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lymerization of liquid sulfur across
the l-transition†

Manyi Yang, a Enrico Trizio ab and Michele Parrinello *a

The anomalous l-transition of liquid sulfur, which is supposed to be related to the transformation of eight-

membered sulfur rings into long polymeric chains, has attracted considerable attention. However, a detailed

description of the underlying dynamical polymerization process is still missing. Here, we study the

structures and the mechanism of the polymerization processes of liquid sulfur across the l-transition as

well as its reverse process of formation of the rings. We do so by performing ab initio-quality molecular

dynamics simulations thanks to a combination of machine learning potentials and state-of-the-art

enhanced sampling techniques. With our approach, we obtain structural results that are in good

agreement with the experiments and we report precious dynamical insights into the mechanisms

involved in the process.
Introduction

Elemental sulfur exhibits a very complex phase diagram. This
richness derives from the sulfur's propensity to be twofold
coordinated. This results in the possibility of either forming
ring-like structures (Sp) or polymeric chains (SN) of competing
energy. The ring-like arrangements dominate the stable solid
structures1–3 (orthorhombic a-S, monoclinic b-S and g-S) with
polymeric arrangements reported only for pressures higher
than 2.0 GPa.4–6 Among the cyclic polymorphs, small rings are
preferred, and the 8-membered crown-shaped rings (S8) are by
far the most stable congurations. However, evidence of
a minority fraction of rings with sizes ranging from 6 to 32
atoms has also been reported.7,8

A mixture of these two structural models has also been
proposed to describe the liquid phase, and several liquid–liquid
phase transitions, similar to a variety of other systems,9–12 have
been reported in a wide temperature and pressure range.1,2,7,13,14

For instance, a transition between a low-density liquid, richer in
rings, and a high-density liquid, richer in polymers, has been
observed with a transition line that terminates in a critical point
at around 1000 K and 2.0 GPa.7

Here, we focus on a small part of the phase diagram, namely
the in proximity of the so-called lambda transition2,13,15 that
occurs at Tl = 432 K and ambient pressure and results in an
anomalous behavior of physical properties like heat capacity,2

viscosity,15 and density.16 The behavior observed around Tl has
echnology, 16156 Genova, Italy. E-mail:
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92
been widely studied and associated with the onset of a living
polymerization of the S8 rings.17,18 It is believed that before the
l-transition, where the phase equilibrium is mostly determined
by enthalpic contributions, ring-like structures dominate, but
as one increases the temperature and entropic driving forces
become more relevant, the polymeric fraction of the liquid
slowly grows and suddenly increases around Tl.

Over the years, extensive experimental studies have been
conducted to characterize the species involved in the
transition.1,19–22 However, they still provide limited insight into
the underlying dynamical process and a detailed picture of this
phenomenon is still missing. Previous theoretical studies,9,23

including ab initio-based simulations,24–28 have partially lled
this gap. However, the computational costs of rst principles
methods, which are needed to faithfully describe the complex
changes in the forming and breaking of chemical bonds, have
limited the scope of these simulations. Indeed, such calcula-
tions are still computationally too expensive to perform exten-
sive sampling, even on small systems. Thus, all these studies
have been limited to relatively short timescales (some 100 ps)
and/or simulation cells with only a few hundred atoms. Such
limitations are quite severe when studying polymeric systems,
which by denition involve a large number of atoms and oen
exhibit slow dynamics.18,29

In recent years, the combination of machine-learning inter-
atomic potentials (MLPs) of ab initio-quality and enhanced
sampling (ES) in an active learning framework has proven
effective in overcoming similar difficulties in processes as
complex as the liquid–liquid transition in phosphorus,11 the
nucleation and phase diagram of gallium,31 the decomposition
of urea32 or the dynamical nature of heterogenous catalytic
processes.33–35 In our case, such an approach has allowed the
limitation of standard molecular dynamics (MD) simulations to
© 2024 The Author(s). Published by the Royal Society of Chemistry
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be overcome and to simulate systems of thousands of atoms for
timescales of the order of nanoseconds.

