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The electrochemical CO, reduction reaction (CO,RR) triggered by renewable electricity provides
a promising route to produce chemical feedstocks and fuels with low-carbon footprints. The intrinsic
challenge for the current CO,RR electrolyzer is the carbonate issue arising from the reaction between
hydroxide and CO,. Acid CO,RR electrolyzers, in principle, can effectively solve the carbonate formation,
but it remains inevitable practically. In this work, we thoroughly investigated the electrode processes of
the CO,RR on the benchmark Ag catalyst in mild acid. The root of the carbonate issue arises from the
imbalanced supply—consumption rate of protons—the electron transfer vs. mass transport. Regulating
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Introduction

Electrocatalytic conversion of CO, offers an attractive route for
producing chemicals and fuels with low carbon emissions. Over
the past few decades, substantial progress has been made in
advancing low temperature (<100 °C) electrochemical CO,
reduction reaction (CO,RR). Most current state-of-the-art
CO,RR electrolyzers operate under alkaline conditions, where
the ultra-low proton concentration and extra energy barrier for
water dissociation suppress the competitive hydrogen evolution
reaction (HER)."™ Appreciable activity and selectivity have been
achieved at industrially relevant current densities (>100 mA
cm?).>® However, operating under alkaline conditions suffers
from the “carbonate issue”—the fast acid-base reaction
between hydroxide and CO, to form electrochemically inactive
carbonate.>”® The alkaline electrolyte consumes a significant
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free media is critical to solving the carbonate issue.

amount of the input CO,, turning the electrolyte into a near-
neutral solution, producing high overpotentials for both the
cathode and anode reactions, and giving rise to considerable
penalties on carbon utilization and energy efficiency.>*®

Performing efficient and selective CO,RR in strong acid (pH
= 0) can solve the carbonate issue, but it is challenging due to
the lack of intrinsically active electrocatalysts.'* Mildly acidic
conditions, such as pH 2 and above, are commonly adopted.*>**
Such conditions enable a suppressed HER at the alkaline elec-
trode interface and minimize the carbonate issue benefiting
from the bulk acidic environment.*> Recent work showed nearly
100% faradaic efficiency (FE) towards CO at —250 mA cm™ 2,
and 89% FE towards multi-carbon products at —500 mA cm ™2 in
PH 2 electrolyte.”” However, the alkaline interface and the high
concentration of metal cations lead to unavoidable salt
precipitation during long-term operation.”'® The reported
stability of acidic electrolyzers at current density > —200 mA
cm 2 lies between 1 and 30 h, with salt precipitation as the
primary cause of performance decay."*>*"

For CO,RR electrolyzers in mild acid, the carbonate forma-
tion results from the locally imbalanced consumption-supply
rate of protons, which is determined by electron transfer and
mass transport. These are spatially and temporally different in
scale—electron transfer happens near the electrode surface (ca.
10-20 A) while mass transport occurs at the scale of sub-um and
above.” For the flow cell typically used, the mass transport of
the proton from bulk to the surface is decided by the diffusion
in the stagnant liquid layer at the surface and the fluid flow in

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the bulk electrolyte.*® The diffusion layer at the electrode
surface always exists regardless of the hydrodynamics, but the
flow rate decides the thickness.”® A reduced diffusion length for
protons can be expected at a fast flow rate, which is beneficial to
create an acidic interface for suppressed carbonate formation.
Under pH 2 conditions, 11 s is required to deliver 1 pmol cm™>
of H' (the flux for 100 mA cm™2) for a 100 um diffusion layer
thickness, while the value is reduced to 0.11 s for a 1 um
diffusion layer.>® However, a low pH may hinder the reactivity of
the CO,RR as protons and CO, compete for the active sites."
The ideal scenario is the mass transport rate of protons is
sufficient to address the bicarbonate/carbonate at the interface
while not influencing the CO,RR activity. In reality, achieving
such a design depends on the relationship between mass
transport and electron transfer—the carbon-hydrogen-electron
(CHE) relationship.

In this work, we elucidate the electrode process of the CO,RR
under mild acidic conditions to investigate the mass transport-
electron transfer relation. As a scaffold, we choose Ag, where the
electrode reactions are relatively more straightforward than Cu.
Multiple electrode reactions, the hydrogen evolution reaction
(HER) and the CO,RR, are coupled together, deviating the local
environment from the bulk solution. Through online differen-
tial electrochemical mass spectrometry (DEMS) and scanning
electrochemical microscopy (SECM), we found that the CO,RR
occurs after local protons depleted at pH 11—unavoidable
carbonate formation at the interface. Increasing the flow rate
from 13 standard cubic centimetres per minute (sccm) to 63
scem can reduce the proton diffusion length from 182 um to 37
um, around 80% reduction. This, in return, alleviates the
carbonate issue—the single-pass carbon utilization efficiency of
CO,-to-CO reaches 44% at a current density of —100 mA cm 2.
Although regulating mass transport effectively relieves the
carbonate issue, carbonate formation is still unavoidable due to
the fundamental differences in the scale of rate for mass
transport and electron transfer.

