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behavior of diffusion models for
accelerating electronic structure calculations

Daniel Rothchild, *a Andrew S. Rosen, bc Eric Taw, dc Connie Robinson, e

Joseph E. Gonzaleza and Aditi S. Krishnapriyan *ad

We present an investigation of diffusion models for molecular generation, with the aim of better

understanding how their predictions compare to the results of physics-based calculations. The

investigation into these models is driven by their potential to significantly accelerate electronic structure

calculations using machine learning, without requiring expensive first-principles datasets for training

interatomic potentials. We find that the inference process of a popular diffusion model for de novo

molecular generation is divided into an exploration phase, where the model chooses the atomic species,

and a relaxation phase, where it adjusts the atomic coordinates to find a low-energy geometry. As

training proceeds, we show that the model initially learns about the first-order structure of the potential

energy surface, and then later learns about higher-order structure. We also find that the relaxation phase

of the diffusion model can be re-purposed to sample the Boltzmann distribution over conformations

and to carry out structure relaxations. For structure relaxations, the model finds geometries with ∼10×

lower energy than those produced by a classical force field for small organic molecules. Initializing

a density functional theory (DFT) relaxation at the diffusion-produced structures yields a >2× speedup to

the DFT relaxation when compared to initializing at structures relaxed with a classical force field.
1 Introduction

The potential energy surface (PES) is fundamental for under-
standing the behavior of atomic systems. Finding stable
geometries, estimating reaction rates, and predicting transition
states all require an understanding of the shape of the PES.
Accurate rst-principles methods for calculating points on the
PES are computationally expensive or even entirely infeasible
for larger systems, so a number of cheaper alternatives have
been developed, such as classical force elds, semi-empirical
tight-binding methods, and machine learning methods.

The vast majority of machine learning methods aimed at
understanding the shape of the PES are learned interatomic
potentials, and state-of-the-art interatomic potentials currently
consist largely of neural-network interatomic potentials
(NNIPs).1,2 NNIPs are trained through supervised learning, and
the most common approach is to use a dataset of atomic
geometries that are annotated with energies and forces. These
energies and forces are typically derived from a more expensive
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physics-based method. The result is a machine learning model
that can predict, given a particular geometry of atoms, the
energy of that atomic conguration and the forces experienced
by each atom.

While machine-learned interatomic potentials are powerful
tools for understanding the shape of the PES, they suffer from
the major limitation that they require a supervised dataset of
atomic geometries that have been annotated with energies and
forces. Relying on datasets based on rst-principles physics-
based calculations is challenging for several reasons:

Computational expense: it is extremely computationally
expensive to create this sort of dataset. For example, the OC20
dataset includes 1.3 M relaxations, each of which was allowed
up to 1728 core-hours of compute time.3

Lack of inclusion of all geometries: the space of off-
equilibrium geometries is combinatorially large, and there is
no denitive way to choose which geometries to include in the
dataset. If important types of geometries are excluded, models
trained on the dataset may generalize poorly.

Limited by the level of theory: because of how expensive it is
to produce the dataset, we are limited in the level of theory that
can be used for generating the energies and forces. For example,
it is common to generate geometries using tight-binding
calculations, which are signicantly less accurate than density
functional theory (DFT).4,5 Generating a labeled dataset of
energies and forces based on experimental data is not feasible,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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so learned interatomic potentials will always be limited by the
training set's level of theory.

To address these concerns, we investigate an alternative
approach to understand the PES, which requires only ground-
state (i.e., lowest energy) geometries as training data, and
which does not involve explicitly learning an interatomic
potential. Recently, several authors have trained non-NNIP
machine learning models to generate 3D atomic geometries,
either from scratch or based on a molecular graph, by training
a self-supervised model on a dataset of known 3D
geometries.6–10 In the self-supervised learning setting, models
are trained on data without labels, which in this case means 3D
atomic geometries that have not been annotated with energies
or forces. With no labels to learn from, models are instead
trained by corrupting the training data with noise and then
asking the model to predict the original, de-noised data. The
intended use of these models is to generate geometries (either
from scratch or for conformer generation), rather than to reason
more generally about the PES. However, they are undoubtedly
learning about the PES, given that they are able to generate
structures that lie near local energy minima. To our knowledge,
there has not been a comprehensive investigation into the
degree to which these models acquire insights about the PES in
the vicinity of the local minima, as opposed to solely learning
point estimates of where the local minima lie. Existing evalua-
tions only look at the generated geometries themselves to
measure their quality.