Indeed, MLPs allow performing ab initio-quality MD simu-
lations at a fraction of the cost of rst principles methods. In
this approach, following the strategy pioneered by Behler and
Parrinello,36 the interatomic interactions are modeled through
a neural network (NN), which is trained to faithfully predict the
energies and forces obtained with DFT calculations on a set of
reference congurations. To be accurate for the study of reactive
processes, it is then of the utmost importance that the training
dataset does not contain only low-energy congurations coming
from the sampling of metastable states but also includes tran-
sition state congurations. Unfortunately, in the case of
complex systems such as liquid sulfur, due to the presence of
large free energy barriers, most reactive events take place on
a temporal scale that far exceeds that accessible in standard MD
simulations and cannot be sampled.

Fortunately, ES methods are aimed at overcoming this
limitation and allowing rare events to be sampled in an
affordable computational time. Many such methods are based
Fig. 1 (a) Schematic representation of the construction of the topologi
configuration, we build the corresponding adjacencymatrix and compute
such histograms are fed as inputs of a neural network (NN) that combine
scheme.30 For the training of the NN, we build a dataset of configurati
optimized such that the projection of the training data in the CV-space m
discriminated. (b) Value of the Deep-TDA CV as a function of time in a bia
Starting from a pure S8 phase at 0.0 ns, the system polymerizes to progres
ns, 0.5 ns and 1.5 ns are given. In both panels, ring-related features are

© 2024 The Author(s). Published by the Royal Society of Chemistry
on the addition of an external bias potential, which is taken to
be a function of a small number of collective variables (CVs).
The CVs are, in turn, functions of the atomic coordinates s =

s(R) and should be wisely chosen to encode the relevant slow
modes of the process for a successful simulation. Recently, the
advent of machine learning (ML) methods has greatly facilitated
the CV determination. In the present case, the complex struc-
tural changes that occur close to the l-transition are difficult to
express in simple geometrical terms, and we use instead a more
abstract CV that results from a combination of graph theory and
ML.

In the rst part of the paper, we construct the interaction
potential and show that the predictions of our model potential
are in agreement with experimental diffraction data and diffu-
sion properties. In the second part, we study the polymerization
and depolymerization processes that take place close to the l-
transition. In nanosecond-long reactive simulations, with the
help of an analysis of charge distribution, we describe reaction
mechanisms that shed light on the puzzling mechanism of
formation and breaking of the sulfur polymers.
cal collective variable (CV) for polymerization in liquid sulfur. For each
its eigenvalues distribution with a continuous histogram. The values of
s them and returns the CV as output, according to the Deep-TDA CV
ons from pure rings (blue) and pure polymer (red) phases. The NN is
atches a pre-assigned target distribution in which the states are well-
sed simulation, in which the biasing is applied along the Deep-TDA CV.
sively higher polymer fractions. Instantaneous snapshots at times of 0.0
colored in blue and polymer-related ones in red, respectively.

Chem. Sci., 2024, 15, 3382–3392 | 3383
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Results
Topological collective variables for enhanced sampling

To build the CV for ES simulations, in this work, we use the
Deep Targeted Discriminant Analysis30 (Deep-TDA) method,
and the whole protocol of our CV design process is schemati-
cally depicted in Fig. 1a. In Deep-TDA, the CV is expressed as the
output of a NN that is optimized according to a classication
criterion (panels 3 and 4) and takes as input a set of (physical)
descriptors, which, in our case, are built from the adjacency
matrix of the system (panels 1 and 2).

As mentioned in the introduction, the use of ML greatly
simplied the CV design procedure. However, the effectiveness
of such approaches is still affected by the choice of input
descriptors, as they should be informative on the slow modes of
the process. In this sense, the complex processes that take place
at the l-transition presented us with the new challenge of
nding proper descriptors that could describe the ring opening
and formation while retaining permutational invariance. Since
the system undergoes enormous changes in connectivity (see
upper panel in Fig. 1b) we resort to graph theory and, in
particular, to the adjacency matrix eigenvalues (panels 1 and 2
in Fig. 1a), which directly relates to the topology of the system.

