019, AAAS.

synthesis,"**"** and have gained wide applications in industry.

The reactants are first pumped into a mixing device and then
flow into temperature-controlled pipes or microstructured
reactors until the reaction is complete. Combined with auto-
mation, continuous flow chemistry can efficiently and contin-
uously screen experimental parameters and be further
connected to modules for separation and characterization.'****

Timothy F. Jamison et al.'*> developed a flexible, manually
reconfigurable benchtop flow chemistry platform (Fig. 10),
including various reactor modules for heating/cooling, photo-
chemical reaction, and packed bed reaction. In addition, the
platform integrates liquid-liquid separation technology and is
equipped with inline analysis tools such as high performance
liquid chromatography (HPLC), Fourier transform infrared
spectroscopy (FTIR), Raman spectroscopy, and mass
spectrometry.

© 2024 The Author(s). Published by the Royal Society of Chemistry

One issue of the continuous flow system is its high cost in
paralleling and adaptation. To partly address this issue, Kerry
Gilmore et al."** reported a “radial synthesizer” based on a series
of continuous flow modules arranged radially around a central
switching station, which allows selective access to individual
reactors and avoids equipment redundancies and reconfigura-
tion among different reactions. Storing stable intermediates
inside fluidic pathways enables simultaneous optimization of
subsequent steps during route development. Online moni-
toring via infrared (IR) and 'H/'°F NMR spectroscopy enables
fast post-reaction analysis and feedback. The performance of
this system has been demonstrated in transition metal-cata-
lyzed C-C and C-N cross-coupling, olefination, reductive ami-
nation, nucleophilic aromatic substitution reactions, light-
driven oxidation-reduction catalysis, and continuous multi-step
reactions. In addition, flow selection valve technology can be
used to create different process combinations, as demonstrated

Chem. Sci., 2024, 15, 12200-12233 | 12209
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by Nathan Collins et al.'’ in an advanced automated contin-
uous flow synthesizer called AutoSyn, which can access 3800
unique process combinations and up to seven consecutive
reaction steps for efficiently preparing a variety of pharmaceu-
tical small molecule compounds with a scale from milligrams to
grams within hours.

To make the fluidic system even more adaptive, Klavs F.
Jensen et al.*** combined the robotic arm and the flow system
(Fig. 11): the robotic arm is responsible for assembling modular
process units, including reactors and separators, into a contin-
uous flow path. After the synthesis, the robotic arm can
disconnect the reagent lines and move the processing module
to the appropriate storage location. Pneumatic grippers are
used to ensure tight connections between process chambers. In
2023, the same group introduced a prototype that further
incorporates machine learning with robotics to autonomously
design, synthesize, and analyze dye-like molecules with
minimal human intervention.”™ This system successfully
synthesized and characterized 303 new dyes, advancing the
efficiency of chemical discovery.

Flow chemistry systems, while revolutionizing chemical
synthesis and processing, present several limitations in auto-
mation. The setup and maintenance of these systems are
complex and resource-intensive. Establishing precise control
over flow rates, temperature, and pressure requires specialized
equipment and expertise. This complexity also extends to scal-
ability issues; while flow systems excel in scaling up certain

12210 | Chem. Sci., 2024, 15, 12200-12233

types of reactions, they may be less adaptable for reactions
requiring long residence times or intricate synthesis steps.
Additionally, the rigidity in altering reaction conditions can
limit their flexibility, making them less suitable for laboratories
that frequently switch between diverse chemical processes.
Material compatibility is another concern, as the construction
materials of the flow reactors must withstand a wide range of
chemicals and conditions, limiting their use with highly reac-
tive or corrosive substances. Furthermore, while adept at
handling large-scale production, flow chemistry systems can be
less efficient for small-scale synthesis, often leading to ineffi-
ciencies and wastage when dealing with minute quantities.

3.4 Large language models and robots

The introduction of LLMs to robotic systems defines a new
frontier in automation.

First, LLMs have facilitated the development of robotics,
including log information extraction, assisted robot design,**
and task generation and planning.**»****'*” As pointed out by
Francesco Stella et al.,"* LLMs can be the creator for designing
the automating system, be the mentor and copilot for domain
scientists who do not have the necessary educational back-
ground to implement automation in their research, and be an
assistant to debugging, troubleshooting, and method selection
during the technology implementation phase to accelerate the
process.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Second, LLMs, especially the multimodal ones, can help that combines prompt engineering and a high-level feature
develop next-generation robots with increased flexibility. Vem- library to enable ChatGPT to handle various robotic tasks and
prala and others from the Microsoft team'° proposed a strategy  scenarios. An open-source tool called PromptCraft was
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Fig. 11 A robotically reconfigurable flow chemistry platform. Reproduced with permission from ref. 123 Copyright 2019, AAAS.
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introduced, which includes a collaboration platform and
a ChatGPT-integrated sample robot simulator. However, the
LLM-controlled robotic movement is not robust enough for
direct use in chemistry experiments where safety and reliability
are of primary concern.

Third, LLMs also offer solutions to program robots. Kourosh
Darvish et al introduced the CLAIRIFY method,*”” which
combines automatic iterative prompting with program verifi-
cation to ensure the syntactic accuracy of task plans and their
alignment with environmental constraints. The system's
objective is to produce a syntactically correct task plan suitable
for robotic action as a prompt for LLMs to generate a program.
However, the generated plan needs to be verified to detect any
compilation error and pass the error messages as subsequent
input prompts for iterative interaction with the LLMs. The
capability of this method was demonstrated by translating
natural language to an abstract and concise high-level chemical
description language (yDL), which was originally developed and
used in the control of Chemputers.*®

Compared to high-level descriptive codes, generating low-
level operational codes to interface directly with the robotic
system can be more complicated. Genki N. Kanda et al*
demonstrated that GPT-4 can generate low-level operational
Python scripts for automated robots like Opentrons-2 (OT-2)
from natural language instructions. They designed a pipeline
based on GPT-4 to automatically translate natural language
experimental descriptions into Python scripts compatible with
OT-2. Leveraging OpenAl, this approach iteratively queries the
model, extracts, and validates scripts using a simulator of OT-2,
and provides feedback on any errors for correction. This shift
towards natural language instruction simplifies the automation
process, making it accessible to a broader range of researchers
and promoting the automation of biological experiments.

3.5 Summary

Automated and intelligent chemical robotic systems are prom-
ising to significantly enhance the efficiency, accuracy, and
reproducibility of experiments. Table 2 summarizes various
types of automated and intelligent chemical robotic systems,
detailing their specific functions, supported operations, char-
acterization techniques, and chemical spaces they explored.
These systems range from humanoid robotic systems to batch
reactors and continuous flow reactors, each with unique capa-
bilities and applications to study different chemical systems.