The reason these models are worth exploring in more detail is
that they provide a path forward to accelerate electronic structure
calculations, while avoiding the challenges of training NNIPs
described above. Instead of training on a dataset of structures
with their corresponding energies and forces, these models train
in a self-supervised fashion on un-annotated ground-state geom-
etries. Training in this manner offers a number of advantages:

Computational savings: it is computationally cheaper to
generate a dataset of only ground state congurations than to
generate a training dataset for NNIPs, since we can initialize
calculations at a higher level of theory with the best guess from
a lower level of theory. In contrast, NNIP training data must
includemany off-equilibrium structures at a high level of theory so
that they learn to generalize beyond the immediate neighborhood
of the ground state. For example, in order to ensure the dataset is
not “biased toward structures with lower energies”, the Open
Catalyst 2020 (OC20) dataset specically includes DFT calculations
on geometries “with higher forces and greater congurational
diversity” than strictly necessary to identify the ground state.3

No need to select specic atomic geometries: there is no
need to choose which off-equilibrium geometries should be
included, since a self-supervised dataset includes only ground
state congurations.

Can learn from experimental data: self-supervised methods
offer a distinct advantage over conventional supervised learning
with energy and forces in that, in principle, they can be trained
on experimental data. Training ML models on experimentally
measured geometries is challenging, and we do not pursue
experimental structures in this manuscript, but we believe that
© 2024 The Author(s). Published by the Royal Society of Chemistry
even the possibility of leveraging experimental data for training
is a major advantage of self-supervised methods.

In thismanuscript, we choose one of thesemodels trained with
self-supervised methods—an E(3) Equivariant Diffusion Model
(EDM)7—and we probe the model's understanding of the PES (1)
by inspecting more closely the model's predictions when gener-
ating structures as intended, (2) by examining the predictions
when applied to downstream applications that it was not trained
on, and (3) by comparing the predictions with the results of
physics-based calculations (Section 4). Following this analysis, we
investigate a practical approach to use EDM to accelerate structure
relaxations of atomic systems (Section 5). Our code is available at
https://github.com/ASK-Berkeley/e3_diffusion_for_molecules, and
trained models are available on Zenodo.11

Note that our goal is not to train a better interatomic
potential; prior work has already investigated denoising as
a way to improve supervised learning, including for NNIPs.12–14

We are also not proposing a new way to train self-supervised
models on chemical systems, rather opting for an off-the-shelf
EDM model. Instead, our objectives are: rst, to understand,
from a scientic standpoint, what these models are learning
about the PES using only a denoising objective; and second, to
propose a practical way to use models trained in this manner to
accelerate electronic structure calculations.

To summarize, we make the following contributions. We
undertake a study of a pretrained EDM model, nding that its
inference procedure can be roughly divided into an “explora-
tion” regime and a “relaxation” regime (Section 4.1). For small
organic molecules, we demonstrate that the relaxation regime
of the EDM model nds geometries with signicantly lower
energies than those found using a classical force eld (Section
4.2). When “relaxing” structures, EDM's predictions for how to
de-noise the atomic positions preferentially follow the forces to
the ground state early in training, and preferentially move
straight towards the ground state later in training (Section 4.3).
We use EDM to sample from a molecule's Boltzmann distri-
bution over conformations, establishing a correspondence
between diffusion steps and temperature (Section 4.4). We re-
purpose EDM to accelerate DFT structure relaxations, and we
nd that it can signicantly speed up these calculations by
proposing better initial geometries (Section 5.1). We attain
a small speedup to structure relaxations on a dataset of larger
drug-like molecules; for these more complex PESs, EDM's
predictions align better with the ground-truth forces than with
the direct path to the ground state (Section 5.2).