For example, the values� ffiffiffi
2

p
and 0 reect S8 ring arrangements,

and the multiplicity of such eigenvalues is proportional to the
number of such rings in the system.

In practice, to train our Deep-TDA CV, we used a two-state
model, using unbiased data collected in the pure ring and
Fig. 2 Radial distribution function g(r) (a) and structure factor S(k) (b) for l
ring concentrations (solid purple lines) are compared with experimenta
temperature and thematching percentage of rings are reported close to t
each simulated curve is given as a shaded purple area. The black dotted lin
are offset in the vertical direction for visualization purposes by four and

3384 | Chem. Sci., 2024, 15, 3382–3392
pure polymeric phases (see Fig. 1 whole). Our choice is moti-
vated by the experimental evidence that suggests that the rele-
vant properties in the l-transition region depend on the relative
fraction of these two phases. We also note that even if the pure
polymeric phase is not reported in the experiments, it still can
be used to simplify the training of the model by making the
relevant polymer-related features more evident and deepen our
understanding of the system, providing a measure of the phase
composition of the system during our simulations as shown in
the bottom of Fig. 1b.
Radial distribution function and structure factor

The radial distribution function g(r) and the structure factor S(k)
depend on the structural ordering of the atoms and their
features on the relative concentration of the phases in the
sample. For this reason, these quantities have been monitored
at different temperatures around the l-transition.37 However,
the experimental determination of the S8 fraction is still subject
to much uncertainty.13,18,38,39

This is the typical scenario in which theoretical modeling
can provide helpful insights. Simulations can access the pure
phases (i.e., only rings S8 and only polymers SN), which are
never found in the experiments. Despite sounding somehow
unphysical, this information can be used to interpret the
experimental results. One can then obtain the g(r) and S(k) for
all the intermediate compositions through a linear combina-
tion of the contribution from the pure S8 and SN phases. For
iquid sulfur at temperatures around the Tl. Simulated results at different
l data37 at different temperatures (red void dots). Each experimental
he corresponding curve. The±5% interval on the ring concentration for
es mark the g(r)= 1 and S(k)= 1 value for each couple of curves as they
one units, respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Histogram of the atomic displacements in liquid sulfur at
different ring concentrations, given in the legend, and different lag
times, indicated by white labels.
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example, the radial distribution function ga(r) at a given
concentration of rings a is

ga(r) = agS8
(r) + (1 − a)gSN

(r) (1)

and similarly the structure factor Sa(k)

Sa(k) = aSS8
(k) + (1 − a)SSN

(k) (2)

The values of gS8, gSN, SS8, SSN were obtained by analyzing 200
congurations collected over one ns of equilibrated dynamics of
3456 atoms (box size 46.9 Å) in the pure S8 and SN phases. We
have tested the accuracy of this approach by comparing it with
the results from simulations performed at preassigned S8
concentrations, as we report in the ESI.†

In Fig. 2, we compare the experimental data37 from X-ray
diffraction (XRD) at ambient pressure and different tempera-
tures with our estimates of the g(r) and Sk (panel a and b,
respectively) for different S8 concentrations (95% to 40% S8
rings). The values of a were chosen to best t the experimental
data within the range of concentrations reported in the exper-
iments at the considered temperatures. In the case of the g(r),
for a meaningful and direct comparison with the experimental
data, we also applied a Gaussian convolution to the simulated
results. The non-processed data are available in the ESI.†

From Fig. 2, it can be seen that the short-range order of the
liquid is well-tted, giving credibility to our estimation of the S8
fraction. Remarkably, our results reproduce well the evolution
with the temperature of the g(r) third peak around 4.5 Å. This
elusive signal is associated with third neighboring distances in
the S8, thus tends to disappear as the temperature and the
polymer fraction increase. The long-range structure is also well
reproduced, except for the pre-peak in S(k) at k∼ 1 Å−1, which is
less apparent in our simulations. This is a reection of the fact
that our system is still too small to resolve this peak well.
However, in the previous ab initio calculations that out of
necessity were performed on smaller cells, both the peak at k ∼
2 Å−1 and the corresponding pre-peak were not reproduced
almost at all.
Atomic mobility: displacement analysis

One of the main features of the l-transition is its sudden
increase in viscosity above Tl. At the atomic level, this should
correspond to a decreased mobility of the atoms.