We expect a much enhanced automation level in chemistry
research. However, current automation in chemistry still faces
challenges, particularly in the trade-offs between the flexibility
and throughput of automated systems. For instance, although
capable of vast amounts of operations compared to flow
systems, humanoid robotic systems are usually slower in
operational speed to ensure accuracy and safety. On the other
hand, flow chemistry systems can handle hundreds or thou-
sands of experiments per day, but are more task-specific with
limited flexibility. New developments in these strategies are
required to enhance flexibility, throughput, and robustness at
the same time.

12212 | Chem. Sci., 2024, 15, 12200-12233
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Another challenge lies in the control part of the robotic
systems. Although digital twins are very common for humanoid
robotics and in industry, the development of digital twins for
the whole automated chemistry system is still at its initial stage
despite a few efforts.***'*® Ensuring the integrity and safety of
experimental procedures remains paramount in automation
labs. Therefore, greater attention must be directed toward
enhancing the capability to simulate experimental procedures
and detect any potential physical or chemical issues during the
development of various robotic systems. Furthermore, despite
the rapid advancements in novel algorithms, such as rein-
forcement learning, the control of robots in chemistry labs
often relies on hardcoded programming. This limitation
restricts their ability to perform complex tasks and adds chal-
lenges to the maintenance, transferability, and future develop-
ment of the systems. LLMs appear promising in introducing
flexibility to control systems. However, the reliability of LLM-
generated code must be verified either by human experts or
through digital twins. It is foreseeable that digital twins and
LLMs will soon be more cohesively integrated into the control of
chemical robotic systems.

4 Design and discovery of catalysts
with active machine learning

In the discovery of catalysts, the search space is often vast and
grows exponentially with the number of parameters. This
inherent complexity makes the traditional trial-and-error
approach for catalyst screening both labor and computationally
intensive and time-consuming. The emergence of ML and LLMs
has provided opportunities to address this problem. By utilizing
ML and LLMs to guide experimental design with experimental
or theoretical feedback, the search for catalysts can be signifi-
cantly accelerated.

4.1 Design of catalysts guided by machine learning

The implementation of ML in experimental design can lead to
more efficient and cost-effective research. Olsson*® defines
active machine learning as a supervised machine learning
technique in which the learner (i.e., the machine learning
model) determines the sampling point from which it learns.
Bayesian optimization (BO)**" and active learning (AL) are two
important branches of active machine learning that are applied
in catalyst design.

BO is an optimization strategy that balances the exploration
of uncertain regions and the exploitation of known regions with
superior objective values. It is generally used to optimize
a black-box function and consists of three key components:

(1) Surrogate model: this is a predictive model designed to
approximate the underlying function. A wide range of machine
learning models can be employed for this purpose, such as the
Gaussian process,"' ensembles of artificial neural networks,"*?
and Bayesian neural networks.'?*3¢

(2) Acquisition function: an acquisition function is a scoring
function used to rank sampling points within the input space
based on the surrogate model's predictions. Examples of such

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 The comparison of methods for robotic systems in chemistry. The systems are categorized into three types: humanoid, flow, or
a mixture of both. The supported operations, characterization and originally studied chemical systems are listed in the table

Type Description Synthesis operations Characterization Target compounds Reference
Humanoid Mobile robotic Solid dispensing, liquid Gas chromatography Catalysts for photolysis of 4
chemist dispensing, capping/ water to produce hydrogen
uncapping, heating, and
sonication
An all-round AI- Solid dispensing, liquid UV-vis, fluorescence, Materials for 5
Chemist dispensing, magnetic and Raman electrocatalysts,
stirring, sonication, drying,  spectroscopy, and gas photocatalysts, and
centrifugation, and liquid chromatography luminescence
extraction
A-lab, an Powder dosing and sample  X-ray diffraction (XRD) Primarily oxides and 6
autonomous heating phosphates identified
laboratory through extensive ab initio
phase-stability data
Flow: Batch Modular robotic Mixing, filtration, liquid- — Organic molecules 17
reactors synthesis system liquid separation,
evaporation, and
chromatographic
separation
A portable suitcase-  Liquid transfer, — Organic molecules 49
sized chemical temperature control,
synthesis platform evaporation, filtration, and
separation
Fast screening Liquid handling, electric Micro-fast gas Electrocatalysts for the 106
platform for the cell preparation, and chromatography CO,RR
CO,RR electrolysis
Flow: continuous Benchtop flow Liquid handling, heating, High-performance Reconfigurable system for 115
flow reactors chemistry platform cooling, photoreaction, liquid chromatography  automated optimization of
extraction and purification =~ (HPLC), IR diverse chemical reactions
spectroscopy, Raman
spectroscopy, and mass
spectrometry
Radial synthesizer Liquid transfer, mixing, IR spectrometry and Cross-coupling, 116
system and dilution nuclear magnetic olefination, reductive
resonance amination, nucleophilic
aromatic substitution
reactions, light-driven
redox catalysis, and
continuous multi-step
reactions
An automated Heating, liquid-liquid Liquid Pharmaceutical small 117
multistep chemical separation, gas-liquid chromatography-mass molecules
synthesizer separation, and spectrometry (LC-MS)
heterogeneous catalysis
Humanoid robotic A robotic platform Liquid handling, High-performance Organic molecules 123

system with flow
reactors

for flow synthesis of
organic compounds

separation, and
temperature adjustment

functions include expected improvement (EI),**”**® probability
of improvement (PI),* and upper confidence boundary
(UCB).** The acquisition function is instrumental in selecting
the most promising candidates for further evaluation.

(3) Bayesian inference:'** this is a foundational technique in
Bayesian optimization, utilized for training the surrogate
model. It uses Bayes' theorem to update the probability of
a hypothesis or event based on observed evidence.

On the other hand, AL is a family of machine learning
techniques that aims to minimize the number of labelled data
points while obtaining a high-performance model. It can

© 2024 The Author(s). Published by the Royal Society of Chemistry

liquid chromatography
and nuclear magnetic
resonance

usually be achieved through an adaptive sampling strategy,
which prioritizes the labelling of data points with the highest
uncertainty and information gain for the model.

Both BO***?® and AL*** have been applied in the design of
and search for catalysts. BO can efficiently explore the vast
parameter space of catalyst design and select experiments that
are likely to yield the desired products. By iteratively updating
the ML model and selecting new experiments based on the
retrained model, BO can guide the search for optimal catalysts.
AL, in the meantime, can assist in selecting the most informa-
tive data points for labelling, reducing labelling costs while

Chem. Sci., 2024, 15, 12200-12233 | 12213
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improving model performance. It has been applied in many
fields including materials design,"*>'** retrosynthesis,***'**> and
drug discovery.***'*” Besides the original purpose of AL, its
application in catalyst design also demonstrated its capability
for global optimization, presenting a remarkable analogy to the
BO framework. The applications of BO and AL in the field of
catalysis will be discussed respectively below.