2 Related work

There is a long history of empirical force elds that sacrice
accuracy on molecular mechanics tasks to achieve computa-
tional efficiency. Simple potentials like the Lennard-Jones,15

Mie,16 and Kihara17 potentials require only a few parameters to
be tuned to match experiment or ab initio simulations. More
complex potentials, such as the Merck Molecular force eld
(MMFF),18 the Universal Force Field (UFF),19 and others model
more complex interactions explicitly using many parameters,
which are t to data.
Chem. Sci., 2024, 15, 13506–13522 | 13507
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More recently, neural network interatomic potentials (NNIPs)
have taken this trend to the next level, introducing models that
predict the energy of atomic congurations using millions of
parameters, which must be trained using techniques from
machine learning. These NNIPs tend to be based on graph neural
network architectures,20–23 and many NNIPs are equivariant,
meaning that rotating the input geometry leads to a determin-
istic and easy-to-calculate transformation of the output.24–30

Energies predicted by an equivariant neural network are scalar
quantities, so they are invariant to rotations of the input geom-
etry. Predicted forces are vector quantities, subject to any rota-
tion that is applied to the input geometry. See Geiger and Smidt31

for a more in-depth primer on equivariance in neural networks.
All of these approaches—from the two-parameter Lennard-

Jones potential to the largest GemNet23 model with millions of
parameters—follow the traditional paradigm of predicting ener-
gies and forces. These predicted energies and forces are then used
to carry out structure relaxations, molecular dynamics simula-
tions, Markov chain Monte Carlo simulations, etc. In contrast, in
this work we propose learning about the potential energy land-
scape by training a machine learning model using a denoising
objective on ground-state geometries, with no energy or force data
in the training set.

Prior work has used denoising objectives in this domain for
other purposes. Hoogeboom et al.,7 whose model we use in this
work, trains an equivariant denoising diffusion model to
generate molecules from scratch. Godwin et al.13 use a denois-
ing objective as a regularization term for property prediction
and one-shot structure relaxations. Zaidi et al.12 is most similar
to this work, as they use a similar denoising objective to pretrain
a graph neural network for molecular property prediction. They
do not investigate the pretrained models themselves, focusing
instead on using evaluating them only as starting points for
ne-tuning a property prediction model. The success of their
method motivates further study into what is learned via the
denoising pretraining step.
3 Background

Denoising diffusionmodels were recently popularized on the task
of natural image generation.32 Here, we offer a very high level and
Fig. 1 Schematic showing the diffusion process for a molecule over t
positions are extremely random. At test time, themodel predicts progress

13508 | Chem. Sci., 2024, 15, 13506–13522
intuitive explanation of these models that leaves out important
details. For a complete treatment, please refer to ref. 32 and 7.

To train a diffusion model to generate images, the model is
repeatedly given images from the training set that have been
corrupted with Gaussian noise, and it is tasked with predicting
what noise was added. During training, the inputs to the model
are corrupted with different amounts of noise. Sometimes, it
faces images with only a small amount of noise, while at other
times, the noise is so pronounced that the original image is
nearly unrecognizable. Each time, the model is tasked with
predicting what noise was added. The amount of noise added is
controlled by the “diffusion step”, n, which ranges from n = 1
(low noise) to n = N (high noise), and the model takes n as an
input, in addition to the corrupted image.† During training,
every iteration samples a random diffusion step uniformly from
n = 1 to N. Consequently, the model learns to make any image
less noisy—whether it is already very noisy or only a bit noisy. To
generate a new image during inference, the model is rst given
completely random Gaussian noise as the image, and n = N.
The noise predicted by the model is subtracted from the image
(aer appropriate scaling), and the result is fed back into the
model with n= N− 1. This process continues until reaching n=

1, at which point the original “image” has been completely
denoised to obtain a purely generated image.