Especially in the polymeric phase, the atomic motions
become sluggish and a direct calculation of the viscosity is
impossible. However, in order to have an insight into the
dynamics, we compute and compare the atomic displacements
aer 10, 25, 50, and 100 ps for ring concentrations that
resemble conditions below Tl (100% rings concentration),
slightly above (75%) and well above (55%).

The results from this analysis are reported in Fig. 3 and
clearly show that, on average, atoms in the molecular S8 phase
have the highest mobility. On the other hand, as the polymeric
content increases, a peak in the distribution starts to appear
below the ∼2 Å threshold of the rst coordination shell. This
comes from the polymer atoms, which mostly oscillate around
© 2024 The Author(s). Published by the Royal Society of Chemistry
their positions rather than showing any net dri, thus inducing
the rise in the viscosity.
Reaction mechanisms and charge analysis

Having assessed the reliability of our potential's prediction
when compared to the experiments, we move to the study of the
chemical mechanisms involved in the l-transition with the
crucial help of enhanced sampling simulations and our topo-
logical CV. In the following, we propose mechanisms for the
polymerization/depolymerization process. We note that we
report only those mechanisms that we found to be dominant in
our simulations, i.e., they were observed in the majority of
several independent simulations, and for all of them, we
double-checked the agreement of our potential with DFT
calculations to avoid artifacts.

For each mechanism, we provide a prototypical example and
an analysis of the instantaneous charges involved in the
process. This analysis is made with the help of Bader charge
distribution40 as obtained from the DFT charge density.

A schematic chemical diagram for the proposed mechanism
is also available in the ESI.†

Polymerization mechanism. The polymerization reaction in
liquid sulfur, which we schematically depict in Fig. 4, resembles
that of the standard ring-opening polymerization. The rst step
requires the formation of an active center from which the
polymerization can propagate. The active center forms when
one of the crown-shaped S8 monomeric units undergoes such
large thermal uctuations that it manages to open. The ring
deformation induces a charge polarization, as shown in Fig. 4.
Negative charges concentrate on the under-coordinated
terminal atoms, thus making them active. At this point, they
can either react together to close again the ring, or they can look
for new neighbors on a different ring nearby. As the active
terminal interacts with the guest ring, its charges are forced to
Chem. Sci., 2024, 15, 3382–3392 | 3385
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Fig. 4 Polymerization mechanism in liquid sulfur starting from four S8 rings. The atoms are colored according to the instantaneous charge
obtained by computing the Bader's charge from the DFT electronic density. For visualization purposes, only the relevant atoms are represented
from the 512 in the simulation cell.
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reorganize. This induces a deformation in the guest ring that
may eventually open it, leading to the formation of the rst
oligomer. Right aer the opening of the second ring, the
charges along the new short chain quickly reorganize, and
negative charges concentrate in the chain tails. This makes the
terminals active again and capable of further propagating the
polymerization.

Even if the ideal crown-shaped S8 rings dominate the liquid
phase, our calculations conrmed the experimental evidence1

that other cyclic monomers (Sn, n s 8) and sub-stable isomers
of S8 rings (see ESI†) also contribute to this polymerization
process.

Overall, from our results, it clearly appears that the under-
coordinated nature of the chain tails mainly drives the poly-
merization. This makes the terminal atoms highly reactive, as
indicated by the negative charge localization, and eager to nd
new partners.