4.2 Bayesian optimization

BO effectively balances exploration and exploitation to identify
the best candidates within the design space. The method can
significantly reduce the number of experiments required to find
the optimal reaction parameters or formulations. For example,
in 2020, Yusuke Yamauchi and coworkers*® employed BO to
efficiently discover ternary PtPdAu alloy catalysts. They exhibi-
ted excellent catalytic activity in electrochemical methanol
oxidation (Fig. 12). Remarkably, through only 47 experiments,
which is less than 1% of the potential composition space, the
authors successfully discovered the optimal composition with
a high catalytic performance. More interestingly, the sampling
scheme using current density as the performance metric yielded
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Fig. 12 Bayesian optimization of the methanol electro-oxidation
process. (a) Peak current density of methanol electro-oxidation as
a function of the number of BO rounds. (b) A contour plot showing the
peak current density and a ternary plot depicting the chemical
composition in the electrolyte solution. Reproduced with permission
from ref. 20 Copyright 2020, Royal Chemical Society.
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a precursor composition with minimal Au content, which would
have been challenging for chemists to predict. Thus, the
implementation of BO can not only accelerate the search for
catalysts but also offer new insights into the design of catalysts.

In 2020, Bayesian experiments for autonomous researchers
(BEAR)** combined BO with high-throughput automated
experiment systems to achieve self-driven material discovery—
a cycle of the design of experiments, automated experiment
feedback, and retraining of machine learning models to design
new experiments. As discussed before, Andrew I. Cooper et al.*
developed an AI chemist to improve the catalytic performance
for hydrogen production with BO (Fig. 13). It successfully
discovered a mixture of photocatalysts that exhibited six times
higher activity than the original formulation. Compared to
manual operations, the experimental time cost is reduced by
approximately 60 times.

In 2021, Jan Rossmeisl et al.*> developed a computational
framework that combines density functional theory (DFT)
calculations, ML-driven kinetic modelling, and BO to explore
a wide range of composition space to search for multi-compo-
nent high entropy alloys for the oxygen reduction reaction
(ORR). To accelerate catalyst discovery, the authors integrated
kinetic modelling with BO, where a Gaussian-process-based
surrogate model provided suggestions for alloy compositions.
The proposed compositions were evaluated using the kinetic
model, and the surrogate model was updated based on the ORR
activity predicted by the kinetic model. BO effectively identified
optimal compositions through 150 iterations, including
Agi1gPdgy, Ir—s50Pt~s0, and Ir—,oPd~goRu~3, (Fig. 14). These
compositions closely matched the optimal compositions found
through grid search in the same chemical space. Experimental
confirmation of the three optimized compositions by high-
throughput thin-film synthesis and ORR testing in the Ag-Pd,
Ir-Pt, and Pd-Ru binary alloy spaces, reveals the best-perform-
ing compositions of Ag;,Pdgs, IrzsPtss, and PdgsRuzs. The
experimental results reasonably matched the results of BO, and
BO can accelerate the discovery of optimal catalysts by up to 20
times.

4.3 Active learning

Active learning is a strategy that explores the design space to
establish a precise and reliable mapping from it to an output
space (e.g. various properties of compounds) and optimizes
toward high-performance solutions. Active learning can be used
to reduce the number of expensive DFT simulations for the
design and screening of catalysts in a large space.

Yousung Jung et al.*® proposed an active learning method in
the discovery of catalysts for the CO,RR driven by uncertainty
and prediction error. It utilizes cost-effective non-ab initio input
features, ie.,, LMTO d-band width and electronegativity, as
chemisorption descriptors to predict adsorption energies on
alloy surfaces. Screening of large-scale materials is carried out
by combining these descriptors with two machine learning
models: an ensemble of artificial neural networks (ANNs) and
kernel ridge regression (KRR). The catalytic performance of a set
of 263 alloy systems was studied by predicting *CO binding

© 2024 The Author(s). Published by the Royal Society of Chemistry
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energy using the models. During the active learning process, an
ensemble consisting of five neural networks with the same
architecture but varied initial weights was trained on an initial
dataset. The ensemble was used to predict the *CO binding
energy on the rest of the dataset to find candidates with the
highest prediction variance, which will be included in the next
training process. As an alternative machine learning model, the
performance of KRR™*'*® was also elaborated. It involves the
training of a KRR model on the initial dataset with *CO binding
energy as the output. Then, an additional KRR model was
trained on the prediction error from the previously trained
model as an error predictor.**®**° Later, the KRR error predictor
was used to estimate the error rate for the rest of the dataset,
which helps select candidates for the next round of training.
Both models (ensemble of ANNs and the KRR model) were used
to predict the adsorption energy of CO on (100) crystalline
surfaces. The best model gives an RMSE of only 0.05 eV without
the d-band center as a descriptor. The authors discovered
Cu;Y@Cu* to be a highly active and cost-effective catalyst for
the CO,RR.

Besides the original purpose of using active learning to
establish an accurate and reliable model, it can also be utilized
for global optimization. In 2018, Zachary W. Ulissi et al.**
proposed a cyclic workflow with ideas from agent-based model
optimization and active learning for screening electrocatalysts
for the CO,RR and HER. This workflow, illustrated in Fig. 15,
involves machine learning screening, DFT validation, and
machine learning retraining. To start, the researchers obtained
a search space of intermetallic crystals and their corresponding
surfaces from the Materials Project.’® They then selected
a series of materials as optimal candidates for catalysis using
a machine-learning model. DFT calculations for the selected
candidates were performed, providing more accurate predic-
tions of the catalytic properties. The DFT results were then used
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to retrain the machine learning model, creating an iterative
process for continuously improving the catalyst database. In
their study, the authors considered a total of 31 elements,
composed of 50% d-block elements and 33% p-block elements.
The search space consists of 1499 intermetallics for potential
catalysis applications. 131 possible surfaces from 54 alloys and
258 possible surfaces from 102 alloys were identified as valid
candidates for the CO,RR and HER, respectively. The number of
candidate alloy catalysts can be further reduced to 10 and 14 for
the CO,RR and HER. This comprehensive screening approach
allowed for the identification of theoretically promising cata-
lysts for the CO,RR and HER.