Recently, Hoogeboom et al.7 extended this technique to
generating small organic molecules instead of natural images.
Intuitively, their model works the same way as is described
above. However, instead of generating images, the model
generates molecules: the 3D coordinates of each atom, the
chemical species of each atom, and the formal charge on each
atom. The 3D coordinates are represented simply as the usual
scalar-valued x, y, and z coordinates, and the atomic charges
are also represented as scalars. To represent the chemical
species, the authors assign each atom in the training set
a vector, where all values in the vector are zero except the entry
corresponding to the true atom type, which is set to one (i.e.,
a one-hot vector). At train time, the model receives these three
quantities, each corrupted with Gaussian noise. At test time,
the model iteratively denoises what was originally an entirely
random input until a plausible molecule emerges. This process
is depicted in Fig. 1. In order to respect translational
he course of n steps. For high n (left panel), the atomic species and
ively less noisy molecules until arriving at a final prediction (right panel).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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symmetry, EDM translates all structures so that the center of
mass is at the origin. In order to respect rotational symmetry,
EDM uses an equivariant neural network called EGNN to
predict what noise was added.33
4 Investigation into equivariant
diffusion models
4.1 Physical intuition behind EDM

As a rst step, and tomotivate the subsequent discussion in this
manuscript, we investigate in more detail how a trained EDM
model generates 3D geometries. We look at how structures
evolve over the course of the diffusion process, with the aim of
gaining a physical understanding of the model's behavior that
will inform what other chemical tasks we might be able to carry
out besides the intended de novo molecular generation.

4.1.1 Methods. As discussed in Section 3, to carry out
inference with an EDMmodel, rst, we sample standard normal
distributions for the atomic coordinates, for the values of the
one-hot atomic species vector, and for the atomic charges. To
ensure translation invariance, we subtract out the center of
mass from the 3D coordinates, as described above. Then, for
each of N steps, from n= N down to n= 1, we use an equivariant
neural network to predict how the atomic coordinates, atomic
species distribution, and charges should change, and we adjust
the sampled molecule accordingly.

We train the EDM model on Quantum Machines 9 (QM9),
a dataset of small molecules with up to nine heavy atoms among
carbon, nitrogen, oxygen, and uorine,34,35 using the same
hyperparameters used by Hoogeboom et al.7 We train the model
for 6200 epochs and choose the model with the best validation
loss, which occurs at epoch 5150. In comparison, Hoogeboom
et al.7 train the same model for 1100 epochs. We nd that the
validation loss improves consistently until epoch ∼3000, aer
which it mostly levels off.
Fig. 2 Examining EDM Inference. Left: ‘2 norm of the delta between diffu
interatomic distances, considering only atom pairs bonded in the final
finalized (“Atom Elem. Final”); % molecules where every atom's chemica
number of bonds as they do in the final structure (“Atom BO Final”); % m
atoms that have a valid number of bonds (e.g. 4 for carbon, “Atom Valid
shaded regions representing one standard deviation above/below. Right

© 2024 The Author(s). Published by the Royal Society of Chemistry
To match QM9, we carry out all DFT calculations at the
B3LYP/6-31G(2df,p) level of theory.36–40 We use Psi4 (ref. 41)
version 1.8, and relaxations are carried out with the Atomic
Simulation Environment (ASE)42 version 3.22.1 using the BFGS
algorithm for geometry optimizations with of 0.03 eV Å−1.

4.1.2 Results. At the beginning of the inference process, the
atomic species and 3D positions are completely scrambled, but
by the end, the model has decided on which atomic species to
use and where to place them. This progression is shown in
Fig. 2, which plots as a function of diffusion steps the fraction of
atomic species that have been nalized, the fraction of atoms
that have the correct valence, and how close the interatomic
distances are to their nal values.

