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Redox stabilization of Am(v) in a biphasic extraction
system boosts americium/lanthanides separation
efficiencyt

*

Xue Dong, Huaixin Hao, 2 Jing Chen, Zhipeng Wang™ and Chao Xu

Americium (Am) is a key radioactive element in consideration in nuclear waste treatment. Separation of Am
from the fission products, lanthanides, is a prerequisite to minimize the hazardous impact of Am and make
utilization of rare Am isotopes, but it represents a great challenge due to the chemical similarity between the
two groups of elements. Herein, we realize the separation by first oxidizing Am(in) to high valent Am(vi) and
then converting it to Am(v) in situ in a biphasic extraction system with Bi(v) oxidant incorporated in an
organic phase. Am(v) is highly stabilized during the separation process and this leads to record high Ln/
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The development of nuclear energy generates a large amount of
used nuclear fuel containing U, Np, Pu, Am, Cm and a variety of
fission products. This highly radioactive and chemically diverse
mixture represents about one third of the elements in the
periodic table and must be properly managed and processed to
reduce its hazardous impact as well as to recover the useful
resources. Americium, a long-lived a-emitter and one of the
greatest contributors to the radiotoxicity in used nuclear fuel
waste, is suggested to be recovered from the waste and then
undergo transmutation to minimize its long-term radiotoxicity
in advanced nuclear fuel cycles.'? Unfortunately, the coexis-
tence of lanthanides (Ln), which represent about 40% of the
mass of all fission products, has proven to be problematic for
Am recovery and transmutation because these lanthanides bear
high neutron capture cross-sections and would compete with
Am for neutrons in the transmutation process. Separation of
Am from lanthanides is thus a prerequisite for Am trans-
mutation. However, this separation task remains a great chal-
lenge due to the chemical similarity between Am and
lanthanides.**®

Previous efforts to separate Am from lanthanides have relied
mainly on the design and use of ligands bearing softer N and S
donor atoms, which exhibit higher chemical affinity to relatively
softer Am(m) than to harder Ln(m) in solvent extraction.”** This
separation approach has been widely demonstrated but it still
encounters obstacles such as slow kinetics, ligand instability,
and narrow operation acidities.>*'* Another less-explored
approach to realize the separation is to take advantage of the
different redox properties between Am and lanthanides. While
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Am separation factors (>10°) in a single contact over a wide range of acidities.

Am(m) in aqueous solution can be oxidized to high valent
americyl forms Am(v) and Am(vi) under highly oxidizing
conditions, the lanthanides remain as spherical Ln(m) or Ln(vi)
ions. The significant difference between the linear americyl ion
and the spherical Ln ion in terms of both steric configuration
and charge density offers a great opportunity for efficient
separation.”?® The greatest challenge here is how to stabilize
the high valent Am during the separation process. In most
previous studies, the contact of americyl ions with organic
reagents used for separation led to fast reduction of these high
valent Am ions, causing significant deterioration in Am/Ln
separation efficiency.*>¢

Recently, we proved that the incorporation of oxidative Bi(v)
species in an organic solvent containing TODGA (N,N,N',N-tet-
raoctyl diglycolamide) would greatly overcome the reduction
issue by oxidizing Am(m) to Am(v) in the organic solvent and
result in efficient separation of Am from lanthanides and
curium (Cm).*”*®* High Ln/Am separation factors have been
maintained for a few hours during the extraction and then
decreased gradually. We attribute the decrease in Ln/Am sepa-
ration factors to the persistent consumption of Bi(v) by Am(m)
and other reducing products in the solution. The consumption
of Bi(v) and decrease of Ln/Am separation factors become more
significant when relatively high concentrations of Am are
present, and this might be problematic when dealing with real
waste containing Am at the mM level.”” To slow down the
consumption rate of Bi(v) and the reducing rate of Am(v) and
thus to improve the applicability of this separation method in
dealing with high concentrations of Am, herein we demon-
strated a new strategy for more efficient generation and stabi-
lization of Am(v) in a biphasic system by first oxidizing Am (i) to
Am(vi) in an aqueous solution and then contacting it with
a Bi(v)-incorporating organic solvent. Accordingly, record high
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Ln/Am separation efficiency was achieved over a wide range of
acidities.