In 2020, Edward H. Sargent et al.** developed a machine
learning-accelerated, high-throughput DFT framework for rapid
screening of CO,RR electrocatalysts (Fig. 16) similar to the one
from Zachary W. Ulissi's group® described above. The
researchers studied a dataset of 244 different copper-containing
intermetallics, forming a search space of 12229 surfaces and
228969 adsorption sites. DFT simulations were performed on
a subset of these sites to calculate the CO adsorption energies.
These data were then used to train machine learning models to
predict the CO adsorption energy on the adsorption sites. The
researchers encoded each adsorption site as a numeric array
and used a combination of random forest and boosted trees to
enhance prediction performance. The framework combined the
machine learning predicted CO adsorption energy with the
volcano scaling relationship to identify sites with the highest
catalytic activity. These optimal points were then simulated
using DFT to provide additional training data for the machine-
learning model. Thus, an active learning workflow was estab-
lished, cycling between DFT simulations, machine learning
regression, and machine learning prioritization, to continu-
ously query and construct a DFT database. This workflow per-
formed over 300 regressions, which guided DFT calculations for
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Fig. 15 Workflow for automating theoretical materials discovery. (a) and (b) The experimental workflow for catalyst discovery is accelerated by
the ab initio DFT workflow. (c) Scientists relied on their expertise and experimental results to screen data for DFT calculations traditionally. (d) This
work uses ML to select DFT data automatically and systematically. Reproduced with permission from ref. 31 Copyright 2018, Springer Nature.
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CO binding energies at approximately 4000 different adsorption
sites to identify Cu-Al as the most promising material for the
CO,RR in the search space. Furthermore, the authors synthe-
sized de-alloyed nanoporous Cu-Al catalysts for validation,
which achieved over 80% Faraday efficiency (compared to
~66% for pure Cu) at a current density of 400 mA cm > (1.5 V vs.
NHE). It showed a 2.8-fold improvement in cathodic power
conversion efficiency (PCE) at 400 mA c¢cm > compared to
previous state-of-the-art results. This work demonstrated an
effective method for high-throughput catalyst screening,
combining machine learning and DFT calculations.

While BO and AL are initially different approaches, they tend
to converge on the catalyst optimization task. BO usually uses
a probabilistic model with the goal of optimization, while AL
can adopt more diverse models with the goal of efficiently
constructing a machine learning model. When AL also used
a probabilistic model and assessed uncertainty in making the
decision about which point to explore next, it is equivalent to
exploration-oriented BO, but the ultimate goal of AL is to
improve the model most efficiently, which is beyond the
uncertainty strategy.

When all the obtainable information about the system
comes from the previous experimental/calculation results, BO
and AL are mathematically sound methods to most efficiently
explore the space. However, when domain knowledge is avail-
able, it is possible to come up with a more efficient strategy by

© 2024 The Author(s). Published by the Royal Society of Chemistry

combining the testing information with domain knowledge.
The addition of domain knowledge into the process can be
achieved by using LLMs.

4.4 Design and synthesis of catalysts guided by large
language models

The diverse and interdisciplinary knowledge spanning chem-
istry, materials science, computer science, and data science,
which are needed for the data-driven design and discovery of
catalysts, can present a formidable challenge for researchers.
LLMs">' offer a promising solution to overcome the knowl-
edge gaps from multiple fields efficiently. LLMs have been used
by chemists for tasks such as catalytic reaction prediction,*
property prediction,"**” and synthesis condition design.*****

In BO and AL, a machine learning model (or a surrogate
model) is necessary to approximate a mapping. Traditional
machine learning models can take continuous, discrete, or
categorical variables as the input. In contrast, LLMs, with their
inherent capabilities to process natural language descriptions
and generate new content accordingly, can be potentially used
as a surrogate model, which can support a versatile input
format. To incorporate the training data into the models, in-
context learning (ICL), a technique that includes training data
as examples in the prompt for LLMs, can be used. Alternatively,
fine-tuning the models using the existing dataset represents
another viable approach.

Chem. Sci., 2024, 15, 12200-12233 | 12217
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Andrew D. White's group®® demonstrated the usage of LLMs
as the surrogate model in Bayesian optimization. The aim is to
use a generative pre-trained transformer (GPT) as a surrogate
model to predict the properties of the product according to the
experimental procedure. Both fine-tuning and ICL were used for
model training. To introduce prediction uncertainty when
querying the LLMs, they designed two prompting strategies,
a (1) multiple-choice option template and (2) top k completions
template for regression. With the multiple-choice template, the
LLM will treat the regression problem as a multi-option ques-
tion to give a predicted value in one of the five ranges.
Furthermore, the probability of selecting each option can be
accessed. In the top k completion template, the question will be
queried k times to the LLM to generate k answers. Both strat-
egies generated a discrete probability distribution of the output,
which can be used in Bayesian optimization. The authors used
a series of models from OpenaAl (text-curie-001, text-davinci-003,
GPT-4, etc.) with in-context learning or fine-tuning to predict the
C, yield for oxidative coupling of methane based on synthesis
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Literature I
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procedures. Gaussian process regression was used as a baseline
with text embedding to convert the synthesis description to
a numeric input. Among the LLMs, GPT-4 is the best model in
either ICL or fine-tuning. When GPT-4 and the top-k completion
strategies were used, the ICL model showed comparable
performance (mean absolute error, which is abbreviated as
MAE, of 1.854) to the Gaussian process regression (MAE of
1.893). When the fine-tuning was implemented, the MAE of the
model was further decreased to 1.325. Later, the authors
implemented Bayesian optimization using the Gaussian
process or LLMs with ICL as the surrogate model. The ICL
model reached 99% quantile after 15 samples, after which the
performance did not improve significantly and failed to find the
maximum value in the sample pool. Although the GPR model
also failed to find the maximum in the sample pool, it was
a little closer to the maximum and showed a higher efficiency in
the optimization. Due to the token size limitation and the
complexity of the C, data, the authors only selected the five
most relevant examples during ICL, which can be the reason
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human feedback. Reproduced with permission from ref. 47 Copyright 2021, Wiley.
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why the ICL model did not perform as well as the GPR model in
Bayesian optimization. However, as a proof-of-concept, it is
enough to demonstrate that LLMs have the potential to guide
researchers in decision-making.