We rst consider the plot of what fraction of molecules have
all atomic species nalized (“Mol. Elem. Final”). Here, it is clear
that the diffusion process can be divided into two regimes: an
“exploration” regime, from diffusion step 1000 to ∼50, where
the model is still guring out the atomic identities, and
a “relaxation” regime, from diffusion step ∼50 to 0, where the
model is moving around the atoms while holding the atomic
species xed (these two regimes are shown schematically in
Fig. 1). The transition in “Atom Elem. Final” from 0% nalized
to 100% nalized is fairly abrupt, suggesting that the model
decides on all the atomic species at once, instead of rst
deciding on, e.g., the carbon structure and then deliberating
about which functional groups to add. Note also that the model
nalizes geometries decidedly aer choosing the atomic
species: the fraction of molecules that have every atom's valence
nalized (“Mol. BO Final”) doesn't increase at all until aer
almost all molecules' atomic species have been decided on
(“Mol. Elem Final”).

Looking more closely at the relaxation regime, we calculate
the energy of each structure along the diffusion path using DFT,
starting with the rst structure where all atom types are nal-
ized. As seen in Fig. 3, the energy decreases during the
sion steps (“Step Size”, Å); absolute deviation between current and final
structure (“jBond Len. Err.j”, Å); % atoms whose chemical species is
l species is finalized (“Mol. Elem. Final”); % atoms that have the same
olecules where all bond orders have been finalized (“Mol. BO Final”); %
BO”). Solid lines are the average across 100 generated molecules, with
: Zoom of figure on the left.

Chem. Sci., 2024, 15, 13506–13522 | 13509
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Fig. 3 Diffusion chain energies. DFT-computed relative energy compared to the final generated geometry for the structures at the end of the
diffusion chain that have the same atom types as the final structure. Each plot corresponds to a different generated molecule. Solid lines
represent geometries predicted by diffusion, and dashed lines are geometries that are linearly interpolated between the initial and final
geometries.
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relaxation regime fairly consistently, suggesting that the diffu-
sion process is largely following the potential energy surface to
the ground state rather than moving atoms through each other
or taking a more erratic path. For reference, the DFT-computed
energies of the geometries along a linearly interpolated path
from the starting structure to the nal structure are shown by
the dashed lines in Fig. 3. We investigate this further in
Section 4.3.
4.2 EDM can relax structures

Noting the separation of the diffusion process into these two
regimes (“exploration” and “relaxation”), and that the energy of
generated structures consistently decreases during the relaxation
regime, a natural question to ask is: can we successfully relax
arbitrary structures by running diffusion steps∼50/ 0, starting
at a user-chosen unrelaxed structure? During training, the model
only sees structures that are (roughly speaking) a Gaussian
perturbation away from the ground state. Any initial structure we
provide the model that is not generated in this way may be
outside of the training distribution. As such, there's no guarantee
Fig. 4 Energies of EDM structural “relaxations”. Left: DFT-computed en
generated “relaxation” paths, for 45 randomly chosen molecules from th
validation set. Linestyle indicates how many diffusion steps were used (n
Zoom of left figure.

13510 | Chem. Sci., 2024, 15, 13506–13522
that the relaxation regime will actually nd a low-energy geom-
etry if it is initialized at one of these out-of-distribution states.

4.2.1 Methods. To test this, we initialize the diffusion
process with the ground state produced by running a structure
optimization using the Merck Molecular Force Field
(MMFF94)43 on molecules from the QM9 validation set, and
then we run the last n steps of diffusion. To nd the MMFF
ground state, we use RDKit44 to generate an initial guess for the
3D structure of the molecule given only the molecular graph,
and then we relax this structure using MMFF.

The MMFF-optimized structures are already reasonable
approximations of the DFT ground state, but we seek to further
improve them using EDM. To evaluate the diffusion-generated
structures, we compare the DFT-computed energies of the
diffused structures with that of the MMFF structures. Fig. 14 in
Appendix A shows a random sample of the molecules used in
this section.