Another key factor is related to the increased stabilization of
the charge unbalance in longer polymeric strands. In that case,
the average delocalization of the charge is more efficient with
respect to the case of short oligomers. In this regard, we also
found, in agreement with previous theoretical studies,25 that
shorter chains tend to be rather unstable and oen revert to
rings if le to relax in short unbiased dynamics, at variance with
the longer chains, which remain stable.

Ring formation mechanisms. The formation of the rings
starting from the polymer can occur either at the end of the
chain (see Fig. 5a), as one would intuitively suppose, but
somehow surprisingly, also in the middle, as we schematically
depict in Fig. 5b.
3386 | Chem. Sci., 2024, 15, 3382–3392
In the rst case (see Fig. 5a), the chain tail is characterized by
two elements: a charge unbalance and higher mobility with
respect to the rest of the chain. The rst element is specically
due to the sulfur atoms being under-coordinated, thus leading
to their negative polarization. This is the chemical driving force
of the reaction, as it makes such atoms eager for new partners
and ready to react. However, this is not enough for the reaction
to take place, as the reactive tail has to fold onto the chain to
form the loop that will eventually lead to the ring. This is made
possible thanks to the higher mobility of the terminal atoms,
which is typical of polymeric chain ends. Of course, this loop is
most stable if the terminal atom folds such that it interacts with
its 7th neighbor, thus ensuring the S8 arrangement, but this
same mechanism can also lead with less probability to some of
the different-sized rings as we report in the ESI.†

In the second mechanism, the scenario is signicantly
different as the atoms involved in the formations of the loop
belong to the middle of the polymeric chain (see Fig. 5b). Such
atoms are indeed fully coordinated, meaning that they are
much less reactive than in the rst case and that any polariza-
tion uctuation is short-lived. We found that to compensate for
this weaker reactivity, it is crucial that the arrangement of the
atoms resembles as much as possible that of one of the stable
Sp rings. Of course, the choice shall preferably be the ideal
crown-shaped S8. Thus, we report this case in Fig. 5b. In the rst
frame, the eight-membered loop that starts to appear in the
middle of the chain still has a wrong combination of angles and
distances. On the other hand, in the conguration reported in
the second frame, the sequence of angles becomes favorable,
and the distance between the 1st and 8th S atoms reduces
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Mechanisms for the formation of rings in liquid sulfur starting from SN polymers. (a) Formation of a ring from the tail of the polymeric
chain. (b) Formation of a ring in the middle of the chain. The atoms are colored according to the instantaneous charge obtained by computing
the Bader's charge from the DFT electronic density. For visualization purposes, only the relevant atoms are represented from the 512 in the
simulation cell.
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enough they can interact. As a consequence of this interaction,
the adjacent atoms show a weak negative polarization (see third
frame), which becomes stronger as the ring nally separates
from the original chain.

Discussion

In this work, we studied the structures and the polymerization
and depolymerization mechanisms across l-transition in liquid
sulfur using a combination of ab initio-qualitymachine learning
potentials and state-of-the-art enhanced sampling techniques.
For an effective application of the latter approach, we designed
a topological collective variable by combining machine learning
and graph theory. This has been crucial for the construction of
a proper dataset on which our machine-learning potentials were
optimized and for the study of the polymerization and depoly-
merization mechanisms of liquid sulfur. Our methodology
proved powerful and greatly improved over previous DFT-based
theoretical results. The calculated static structural quantities,
including g(r) and S(k), are in good agreement with the experi-
mental results. Similarly, our calculations reproduce well the
trend in the atomic mobility in the different phases that can be
associated with the anomalous rise in the viscosity during the
sulfur polymerization across the l-transition. In addition, we
© 2024 The Author(s). Published by the Royal Society of Chemistry
proposed dynamic reaction mechanisms for the processes
involved in the l-transition, which also shed light on the critical
role that charge localization plays in driving the polymerization
and depolymerization process. Moreover, such mechanisms
show that specic conformational requirements need to be
fullled in order for both processes to take place, conrming
the well-known complexity of this peculiar system and possibly
explaining the presence of residues of the less stable phases at
all temperatures that are observed in the experiments.