Results and discussion

We first seek to understand the electrode processes for the
CO,RR on the benchmark Ag catalyst under mild acidic
conditions by using online differential electrochemical mass
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spectrometry (DEMS) at a sampling time interval of 1 s (ESI
Schematic 17) in the flow cell. The gaseous products are ionized
and detected in DEMS, which generates ionic current (). The
magnitude of I; is proportional to the generation rate of each
product (detailed in the ESIf).”> No obvious change in the
crystal orientation, electronic structure and morphology of Ag
was observed after electrolysis (Fig. S1), which demonstrates
the robustness of the Ag catalyst. The ionic current of H, (I{"%)-
was observed at —3.8 to —6.4 mA cm ™, while no signal related
to CO (I7°) was shown (Fig. 1a). If° appeared at —7.6 mA cm™ 2,
followed by a continuous increase to reach a plateau. This is
accompanied by a constant decay of the I; In the initial 680
seconds, the potential decay exhibited no difference under Ar
and CO, saturated conditions at a constant current density of
—7.6 mA cm™ 2 (Fig. 1b). In this region, H, was the only species
detected in the DEMS, indicating the dominant HER (blue and
red dash-dotted lines in Fig. 1c). This potential decay can be
attributed to the gradual depletion of protons during constant
electrolysis. A sharp drop in potential was observed after 680 s
regardless of the gas fed (Fig. 1b), and CO began to appear in
CO,-saturated solution concurrently. The enhanced CO signal
was accompanied by a suppressed H,, which is likely associated
with the reduced proton availability due to the formation of
a thick diffusion layer. With limited protons around, the
reduction of other species was initiated, that is CO, in CO,
saturated solution and H,O in Ar saturated solution. The HER is
significantly impeded by the increased CO production as the
I falls almost to zero from 680 s to 900 s (red dash-dotted line
in Fig. 1c), suggesting that the CO,RR overtakes the HER in this
region.

Such behaviours indicate the occurrence of multiple elec-
trode processes caused by the proton-coupled electron transfer
(PCET) nature of the HER and the CO,RR.* No differences were
observed for the CO production at different pH at the standard
hydrogen electrode scale, indicating a pH-independent manner
(Fig. S31). The HER is a bit more complicated under mild acidic
conditions—the production of H, is pH-dependent at low
current density while switching to pH-independent at high
current density.* This is due to the different proton sources,
protons for the former and water for the latter, involved in the
HER in these two regions.> Considering all the above, we
propose that the dominant reaction in the first 680 s in Fig. 1b is
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Fig.1 (a) lonic currents of H, and CO at applied current densities from —3.8 to —7.6 mA cm ™2 on Ag. (b) Chronopotentiometry at —7.6 mA cm™
under Ar (blue solid line) and CO, (red solid line). (c) lonic currents of H, (dash-dotted line) and CO (dotted line) under Ar (blue) and CO, flow (red)
during the chronopotentiometry at —7.6 mA cm™2. The electrode is an Ag GDE (detailed in the ESIT). The electrolytes used are 0.5 M K>SO, (pH =
1.5 adjusted with H>SO,). The H*-HER and H,O-HER refer to the HER with two different proton sources, protons and water.
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the proton-HER under both Ar and CO,-saturated conditions.
The depleted proton concentration and the increased diffusion
layer thickness lead to the slow potential decay in the first 680 s
in Fig. 1b. Once the surface concentration of the proton reaches
a threshold value, the CO,RR starts to kick off, and the proton
source of the HER switches to water, evidenced by the appear-
ance of If°. As CO, has a stronger binding affinity to the Ag
surface, the CO,RR dominates the HER in this region, agreeing
with the disappearance of the hydrogen signal in DEMS
(Fig. 1c).”® Thus, it is reasonable to propose eqn (1)-(3) for the
charge transfer reactions for the CO,RR in mild acid.

2H" +2¢~ - H, (1)
H,O + 2¢~ — H, + 20H~ (2)
CO, + H,0 + 2¢~ — CO + 20H"~ (3)

The threshold value of the proton concentration for the
commencement of the CO,RR is of fundamental interest. Such
a value enables us to evaluate the rate difference for eqn (1) and
(3), and serves as an index to design the operation conditions in
the flow reactor. We employed a more sensitive technique,
scanning electrochemical microscopy (SECM), to deepen the
understanding of the local chemical environment.