The question remains what diffusion step n to start at when
carrying out the relaxation. As shown in Fig. 2, the model
consistently makes smaller/larger steps for earlier/later diffu-
sion steps, so we need to choose n carefully: too small, and the
ergies relative to the ground state for all structures on the diffusion-
e QM9 validation set. Each color is a different molecule from the QM9
= 20, 30, and 50). Black lines are averages over all molecules. Right:

© 2024 The Author(s). Published by the Royal Society of Chemistry
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model won't have enough steps tomove the distance required to
reach the ground state; too large, and the model will drastically
re-arrange the molecule instead of nding the nearest local
minimum. Most likely, we should use n < ∼50, since before this
point, the model has not nalized atom species. As such, we try
three values of n: 50, 30, and 20.

4.2.2 Results. Fig. 4 shows DFT-computed relative energies
between the DFT-relaxed structure and all structures along the
diffusion path for each of these values of n. The diffused
structures are on average equally good for all values of n, on
average about 1 kcal mol−1 worse than the DFT-computed
ground state. In contrast, the MMFF-optimized structures are
nearly 10 kcal mol−1 higher in energy than the DFT-optimized
structure. On the low end, at n = 20, the model immediately
begins improving the structures, whereas on the high end, at n
= 50, the model rst worsens the structures, increasing the
energy, but eventually nds as good or better nal structures as
the lower values of n. This is the same kind of behavior that we
would expect from a more traditional optimization process,
such as gradient descent with a learning rate inversely propor-
tional to the optimization timestep. As long as the initial
learning rate is within a reasonable range, gradient descent will
always converge to the local minimum, but a higher initial
learning rate may cause the optimizer to initially worsen the
objective. Because in practice we do not know how far away our
initial state is from the true ground state, it is important that
this method is robust to choosing toomany steps, since if so, we
can safely overestimate n and still arrive at high-quality ground
states.

Some curves in Fig. 4 dip below zero energy relative to the
DFT-computed ground state. We inspected the most negative
such example by eye and found that the model's predicted
geometry is the same conformer as the geometry in QM9, but
with slightly different atomic coordinates. To save on compu-
tational cost, the ground states we used as the zero energy point
were relaxed using a relatively permissive maximum force
convergence criterion of 0.03 eV Å−1, so we suspect the negative
energies are simply due to Psi4 not quite nding the global
minimum during the relaxation.
4.3 Alignment of denoising steps with forces

As seen in Fig. 3, the relaxation regime of the diffusion process
consistently improves structures down to the ground state.
However, although the energy mostly decreases as diffusion
proceeds, and the nal structure is close to the DFT-computed
ground state, it is unclear which relaxation path the model
takes to the ground state. One simple hypothesis is that it
follows the forces down to the minimum; another is that it takes
the most direct path to the minimum, compensating for the
curvature of the PES along the way. It is also possible that the
model's predictions align neither with the forces nor with the
direct path to the ground state, instead taking an erratic or
circuitous path to the ground state.

4.3.1 Methods. To differentiate between these hypotheses,
we compute the cosine similarity between the steps that the
EDM model makes (“D”), the DFT-computed forces at each
© 2024 The Author(s). Published by the Royal Society of Chemistry
geometry along the diffusion path (“f”), and the direction
straight from each geometry to the DFT-relaxed ground state
(“gs”). If the model tends to follow the forces down to the
minimum, then we expect the angle between D and f, (“qD,f”) to
be small, or cos qD,f to be large. In particular, it should be large
compared to cos qD,gs. Similarly, if the model heads straight for
the ground state, ignoring bumps in the PES along the way, then
we expect cos qD,gs to be large compared to cos qD,f. We plot
a third quantity, cos qf,gs, as a point of reference, since the forces
tend to be somewhat aligned with the path directly to the
ground state, especially for the simple PESs of QM9 molecules.
If D is less aligned both with f and with gs than f is aligned with
gs, then we may conclude that the model's predictions are not
particularly aligned with either the DFT-computed forces or
with the path directly to the ground state.