Overall, our calculations allowed us to harvest precious
results in close agreement with the experiments and the success
of our strategy encourages us to study other complex systems in
the future with this approach.

Methods
Code and soware

All ab initio molecular dynamics simulations (AIMD) and single-
point energies and forces needed for training the neural network
(NN) potentials were performed using the CP2K 9.2 code.41 In
addition, we double-checked that the quantities computed using
the CP2K code are consistent with those obtained with Quantum
Espresso code.42 The Bader's charges were obtained by analyzing
the DFT electronic densities with the Bader40 code.
Chem. Sci., 2024, 15, 3382–3392 | 3387
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The DeepMD-kit package43,44 was used for the training of the
NN potentials for the atomic interactions and as a plugin in the
LAMMPS45 MD engine for performing the simulations.

For the application of enhanced sampling methods, we
relied on the PLUMED46 plugin patched with LAMMPS.

The training of the machine learning collective variable
(Deep-TDA CV) has been done using the mlcolvar47 library based
on PyTorch.48 In particular, we refer to the 4387073 commit49 of
such a library, which includes additional preprocessing tools
for adjacency-matrix-related calculations. The CVs have been
deployed to PLUMED using the interface provided in its
PyTorch module.47

The atomic displacement analysis was performed using the
visualization and post-processing code Ovito,50 which was also
used for the rendering of the molecular snapshots reported in
the paper.
AIMD simulations

In AIMD simulations, the energies and forces were computed
using the Perdew–Burke–Ernzerhof (PBE) exchange–correlation
density functional.51 The Kohn and Sham orbitals were
expanded in a m-DZVP Gaussian basis and the plane wave
expansion of the electronic density was truncated at an energy
cutoff of 300 Ry. The core electrons were treated using the
Goedecker–Teter–Hutter (GTH) pseudopotentials52,53 optimized
for PBE. To keep the computational cost low, only the G-point
was used to sample the supercell Brillouin zone.

All AIMD simulations were performed in the NPT ensemble
with a time step of 2.0 fs. Temperature and pressure were
controlled using Nosé–Hoover thermostat54 and a Nosé–Hoover-
like barostat55 with coupling constants of 0.05 ps and 0.5 ps,
respectively. Tomitigate the computational costs, only a smaller
cubic simulation cell consisting of 128 atoms was used. None-
theless, the results discussed in the text were calculated on
larger cubic simulation cells.
Single-point energies and forces calculations

The energies and forces needed for the NN potential training
were computed using the same exchange–correlation density
functional (PBE) and pseudopotential (GTH) as that of the
AIMD simulations. However, the energy cutoff was increased to
350 Ry and the D3 dispersion corrections56 were included.
Single-point calculations have been performed on cells with 128
and 512 atoms. For the smallest cells, we used k-points grids of
2 × 2 × 2. In contrast, we only used the G-point for the larger
ones as we checked that the accuracy on energies and forces
with this setup was almost indistinguishable from the one on
smaller cells using the grids.
NN potential-based MD simulations

All the results reported in the text were obtained using NN-
potential-based MD simulations. Specically, we performed
unbiased and biased simulations with a timestep of 1.0 fs in the
NVT ensemble, using the global velocity rescaling thermostat57

with a relaxation time of 0.05 ps and periodic boundary
3388 | Chem. Sci., 2024, 15, 3382–3392
conditions (PBC) on cubic simulation cells with box sizes
chosen to be consistent with the experimental densities.

The unbiased approach has been used to study the radial
distribution function, the structure factor, and the atomic
mobility. For this latter analysis, we simulated a system con-
sisting of 512 atoms (box 24.8 Å) starting from congurations
generated from biased simulations, whereas, for the others, we
simulated a much larger cell with 3456 atoms (box 46.9 Å).