The experiments were conducted in a stationary cell due to
the technical requirement of SECM. The temporary switch of
the electrolyte to monoacid (KClO, + HCIO,) was for facile local
pH quantification.”® The Ag substrate was biased for 400 s to
reach a steady state at a series of current densities from —2.5 mA
cm 2 to —5.5 mA cm 2 A 10 pm Pt microelectrode was posi-
tioned at 50 um above the substrate electrode to detect CO
production (Fig. 2a) and local pH (Fig. 2b) via electrooxidation
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Fig. 2 (a) Schematic of CO and H, detection by SECM. (b) Schematic
of pH measurement by SECM. (c) Tip voltammetry at different
substrate current densities. (d) Experimental (50 um) and simulated (50
pm and O um) local pH at different applied current densities. The
electrolyte is 0.1 M KClOy4 solution (pH = 2 adjusted with HCLO,). The
substrate is a planar Ag electrode and the tip is a 10 um Pt
microelectrode.
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and limiting current measurement, respectively (detailed in the
ESI{). A broad peak at —0.2 V to 0.85 V for hydrogen oxidation
was observed for current densities below —4.5 mA cm >
(Fig. 2¢), indicating the absence of the CO,RR.”” Benefiting from
the high sensitivity of SECM, the occurrence of the CO,RR was
observed at —5.5 mA cm ™2, evidenced by the sharp oxidation
peaks at 0.62 V and 0.65 V for CO oxidation.*” The local pH at 50
um barely changes with the bulk value for current densities
from —2.5 to —4.5 mA cm ™2 (blue dot in Fig. 2d). The local pH
increases to 3.5 at —5.5 mA cm ™~ within 50 s. We note that the
experimentally measured pH is at a distance of 50 um, which
deviates from the local conditions.

We, therefore, employed multiphysics modelling to explore
the pH change at the electrode interface. An electrode and an
adjacent diffusion layer with experimentally determined thick-
ness were simulated. The electrochemical processes, homoge-
neous reactions and species transport were incorporated to
solve for the local pH (detailed in the ESIt). The simulation
results (blue line) at a distance of 50 um agree very well with the
experiments (blue dot). A noticeable pH change is observed at
the electrode surface (0 pm) based on the simulation (red line).
The surface pH sharply increases to above 10.3, where
carbonate is the primary form, at a current density larger than
—4.5 mA cm . This also explains the observed CO,RR at —5.5
mA cm 2. The results imply that an alkaline surface is needed
for appreciable CO,RR, arising from the significant difference
in the intrinsic reaction rate of the HER-H' (eqn (1)) and CO,RR-
H,O0 (eqn (3)). However, around 70% of CO, is converted to the
electrochemical inactive carbonate at this pH (Fig. S67).

The above results show that the carbonate issue is barely
avoidable under mild acidic conditions. The next question is if
we can suppress the carbonate formation while maintaining the
reactivity of the CO,RR. The apparent reaction rate of the
CO,RR is a combination of intrinsic activity, which is a few
orders of magnitude slower than the HER-H', and the mass
transport—both CO, and H'. Increasing the concentration of
CO, enhances the overall reaction rate, as indicated by the rate
law.** The proton concentration, as discussed previously,
suppresses the carbonate issue.

Due to the much larger transport resistance of CO, in liquid
than gas, constructing a local gas channel to shorten the diffu-
sion layer of CO, is necessary to enhance the local
concentration.”®*® As shown in Fig. 3a and b, the depletion of CO,
concentration is much slower in the presence of gas channels. We
introduce the hydrophobic polymer polytetrafluoroethylene
(PTFE) in the catalyst layer for local gas channels. The surface
hydrophobicity increases when increasing the mass ratio of PTFE
(Fig. 3c). The limiting current density of CO showed a volcano
shape with the amount of PTFE introduced, peaking at 30% PTFE
for a limiting current density of —640 mA ¢m™> (Fig. 3d). The
adverse effect on the limiting current density at high PTFE
content (50% and 70%) is related to the insufficient water avail-
ability for the CO,RR.*" Salt precipitation was confirmed under
such conditions when we switched the electrolyte to less soluble
Li salt—a dramatic decay of It after 15 min (Fig. 3e and f).