To prove the feasibility of the proposed strategy, we prepared
an Am(vi)/HNOj; solution by the well-known NaBiO; oxidation
method*™* and then contacted this solution with the Bi(v)-
incorporating TODGA/n-dodecane organic solution (Fig. 1a).
The variation of absorption spectra of the aqueous phase at
different time intervals was monitored to probe the Am speci-
ation change (Fig. 1b). As can be seen, Am(vi) ions (666.0 nm) in
the initial HNOj; solution were quickly reduced to Am(v) (513.6
nm) in 10 s and negligible Am(i) could be observed at 1 min
after the biphasic contact. Am(v) accounts for over 99.5% of the
total Am in the aqueous phase in 10 s of contact and remains as
the dominant Am species over a long time duration (>98% after
3 hours and ~95% after 5 hours of contact, Fig. 1c). Meanwhile,
a comparative test following the strategy in our previous work by
mixing Am(m)/HNO; solution with Bi(v)-incorporating organic
solvent was also performed (Fig. 1d).*”” The results suggest
~95% of Am(ur) was converted to Am(v) in 10 s of contact and
this portion value dropped to ~92% and <70% after 3 and 5
hours of contact, respectively (Fig. 1e and f). Obviously, the new
strategy is much more efficient in generating and stabilizing
Am(v) than the previous one.

The highly efficient generation and stabilization of Am(v) in
this system can be explained by examining the reduction
process of Am(vi) and the oxidation process of Am(ur). First,
Am(vi) is very unstable in the case of contacting with organic
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reagents.>?*** When we contacted an Am(vi)/HNO; aqueous
solution with a TODGA/n-dodecane organic solution, the
absorption bands of Am(vi) at 666.0 nm disappeared rapidly and
the absorption bands of Am(v) at 513.4 nm emerged concur-
rently in the aqueous phase, meanwhile the absorption bands
of Am(ur) at 506.6 nm appeared gradually in the organic phase
(Fig. S1t). This observation suggests Am(v) can be generated
from the reduction of Am(vi). On the other hand, in our previous
work we have demonstrated that Am(m) in the aqueous phase
can be oxidized efficiently to Am(v) by contacting with a Bi(v)-
incorporating TODGA/n-dodecane organic solution.”” Further-
more, when we contact an Am(vi)/HNO; aqueous solution with
a Bi(v)-incorporating TODGA/n-dodecane organic solution, the
interplay of Am(vi) reduction and Am(m) oxidization leads to
fast and quantitative generation of Am(v) and this can be
illustrated by Scheme 1. In brief, Am(vi) will be reduced to Am(v)
and Am(m) in the biphasic system, but any Am(m) will be
extracted by TODGA and oxidized to Am(v) by Bi(v) in the
organic phase immediately and then Am(v) will transfer back to
the aqueous phase. Apparently, much less Bi(v) will be
consumed by starting with Am(vi) solution than with Am(m)
solution, thereby enhancing the stability of Am(v) over a long
duration.

On the basis of quantitative generation and superior stabi-
lization of Am(v) using Am(vi) as the starting species, highly
efficient separation of Am from the lanthanides has been ach-
ieved through biphasic extraction. As shown in Fig. 2, when we
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Fig.1 Comparison of Am(v) formation through two different paths. (a) The scheme for generation of Am(v) in a biphasic system with Am(vi) as the
initial Am species. (b) Variation of absorption spectra and (c) time-dependent change of portions of Am in different oxidation states in the nitric
acid aqueous solution after mixing Am(vi)/HNOz with the Bi(v)-incorporating TODGA/n-dodecane organic solution. (d—f) Corresponding
scheme and results with Am(in) as the initial Am species. The portions were estimated and calculated from the absorbance of characteristic
absorption bands of Am(i), Am(v) and Am(vi). TODGA concentration in the organic solution (Org.): 0.1 M. Initial agueous solution contained