The in-context learning ability of the LLMs is promising for
building an interactive workflow where an Al agent iteratively
assists and instructs human experts to increase search effi-
ciency through experimental feedback. Recently, Omar M.
Yaghi and his coworkers have built such a workflow and
demonstrated its capability in the synthesis of MOFs with
prompt engineering and in-context learning.*” This innovative
workflow involves three components: ChemScope, ChemNavi-
gator, and ChemExecutor (Fig. 17). With the usage of Chem-
Scope, the human researchers offer GPT-4 the project goals and
necessary information like the literature of reticular chemistry
and availability of lab resources to generate a project blueprint.
Here, GPT-4 reads the general concepts of reticular chemistry
and constructs a scheme of the project with multiple stages,
where each stage contains well-defined objectives and indica-
tors for their completion. Then, ChemNavigator and ChemEx-
ecutor were used coherently to go through the stages and
achieve the objectives defined by ChemScope. ChemNavigator
was used to define tasks to complete the objectives of the
current stage. It takes the project scheme from ChemScope,
previous trial-and-error summaries, human feedback, and
current situations to update the summaries and generate three
tasks accordingly. With the updated summary and tasks from
ChemNavigator, the ChemExecutor outputs step-by-step
instructions to complete the task. Additionally, ChemExecutor
also defines a template to record the experimental feedback
from the human researchers, which will be used later in the next
iteration. At this point, the human researchers will perform the
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experiments and fill up the template. The interaction among
ChemExecutor, ChemExecutor, and human researchers was
iterated several times until the completion of the project. The
recording of experimental feedback and consistent updating of
the summary enabled GPT-4 to learn from experiment
outcomes and optimize protocols to complete the complex
tasks. Using this human-computer interactive workflow, the
researchers successfully discovered and characterized a series
of isomorphic MOF-521s. This work highlights the advantages
of the large language model in interacting with human experts
in natural language without coding skills, making it easy to use
for all chemists. Additionally, the in-context learning facilitated
by GPT-4 can continuously optimize experimental protocols to
complete complicated research tasks. When such a workflow is
integrated with automated robotic systems, it paves the way for
a new paradigm of self-driving labs, where the design and
discovery of catalysts go beyond a purely data-driven approach.

Despite the potential applications of LLMs in the design of
and search for catalysts, there are still some problems to be
addressed. The major problem is the well-known hallucinations
in the context generated by LLMs. Although researchers have
tried to mitigate this issue through methods such as prompt
engineering, in-context learning, and fine-tuning, further
improvements are needed to enable the accuracy and reliability
of these models. Secondly, LLMs with direct domain expertise
are still lacking. Thus, when dealing with domain-specific
scientific problems, the models need to be fine-tuned; other-
wise they can show low accuracy and misunderstanding. While
LLMs hold promise in chemical research, further research and
improvements are necessary to overcome the existing limita-
tions and bring the application of artificial intelligence in the
research of catalysts into a new era.

Table 3 The comparison of active machine learning algorithms in chemistry. The algorithms rely on many surrogate models from the Gaussian
process to the recent LLMs. Targets of the surrogate models are listed corresponding to the different research systems

Type Surrogate models Variables (input) Target (output) Research systems Reference
Bayesian Random forest and Ratio of a metal precursor Current density Electrocatalytic oxidation 20
optimization Gaussian process (continuous) of methanol
Gaussian process Reagent concentration for Hydrogen evolution Photocatalytic hydrogen 4
catalyst synthesis rate generation
(continuous)
Gaussian process Alloy compositions Current density Electrocatalytic O, 22
(continuous) reduction
Large language models Experimental procedure as C, yield Oxidative coupling of 45
from open Al text methane
Active Artificial neural Electronegativity and d- *CO binding energy Electrocatalytic CO, 30
learning networks and kernel band width of alloys (*CO refers to adsorbed  reduction
ridge regression (continuous) CO on a solid surface)
Extra tree regressor, Fingerprints of the surface Adsorption energies of Electrocatalytic CO, 31
random forest, and sites of intermetallics CO and H reduction and H,
Gaussian process,etc. (discrete) evolution
Random forest and Fingerprints of adsorption CO adsorption energy Electrocatalytic CO, 32
boosted tree sites from copper- reduction
containing metals
(discrete)
GPT-4 Synthesis procedure as text ~ Success or failure of the =~ MOF synthesis 47
input synthesis

© 2024 The Author(s). Published by the Royal Society of Chemistry
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4.5 Summary

Traditional trial-and-error methods require a significant cost of
time in screening and testing candidate catalysts, together with
inference through expert knowledge and occasionally seren-
dipity. Active machine learning can lower the knowledge barrier
and greatly accelerate the discovery process by utilizing exper-
imental data to build surrogate models, avoiding brute-force or
uniform search of the entire chemical space. The implementa-
tion of active machine learning in the optimization of catalyst
search is summarized in Table 3.

Several challenges persist in implementing active machine
learning, particularly related to surrogate models. These models
excel in interpolation rather than extrapolation, making them
prone to overfitting and necessitating training data of a specific
scale. Many efforts are made to improve the surrogate models
for higher generality (e.g., Phoenics™**) and extend variables
from simple continuous variables to discrete or categorical
variables (e.g., Gryffin'**). Additionally, a crucial challenge lies
in selecting relevant catalysis features compatible with surro-
gate models. Incorporating irrelevant descriptors can impede
the effectiveness of active learning algorithms, reducing their
performance to that of uniform random search. The difficulty in
feature selection confines certain closed-loop searches to mere
recipe optimization, treating the process as a black box and
adjusting only continuous variables such as reagent ratios or
concentrations (Table 3). However, catalytic reaction activity
and selectivity are closely linked to explicit factors such as
intermediate adsorption energy, d-band center, electronega-
tivity, and steric hindrance, which inherently serve as valid
features. These features can be assessed through ab initio
theoretical calculations or in situ characterization. While the
advent of automated laboratories has alleviated concerns
regarding insufficient data acquisition, it remains a costly
endeavor, especially considering the challenges in automating
certain characterization techniques. Consequently, strategies
for evaluating and selecting an appropriate subset from these
explicit features require further refinement. The subsequent
section will delve into the detailed elaboration of chemical
descriptors employed in machine learning algorithms.

5 Interpretable machine learning for
catalysis

In catalysis research, the pursuit of knowledge extends beyond
mere data collection; true understanding stems from inter-
pretable models that can elucidate observations in ways that are
comprehensible to human scientists.*>*** In this section, we
explore the potential role of large language models (LLMs) in
identifying suitable descriptors for catalysis systems and
enhancing model-agnostic methods for interpretability. These
aspects are crucial for advancing catalyst design and facilitating
iterative research and development processes.**>*

5.1 Descriptors for traditional machine learning

Understanding catalysis data begins with the identification of
the correct descriptors of catalytic systems. Descriptors are
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crucial in interpretable machine learning because they must not
only capture relevant information but also minimize redun-
dancy. The range of available descriptors provides substantial
flexibility in modelling various aspects of catalytic processes.