The above results clearly indicate the importance of regu-
lating the local proton availability for the CO,RR. In the flow

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.3 The schematic representation and simulated CO, concentration profile in a partially wetted GDE (a) and a fully wetted GDE (b) at =500 mA
cm™2. (c) Contact angle of electrodes with 0-70% mass ratio of PTFE. (d) Partial current density of CO on electrodes with 0—70% mass ratio of
PTFE. CO is detected by DEMS during LSV tests at 5 mV s~ scan rate. 4 M KCl (pH = 2) is used to reduce the solution resistance. (e) CO/H, ratio
and ionic current of CO at —100 mA cm ™2 constant applied current density at the 30%-PTFE/Ag electrode. The electrolyte is 0.5 M Li,SO4 (pH =
2) with a flow rate of 13 sccm. (f) Post-reaction cross-section SEM image of the 30%-PTFE/Ag electrode.

cell, the electrolyte is introduced into the reaction chamber
through a peristaltic pump, where the fluid flow determines
proton transport. Reynold's number corresponding to the
typical flow rate employed ranges from 14 to 69 (ESI Table 47),
suggesting the reasonable simplification to use laminar flow for
a uniform diffusion layer.”® In the commonly used flow rate of
13 standard cubic centimetres per minute (sccm), the diffusion
layer of protons can be as thick as 182 pm and the surface
concentration of carbonate rapidly increases to above 0.89 M at
a current density above —100 mA cm™ > (Fig. 4a). This explains
fast decay of CO,-to-CO observed in Li" electrolyte (solubility of
Li,CO; is 0.18 M, Fig. 3e and f). When the flow rate increases to
63 sccm, the proton diffusion layer decreases to 37 um, leading
to around 90% reduction in the carbonate (Fig. 4b). The CO,
recovery by the bulk electrolyte is more effective at 63 sccm, with
the CO, regeneration occurring at 25 pm, 7 times shorter than
that for 13 scem (Fig. 4c). It replenished the interfacial CO, to
a higher concentration. Based on the above results, we perform
the CO,RR in mild acid with 30%-PTFE/Ag electrodes at a flow
rate of 13-63 sccm. Under slow CO, supply rates, the CO,RR
becomes diffusion-limited due to inadequate gaseous supply,
where the regenerated CO, at the electrode vicinity plays
a significant role in determining the activity. As shown in
Fig. 4d, the FEco has a higher supply rate of 1.3 sccm. This can
be attributed to the enhanced mass transport of protons for
a more efficient CO, recovery. Simultaneously, the single-pass
carbon utilization efficiency (the fraction of electrochemically
converted CO, during a single pass) is improved when the
electrolyte flow rate is fast.

With the regulation of mass transport of CO, and H', the
selectivity and SPCE can be substantially improved. The
remaining question is whether the carbonate issue can be

© 2024 The Author(s). Published by the Royal Society of Chemistry
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rate. (b) Simulated carbonate concentration and pH profile at 13 and 63
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(c) Simulated CO, concentration profiles at 13 and 63 sccm electrolyte
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applied current density. The electrolyte is 0.5 M K;SO4 (pH = 2). (e)
Simulated pH profile at different current densities at 63 sccm elec-
trolyte flow rate.
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avoided under mild acidic conditions by controlling mass
transport. Unfortunately, simulation results indicate that even
at an elevated electrolyte flow rate of 63 sccm, the surface pH
jumps from below 4 at —37 mA—m 2 to above 10 at —38 mA—
m~? (Fig. 4e), making it challenging to shield the H*-HER while
keeping the local pH below pK, of carbonic acid. Therefore, the
pursuit of a carbonate-free interface has to be performed in
metal cation-free acidic media to remove the counterion for salt.
Future catalyst design may aim to break the scaling relationship
between C, and H intermediates to optimize their relative
binding energy, thereby enhancing the intrinsic selectivity
towards the CO,RR in a metal cation-free acidic case.?®

Conclusions

In this work, we thoroughly investigated the electrode process
and local environment of the CO,RR under mild acidic condi-
tions. The fast consumption rate of protons for the HER-H" and
generation rate of OH™ from the CO,RR and HER-H,O at —5.5
mA cm 2 elevated the local pH to 11 for unavoidable carbonate
formation at the interface. As the proton supply rate is deter-
mined by the mass transport, regulating hydrodynamics
enhanced the mass transport of protons by 5 times. The single-
pass carbon utilization efficiency substantially increases to 44%
at —100 mA cm >, benefiting from closer CO, regeneration at
the electrode vicinity at a high flow rate. Although regulating
mass transport effectively alleviates the carbonate issue, it is
difficult to solve the carbonate formation completely. Strong
acidic conditions or metal-cation-free systems should be
explored for this purpose. Thus, designing intrinsically active
catalysts in strong acid or metal-cation-free media is necessary
in the future.
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