The more expensive enhanced sampling approach has been
used to simulate the dynamics of 512 atoms to study the poly-
merization and depolymerization mechanisms of sulfur.
Enhanced sampling method: OPES

We reverted to enhanced sampling to study the polymerization
and depolymerization processes of sulfur that are supposed to
take place close to l-transition. In particular, we used the on-
the-y probability enhanced sampling (OPES) method.58,59 In
OPES, the equilibrium probability distribution P(s) in the CV
space s is estimated on the y, and a bias potential Vn(s) is
constructed so as to drive P(s) toward a target distribution Ptg(s).

Here, we used as target the well-tempered distribution,60

PtgðsÞf½PðsÞ�
1
g, where g > 1 is the bias factor. In this case, the

bias potential at nth iteration is written as:

VnðsÞ ¼ ð1� 1=gÞ 1
b
log

�
PnðsÞ
Zn

þ 3

�
(3)

where Zn is a normalization factor, b= 1/kBT, and 3= e−bDE/(1−1/g)

is a regularization parameter that controls the maximum
deposited bias DG. In this paper, we set the frequency for kernel
deposition to 250 and DG in the range between 100 and
200 kJ mol−1 (i.e., STRIDE and BARRIER parameters in PLUMED
input les, respectively).
Collective variables method: Deep-TDA

The OPES biasing potential is applied along a small set of CVs,
which are continuous and derivable functions of the atomic
coordinates s= s(R). These are meant to encode the slow modes
of the system and, as an additional requirement, they shall be
invariant with respect to the symmetries of the system (rotation,
translation, and permutation of identical atoms).

In the Deep Targeted Discriminant Analysis (Deep-TDA)
method, the CV is the output of a feed-forward NN (see panel 3
in Fig. 1a) whose inputs are a set of physical descriptors, such as
distances, angels, coordination numbers, collected with short
unbiased runs in the metastable basins that are supposed to be
visited in the process of interest. The NN is optimized such that
the training data, when projected in the CV space, are distributed
according to a preassigned target distribution (panel 4 in Fig. 1a).
This target is dened as a series of Gaussian with xed positions
and widths, one for each state, such that data from different
basins are localized in different regions of the CV space.
Topological collective variable training

In our Deep-TDA CV model, we used the mlcolvar library47

preprocessing tools to compute the NN input descriptors
© 2024 The Author(s). Published by the Royal Society of Chemistry
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starting from the Cartesian coordinates of all the atoms in the
system, which are the inputs of our deployed model in
PLUMED.

To compute the NN input descriptors, we build the adjacency
matrix A in which the Aij element is Aij = 1 if the scalar distance
dij between atom i and j is lower than a cutoff distance dcutoff and
Aij = 0 otherwise. However, the application of such a sharp
cutoff would give a matrix A with discontinuous derivatives that
would not be suited for a biasing context. Thus, we applied the
cutoff using a sharp switching function S(dij) in the form

S
�
dij
� ¼ 1

1þ exp

�
dij � dcutoff

q

� (4)

where the q value was chosen to obtain the sharpest behavior
with numerically stable derivatives, i.e., q = 0.25, and dcutoff was
set to 2.6 Å based on the typical sulfur–sulfur bond distances.

We then computed the full eigenvalues spectrum of A with
Pytorch48 tools and computed a histogram of such values with
100 bins in the range (−2.2,2.2) using a Gaussian expansion to
ensure continuous derivatives. Finally, we took the values of the
histogram in the 100 bins as input for the Deep-TDA NN. In the
training, the Deep-TDA targets were chosen to be mA = −25 and
mB = 25 for the centers of the distributions and sA = 0.2 and sB

= 0.2. The training set was composed of 18 000 congurations
for each of the two states for a total of 36 000 congurations.
Including input and output layers, the architecture was [100, 64,
32, 1] nodes/layer, and we used the rectied linear unit (ReLU)
as activation function with a learning rate of 0.001 for the
optimization.
NN potential for interatomic interactions training