5.1.1 Experimental descriptors. Experimental descriptors
are mainly the reaction conditions, normally including
temperature, pH value, pressure, voltage, reactant concentra-
tion, and reaction time.***¢*

5.1.2 Topological/structural  descriptors. = Topological
descriptors are derived from molecular connectivity tables
using graph theory to specify connectivity, paths, and structural
features. A similar concept can be extended to crystalline
materials for catalysis such as zeolites.'*>'** Other structural
descriptors include atomic/covalent radius, atomic number
(mass number), atomic position,'* group number, molar
volume, lattice constants, rotational angle, bond length, coor-
dination number, the number of protons and valence elec-
trons,'® active sites, and surface properties such as defects,
microstructure, and facet characteristics.**®*¢”

5.1.3 Molecular fingerprints. Fingerprints are a variety of
molecular descriptors that encode a molecule based on the
presence or absence of specific chemical substructures. These
substructures range from simple functional groups to more
complex molecular motifs. Some of the fingerprints are based
on pre-defined fragments, such as Molecular ACCess System
(MACCS),*** the Daylight fingerprints,’® and a more recent
extension the Local Functional Group Fingerprint (LoFFi).'”®
Other fingerprints delve into the connectivity or topology of
a molecule, exemplified by the Extended Connectivity Finger-
print (ECFP)"* and its more interpretable simplification
molecular fragment featurization (MFF)."”

5.1.4 Trans-rotational-invariant 3D representations. While
atomic coordinates in Cartesian axes can represent molecules
or crystalline materials, these representations are not inherently
invariant to translation and rotation—properties that many
chemical properties of interest do possess. To address this,
several strategies have been developed to make these repre-
sentations operational-invariant. One approach involves aug-
menting the data through multiple translations and rotations,
a method that is cumbersome but effective in some cases.
Another method expands atomic coordinates around a central
point using spherical harmonics and radial functions, exem-
plified by the Smooth Overlap of Atomic Positions (SOAP)
representation. A third strategy involves generating special
auto-correlation functions of some function of interest, such as
the revised autocorrelation functions (RACs),"” which correlate
atomic properties within a molecule or material for highly
efficient encoding.

5.1.5 Physicochemical descriptors.  Physicochemical
descriptors, rooted in organic physical chemistry, systematically
describe the electronic and steric properties of molecules and
substituent groups. A notable example is the Hammett param-
eters, which quantify the electronic effects of substituent groups
on aromatic rings based on the linear free energy relationship.
Various electronic descriptors are attributed to molecular
properties at the atomic level,”*"¢ including the lipid/water
distribution coefficient logP, molar refractivity (MR),
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electronegativity, and atomic charges. Steric effects are captured
by descriptors such as the Tolman cone angle, Sterimol values,
torsion angles, bite angle, buried volume, dispersion descriptor,
and solvent accessible surface area (Fig. 18)."7*'"7'”° Tools like
PaDEL-Descriptor software™® and SPOC descriptors'®** package
them into comprehensive descriptor suites for broader appli-
cations in research.

5.1.6 Spectrum-based descriptors. Spectrum-based
descriptors™>'®* form a latent space reflecting key physico-
chemical properties of molecules and materials, which are both
measurable and calculable. Certain spectra can directly reveal
interactions critical in catalysis, such as the vibrational spectra
of CO adsorbed on metal surfaces, which provide insights into
adsorption energy, charge transfer degree, bond energy, and the
d-band center of the metal.*®*

5.1.7 Theory-based descriptors. In heterogeneous catalysis,
the adsorption of a reactant on the catalyst's surface typically
represents the initial step. Consequently, adsorption energy
serves as a critical descriptor. Notably, the adsorption energies
of various species are interconnected through the linear free
energy relationship, or the scaling law, often referred to as
Bronsted-Evans-Polanyi (BEP) relations.’® A recent study by
Lin Zhuang and coworkers applied principal component anal-
ysis to the adsorption energies of multiple species,'® revealing
just two independent components which correspond to cova-
lent and ionic interactions, respectively. Beyond adsorption
energy, the potential of zero charges on an electrocatalyst's
surface adds another vital dimension to electrocatalyst
design.”” Other related descriptors include d-band structure
features, local electronegativity, valence electron configuration,
coordination number, and electric dipole moments."$**%*

© 2024 The Author(s). Published by the Royal Society of Chemistry

5.1.8 Graph-based representations. Graph-based repre-
sentations have emerged as a potent tool for delineating the
geometry and connectivity of catalytic materials. In these
models, atoms are depicted as nodes and bonds as edges within
molecular or crystal graphs. Graph convolution techniques
allow for embedding these graphs into numeric vectors, making
them suitable for analysis via machine learning models.** Since
the application of this approach to inorganic crystalline mate-
rials* in 2017 and to organic reactions* in 2018, graph-based
machine learning models for molecules have rapidly developed.
This methodology is now a mainstream approach for address-
ing the complex, high-dimensional, nonlinear relationships
characteristic of catalysis.

5.2 Descriptor selection and machine learning

Descriptor selection is a crucial step in the machine learning
process, involving the elimination of irrelevant and redundant
descriptors. This task is particularly challenging in catalysis
research, where data sets are often limited. An overly large set of
descriptors can lead to spurious correlations that do not reflect
underlying chemical phenomena. Traditional machine learning
techniques vary in how they select descriptors:

5.2.1 Multivariate linear regression (MLR). These models
assign weights to descriptors, directly showing their contribu-
tion to the model's output, and are widely used for ration-
alization and optimization of chemical reactions.!7+7%197-201
Methods like LASSO promote sparsity (encouraging most of the
coefficients to be zero) in the model by penalizing the magni-
tude of the coefficients, which helps in reducing overfitting and
enhances interpretability by retaining only the most significant
features.
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5.2.2 Tree-based models. Models such as random forests
and gradient boosting trees*” inherently select and rank
features based on their importance, which helps in under-
standing which descriptors are more critical.'”

5.2.3 Symbolic regression (SR) and sparsifying operator
(SISSO). These methods elegantly assemble descriptors into
mathematical formulations that provide deeper insights into
catalysis mechanisms.”® For example, SR identified a simple
geometric parameter u/t to guide the design of oxide perovskite
catalysts with enhanced oxygen evolution reaction activities.”**
Runhai Ouyang who developed SISSO** continued to refine the
method, which has been widely implemented to find the
numerical relationship, ranging from predicting free
energy>*>*° to reaction activity.>”’

5.2.4 Dimensional reduction. Techniques like principal
component analysis (PCA)**® reduce the dimensionality of the
data, although PCA's linearity is a limitation. Nonlinear
dimension reduction methods, such as kernel PCA and mani-
fold learning or autoencoders, have been developed to over-
come these restrictions.

Artificial Neural Networks (ANNs): these models automati-
cally extract and continuously refine descriptors through the
iterative updating of network weights.

5.3 Incorporating chemical knowledge through LLMs

All the above descriptor selection processes have neglected the
physical meanings of descriptors, which can lead to models that
lack interpretability or generalizability. Large language models
(LLMs) have the potential to revolutionize this process by
embedding chemical knowledge into the selection process.
They can track the physical significance of descriptors and,
when data alone are insufficient, use embedded chemistry
knowledge to guide the selection process. Recent advancements
have demonstrated the utility of augmenting traditional models
with LLMs to leverage the linguistic implications of descriptors,
providing a mnovel perspective on model training and
interpretability.>*

5.3.1 Pre-trained molecular models. Pre-trained molecular
models, inspired by the success of pre-trained language models,
utilize deep neural networks trained on vast unlabelled molec-
ular databases. These models can be fine-tuned for specific
downstream tasks, significantly enhancing representation
capabilities and improving prediction accuracy across a range
of applications.”® The pre-training tasks typically involve
reconstructing molecules from masked or perturbed structures,
whether represented in 3D space, as 2D images or graphs, or as
1D symbolic sequences like SMILES.