0.1 mM 2*Am and 3.0 M HNOs.
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Scheme 1 (a) The dynamic Am"/AmY/Am" conversion for the
generation and stabilization of Am(v) with Am(vi) as initial species in the
biphasic system. (b) The reactions of Ln in the same system (note: only
Ce could be oxidized from state i to v in this system). The organic
phase was pre-loaded with Bi(v). The species in the thick dashed frame
represent the final species in the system after equilibrium.

contacted an aqueous solution containing >*'Am(vi) and
2139Ey(m) with a Bi(v)-incorporating TODGA/n-dodecane
organic solution, **'Am stayed exclusively in the aqueous phase
while **'**Eu were extracted into the organic phase. Record
high separation factors of Eu and Am (SFgy/am) of >10° can be
well maintained for over 4 hours and the value is more than 10°
even after 12 hours (Fig. 2a). In contrast, if we started the
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Fig. 2 Separation results of 2**Am and Ln. Effect of contact time with
(@) Am(vi) or (b) Am() as the starting species. (c) Effect of HNOs
concentration. (d) Separation of simulated Am/Ln waste. Initial organic
phase: (a-c) 0.1 M TODGA in Bi(v)-incorporating n-dodecane; (d)
0.5 M TODGA in Bi(v)-incorporating n-dodecane. Initial agueous
phase: trace amount of pre-oxidized **Am (~10~8 M) and 215*Ey
(~107° M) in (a) 3.0 M HNOs or (c) different concentrations of HNOx;
(b) trace amount of ***Am (~10~8 M) and ******Eu (~10™° M) in 3.0 M
HNOs; (d) pre-oxidized simulated Am/Ln waste solution containing
1.0 mM 2**Am and ~mM level of Ln (Ln = La, Ce, Pr, Nd, Sm, Eu, Gd) in
3.0 M HNOg3 (see Table S1t for detailed composition). Contact time for
(c) and (d) is 1 min.
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extraction with Am(m) using our previous strategy, both the
separation factors and stability are apparently less superior
(Fig. 2b). These results are well consistent with the observations
in spectral analysis (Fig. 1). Moreover, high SFg/am values (>10%)
could be obtained over a wide range of acidity from 1.0 to 14.0 M
HNO; (Fig. 2¢), proving the ability of this separation strategy to
deal with real nuclear waste usually of high acidity.*® To further
assess the applicability of the present separation strategy in
practical radioactive waste treatment, we performed a test for
the separation of simulated Am/Ln waste containing 1.0 mM
241Am that is comparable to the concentration of Am in real
waste and a variety of lanthanides (La, Ce, Pr, Nd, Sm, Eu and
Gd). As shown in Fig. 2d, all the lanthanides were well separated
from Am, and an unprecedented SFgam value of 2.59 x 10> and
SFce/am value over 1.0 x 10° through a single contact were ob-
tained. It should be noted that during the reviewing of this work
two anonymous reviewers raised an issue on the final purifica-
tion of Am, since quite a portion of Bi will coexist in the aqueous
phase with Am after Am/Ln separation. Considering both Am
and Bi will eventually exist in the thermodynamically stable
trivalent states, we expect Am(m)/Bi(m) separation can be well
achieved by selective extraction using ligands such as tributyl
phosphate (TBP) or NTAamide, both of which show much
higher affinity to Bi(m) than to Am(m).****

In conclusion, by exploiting the unique properties of Am(vi)
reduction and Am(m) oxidation in a deliberately designed
biphasic extraction system with Bi(v) incorporated in the
organic phase, Am(v) was efficiently generated, stabilized, and
separated from lanthanides with record high efficiency. The
findings from this work not only provide an extremely efficient
Am/Ln separation method to support the advanced nuclear fuel
cycle, but also enrich our understanding of the less-explored
redox chemistry of the highly radioactive element Am.
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