The NN potentials were trained with the DeepMD method61

using the attention-based Deep Potential scheme,62 which, in
our case, is able to give a much more accurate reproduction and
prediction of DFT energies and atomic forces compared to the
standard Deep Potential-Smooth Edition scheme63 (see ESI†).
The cutoff radius was set to smoothly decay from 0.5 Å to 7.5 Å.
The maximum possible number of neighbors in the cutoff was
set to 90, and the number of layers in the attention scheme to 3.
We used three hidden layers with [30, 60, 120] nodes/layer for
the embedding network and four hidden layers with [240, 240,
240, 240] nodes/layer for the tting network, whereas the size of
the embedding matrix was set to 16. The learning rate was set to
decay from 1.0× 10−3 to 5.0× 10−8 an we used a batch size of 8.
The prefactors of the energy and force terms in the loss function
were set to change during the training from 0.01 to 5 and from
1000 to 1, respectively, and the nal NN model was trained for
3.0 × 106 steps.
Collection of the training set

The key step in the construction of a machine learning potential
is the collection of the training data set. This is particularly
challenging in the case of liquid sulfur that exhibits a wide
range of ring-like and chain-like metastable structures.1 It is
thus necessary to include these congurations in the training
© 2024 The Author(s). Published by the Royal Society of Chemistry
set as well as those related to the transition state of the inter-
conversion process.

To improve and simplify this step, active learning strategies
boosted by the use of enhanced sampling methods have been
applied to study several complex systems.11,31–34,64 The advantage
of this approach is that it allows crucially relevant reactive
congurations to be extracted at an affordable computational
cost.

In our specic case, we applied the on-the-y probability
enhanced sampling58,59 (OPES) method combined with state-of-
the-art machine learning collective variables (CVs) (see Topo-
logical collective variables for enhanced sampling section). The
whole procedure of exploring the relevant atomic congura-
tions in the training set is as follows.

First, we ran a series of unbiased AIMD simulations in the
NPT ensemble on systems of 128 atoms for times ranging from
2 to 10 ps. These simulations were performed in the 500–1200 K
temperature range and 0.2–3.0 GPa pressure range to collect
congurations in both the polymeric and ring phases of liquid
sulfur. Indeed, approaching high temperature and pressure, S8
rings are destabilized in favor of the SN polymers.

From these simulations, we collected about 7800 atomic
congurations to build the initial training set and start our
active learning procedure, which alternate cycles of training and
sampling according to the following steps:

� Step 1: we train four NN potentials using different initial
weights and the previous iteration's updated training set. For
the rst iteration, we shall use the initial training set of AIMD
congurations.

� Step 2: we perform a series of simulations using one of the
four NN potentials trained in step 1 to explore new relevant
atomic congurations. Not limited to AIMD simulations
anymore, we expand our systems from 128 atoms to 512 atoms
and run enhanced sampling simulations using OPES combined
with our topological CVs. These biased simulations are essen-
tial for exploring the active atomic congurations along the
polymerization of S8 rings.

During the simulations, we monitor the reliability of the
potential on the sampled congurations based on the maximal
standard deviation s65 of the atomic forces predicted by the four
NN potentials:

s ¼ max
i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4

X4

a¼1

kFi
a � Fik

2

vuut (5)

where Fi
a is the atomic force on the atom i predicted by the NN

potential a, and Fi is the average force on the atom i over the
four NN potentials.

To minimize the number of new relevant atomic congura-
tions to be added to the training set while ensuring maximum
diversity, we follow the same strategy described in ref. 34, with
the low (sl) and up (su) bound values set to 0.15 and 0.4,
respectively. We refer the readers to ref. 34 for further details.

� Step 3: we calculate the DFT energies and forces for the
congurations selected in step 2 and include them in the
training set for the next iteration.
Chem. Sci., 2024, 15, 3382–3392 | 3389
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Following our previous work, this active learning process is
repeated until less than 10% of the sampled atomic congura-
tions fall into the candidate list of step 2. At the end of the
procedure, our dataset included roughly 1.5 × 105 atomic
congurations, with almost 90% of them consisting of 512
atoms.

Data availability

All the inputs and les needed to reproduce the results pre-
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