One such pre-trained model, Uni-Mol, incorporates 3D
information in its self-training reconstruction process and has
outperformed state-of-the-art models in molecular property
prediction. It demonstrates strong performance in tasks that
require spatial information, such as predicting protein-ligand
binding poses and generating molecular conformations.***
Similarly, Payel Das et al. showed that a motif-based trans-
former applied to 3D heterogeneous molecular graphs (MOL-
FORMER) excels by utilizing attention mechanisms to capture
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spatial relationships within molecules.”® Another innovative
approach, the Chemical Space Explorer (ChemSpackE), uses pre-
trained deep generative models for exploring chemical space in
an interpretable and interactive manner.”**> The ChemSpacE
model has exhibited impressive capabilities in molecule opti-
mization and manipulation tasks across both single-property
and multi-property scenarios. This process not only enhances
the interpretability of deep generative models by navigating
through their latent spaces but also facilitates human-in-the-
loop exploration of chemical spaces and molecule design.

Despite these advancements, caution is necessary when
considering the information used during pre-training. Unlike
natural languages, which are imbued with rich contextual and
cultural knowledge, pure chemical structures typically contain
limited information, often constrained to basic chemical rules
such as the octet rule. Pre-training models solely on 2D chem-
ical structures or 1D SMILES strings without incorporating
additional chemical knowledge may lead to models that lack
substantial chemical understanding.

Pre-trained models, with their capacity for insightful inter-
pretations and enhancements in molecular predictions, hold
significant promise for transforming areas in catalyst design,
molecular property prediction, and reaction optimization.

5.3.2 Direct use of language models. Before the widespread
adoption of ChatGPT, researchers in 2019 began exploring the
potential of using extensive text from scientific literature to
encode materials science knowledge within word embeddings,
aiming to recommend materials for functional applications.**
This approach resembles the Retrieval-Augmented Generation
(RAG) agent, which employs a foundational language model
that dynamically retrieves and integrates information from
external data sources. This method helps reduce hallucination
and adapt to specific domains. Fine-tuning large models on
domain-specific materials, while more resource-intensive, is
also a viable strategy.

Beyond the RAG agent, there are several examples of using
language model architectures to train on chemistry data using
SMILES or other molecular representations. These molecular
pre-training models, discussed in the previous section, are
developed from scratch purely with chemistry data and, as such,
do not inherit the broader knowledge typically embedded in
LLMs. Notable examples include SELFormer, which utilizes
a transformer-based chemical language model to learn high-
quality molecular representations called SELFIES.** Born and
Manica proposed the Regression Transformer (RT), a method
that abstracts regression as a conditional sequence modelling
problem.** Alan Aspuru-Guzik and his team investigated the
ability of simple language models to learn complex molecular
distributions, demonstrating their powerful generative capa-
bilities through the prediction of distributions of the highest
scoring penalized log P molecules in ZINC15.*** Francesca Gri-
soni provided a comprehensive overview of the current state,
challenges, and future prospects of chemical language models
in drug discovery.**

Recent initiatives have leveraged the capabilities of pre-
trained language models like GPT-3, fine-tuning them with
chemically curated data. In 2023, Berend Smit et al. published
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an influential paper titled “Is GPT-3 all you need for low-data
discovery in chemistry”** first on preprint. The title was appar-
ently inspired by the seminal Google paper on transformers.
The paper was later published in Nature Machine Intelligence
with a modified title “Leveraging large language models for
predictive chemistry”."*® They experimented with fine-tuning
GPT-3 using chemistry data written in a sentence and used it as
a general machine learning model for classification and
regression. The chemicals are represented by either SMILES or
IUPAC names in natural language, which makes no difference
in the prediction performance. The fine-tuned GPT-3 model
achieved superior performance over traditional models in pre-
dicting material properties and reaction yields, especially in
data-scarce scenarios. Its ability to accept the IUPAC names of
chemicals as inputs facilitates non-specialist use. The authors
explored the model's potential in generating molecules based
on specific requirements and tested its in-context learning
capabilities, which also showed promising results.

It is interesting to discuss what aspect of the LLM's ability is
used in the task of learning chemistry data. Most likely, the
LLM's abilities to learn new patterns and apply basic chemical
logic are critical in these tasks. It is not clear if the LLM's
general knowledge about specific molecule or functional groups
is used or not. It is important to recognize that these models
may not fully “understand” the underlying chemistry and
should be used with caution due to their potential for producing
misleading results or hallucinations. Despite these limitations,
this work introduces a novel paradigm in machine learning that
utilizes language models to foster advancements in low-data
learning within the field of chemistry.

5.4 Interpreting machine learning results

For data-driven research in catalysis to be fully beneficial, it's
crucial for models to be understandable so that human scientists
can actively participate and apply their findings. LLMs introduce
both new challenges and opportunities for achieving this goal.

5.4.1 Model-agnostic interpretation methods. One
commonly employed approach for model interpretation is
SHapley Additive exPlanations (SHAP),>*> which utilizes princi-
ples from game theory, specifically Shapley values, to assign
importance to each feature and provide local explanations. This
method has been widely used in catalysis studies to quantita-
tively analyze features responsible for variations in adsorption
energy across different species,*” key process variables influ-
encing yields,”*® and molecular features determining catalytic
activity.””® Similarly, Local Interpretable Model-Agnostic Expla-
nations (LIME),*® which locally models descriptors’ effects via
an interpretable linear model, and Partial Dependence Plots
(PDPs) that visualize the effect of features on predicted
outcomes by marginalizing over the values of all other features,
are also extensively used.?*****

5.4.2 Challenges with interpreting in-context learning.
Applying these model-agnostic methods to the in-context
learning of LLMs presents difficulties. A fundamental challenge
lies in identifying coherent prompts that accurately map input
features (X) to their corresponding outputs (Y). For example,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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consider the prompt: “Given input SMILES of the molecular
catalyst is C(CCN)CC(=0)O and output yield of the reaction is
40%, please derive the output from the input”. If we only asked
the LLM to give the answer, we have no way to know how the
model actually works. We need to add some prompt to ask the
LLM to explain how the answer is arrived at. It is yet to be tested
what prompt can accurately achieve the purpose and eliminate
any hallucination. The ideal prompt may also be model specific
and fulfill two critical criteria:

1. Interpretability: ideally, prompts should be phrased in
natural language to ensure they are easily understood by human
users.

2. Accuracy: prompts must accurately map input features to
outputs, providing a clear and logical explanation of the data.

There are a variety of auto-prompting methods based on
gradient descent to search for a prompt that can map the input
feature to the output values.”*>** However, as a result of
gradient descent, it is not guaranteed that these searched
prompts are generally interpretable. Additionally, gradient-
descent-based methods are usually computationally expensive.
To address these two problems, Jianfeng Gao et al.** introduced
an interpretable auto-prompting method (iPrompt) using LLMs
to directly generate and modify the prompts. There are three
steps to search for ideal prompts in this method:

(1) Prompt proposal: in this stage, a prefix of data points is
fed to the LLMs, requiring them to complete the prompts that
map the input features to the output values. It generates a series
of candidate prompts that will be evaluated further.

(2) Reranking: the performance of the candidate prompts
from (1) is evaluated, and those that maximize the accuracy will
be maintained.

(3) Iterate with exploration: the top candidate prompts from
(2) will be truncated randomly. Then the truncated prompts will
be fed to LLMs to regenerate new prompts while maintaining
accuracy.

This iterative process continues until no further improve-
ments are observed. The direct generation and modification of
prompts by LLMs in steps 1 and 3 enhance interpretability,
while accuracy is optimized in step 2. However, despite their
impressive capabilities, LLMs may still lack depth in mathe-
matical rigor, theoretical simulation, or specialized domain
knowledge required for some catalysis applications. Incorpo-
rating AI agents equipped with a comprehensive toolkit could
potentially address these limitations, enhancing both the
interpretability and accuracy of machine learning models in
catalysis.

5.5 Summary

Interpretable machine learning models are becoming indis-
pensable in chemical research for exploring complex chemical
processes and catalytic mechanisms. These models allow
chemists to extract diverse chemical information from data and
elucidate structure-activity relationships with precision and
efficiency. The shift towards models that prioritize excellent
interpretability and continuity, such as those employing phys-
icochemical and theory-based descriptors, marks a significant
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advance over traditional Boolean fingerprints, which often lack
intuitive insights and demonstrate poor extrapolative capabil-
ities. The use of LLMs in the learning process to bring in
domain knowledge and consider chemical meaning of different
descriptors in the learning process is still limited.

Recent developments in graph-based and latent space
descriptors of pre-trained models are attracting increasing
attention, despite sometimes not providing direct insights.
These descriptors are valued for their potential to bridge
sophisticated computational models with practical chemical
understanding, a connection that is strengthening due to
ongoing algorithmic improvements.

Model-agnostic methods like SHAP, LIME, and PDP provide
robust frameworks for interpreting machine learning models.
However, the methods need a significant update to meet the
new challenge due to the involvement of LLMs.

As we look to the future, the enhancement of interpretable
models and the expansion of model-agnostic methods are set to
increase AI's utility beyond mere speed and accuracy. By inte-
grating tailored, interpretable descriptors across different
systems, this approach not only deepens chemical insights but
also empowers the use of machine learning to quantitatively
analyze structure-activity relationships, thus broadening Al's
impact on scientific discovery.

6 Conclusions and perspectives

The design and discovery of optimal catalysts is a complex
endeavor due to the inherent complexity of catalytic processes
and the vast search space. Traditional trial-and-error
approaches are laborious, time-consuming, and often fail to
provide sufficient insights. However, the recent advancements
in high-throughput information extraction, automated chem-
ical experimentation, active machine learning, and interpret-
able machine learning have revolutionized this field.

Automated extraction of unstructured chemical data, facili-
tated by optical character recognition and large language
models (LLMs), lays the groundwork for robust data-driven
approaches. Automated robotic platforms streamline experi-
mentation, enabling real-time decision-making and facilitating
closed-loop optimizations. Active learning algorithms optimize
experiment selection based on accumulated data to minimize
trial numbers. Interpretable machine learning models disclose
underlying structure-property relationships, providing critical
insights for rational catalyst design.

Despite these advances, challenges persist. Information
extraction needs to evolve to handle diverse unstructured data
formats reliably. Current technologies like image segmentation
tools***?*¢ are still advancing towards fully autonomous capa-
bilities for extracting and analyzing raw chemical data from
figures. Moreover, the integration of text and figure data
demands enhanced anaphora resolution and inference capa-
bilities to support detailed analyses. Future developments in
multimodal AI, capable of processing text, images, video, and
voice, will be crucial in this aspect.

LLMs have demonstrated potential in comprehending
complex data and have been applied successfully in projects like
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the one-pot synthesis conditions of MOFs. Yet, the full scope of
their capabilities, especially in formatting conditions for multi-
step synthesis procedures, remains underexplored. The cost
and operational speed of robotic systems also limits their
widespread adoption in chemical laboratories, necessitating
innovations in specialized post-synthesis processing and auto-
sampling for diverse catalytic systems.

The variability in control interfaces across different labora-
tory equipment poses another challenge, limiting hardware
transferability among research communities. Standardizing
control languages or systems could enhance collaborative
efforts. Although natural language is commonly used to instruct
experiments, its ambiguity necessitates sophisticated mapping
to specific robotic operations, a task where LLMs could play
a transformative role if their reliability is proven in more
complex scenarios.

Furthermore, the high-dimensional nature of -catalysis
design and the chemical consumption in high-throughput
processes suggest that automated platforms should be capable
of managing varied reaction scales, from small-scale synthesis
and characterization to larger-scale production.

As machine learning approaches become more integrated
into catalyst design, it is anticipated that they will address
increasingly complex design problems. Incorporating scientific
hypotheses into the discovery process requires an iterative
approach, where hypotheses are generated and modified, and
data are queried for validation. AI agents,*” e.g., ChemCrow**®
equipped with tools for automated experimentation, informa-
tion retrieval, and machine learning, show promise in bridging
these capabilities to create a self-evolving, intelligent system.

Although human feedback should ideally not exist in the
process, it can be used for safety checks or as alternative solu-
tions if any of the functions (e.g., automated experimentation)
are missing in the toolset, as demonstrated by Omar M. Yaghi
et al.”’ In the iteration, the AI agents should be instructed to
generate or modify hypotheses together with their validation
procedures within the toolset. Later the toolset can be utilized
to give feedback to the Al agents for further improvement of the
hypotheses via LLMs directly or Bayesian inference.

In conclusion, the last decade's advances have shifted the
paradigm from traditional methods to a more efficient,
systematic approach to experimental design in catalyst
research. The integration of LLMs and AI agents promises to
further enhance the capability, flexibility, and efficiency of these
systems, paving the way for a future where intelligent systems
can autonomously explore vast chemical spaces and contribute
to scientific discovery in unprecedented ways.
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