However, noting that the diffusion process is inherently
noisy, we also plot results when we consider the model
prediction to be the sum of the subsequent k steps of diffusion.
In other words, given k $ 1, f and gs remain unchanged, but
instead of comparing these quantities to D, we compare to Dk,
which is the sum of the next k D vectors. This idea is depicted
schematically in Fig. 5. For the smallest value of k= 1, we expect
the randomness in the diffusion steps to be most signicant, so
cosine similarities will likely be low. Higher values of k average
out this noise, but raising k also articially increases cos qDk,gs,
as compared to cos qDk,f, since if the model does eventually nd
a structure near the DFT ground state, regardless of which path
it takes, Dk approaches gs as k increases. For this reason, we plot
three values of k: k = 1, where the noise dominates, k = 30,
where k is likely high enough that much of the similarity
between Dk and gs can be attributed to this effect, and k = 10,
which we hope strikes a good balance.

4.3.2 Results. The results for the cosine similarity analysis
are plotted in Fig. 6. The le plot shows results aer only 50
epochs of training, and the right plot shows results aer the full
5150 epochs. As expected, for k= 1, the green lines show cos qD,f
and cos qD,gs are both fairly low throughout the inference
process, due to the inherent randomness of diffusion. However,
as k increases, alignment increases between the model predic-
tion and both the forces and the direct path to the ground state.

Considering the fully trained model (5150 epochs), the
model predictions D are consistently more aligned with the
direct path to the ground state than with the DFT-predicted
forces. This holds true even for low k, suggesting that the
model is nding a path to the ground state that is more efficient
than following the forces gradient-descent style. There is
reasonably high alignment between the model predictions and
the forces, but this can be explained by the fact that the forces
themselves are somewhat aligned with the direct path to the
ground state (black dotted line in Fig. 6). cos qDk,f is never
substantially higher than cos qf,gs, so any alignment between the
model predictions and the forces can be explained by the
alignment between the forces and the straight path to the
ground state. Given that these results are on molecules that
were unseen during training, the fact that the diffusion path
aligns better with the direct path to the ground state than with
the forces suggests that the model has learned about local
Chem. Sci., 2024, 15, 13506–13522 | 13511
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Fig. 5 Diagram explaining force comparisons. Schematic showing
what different values of k mean. The origin of the plot is the current
geometry under consideration, and the grey contours signify the DFT
PES. Dk is the sum of the next k diffusion steps taken by the model; f is
the DFT-computed forces on the atoms in the current geometry; gs is
the vector pointing from the current geometry to the ground state.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ju

ly
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

1/
6/

20
25

 8
:4

1:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
curvature of the PES, rather than only learning about local
gradients. Note that many non-learning-based relaxation
methods also compensate for the curvature of the PES instead
of strictly following the gradients down to a local minimum. For
example, BFGS preconditions the gradients with second-order
information in order to take a straighter path towards the
minimum than would be achieved by following the gradients
directly.

Surprisingly, the situation is nearly the reverse for the model
that has only been trained for 50 epochs (le plot of Fig. 6).
Here, particularly later on in the diffusion process, Dk aligns
better with f than with gs, suggesting that the model is more so
following the forces down to the ground state, rather than
heading directly towards the ground state. When training any
Fig. 6 QM9 model/force comparison. Left: cosine of the angles betwe
computed forces (f), and the path directly from the current geometry to t
from 45molecules from the QM9 validation set. Shaded regions represen
can exceed 1.0 because the distribution is not Gaussian).

13512 | Chem. Sci., 2024, 15, 13506–13522
model, early on in training, the model rst picks up on the
easiest way to get the answer mostly right, and later on in
training learns to recognize more nuanced aspects of the input
to make more nuanced predictions. In this case, early on in
training, the model moves the atoms preferentially in the same
direction as the forces experienced by the atoms, despite having
never seen any energy or force data during training. In other
words, the model has discovered “following the forces” as the
easiest way to nd a low-energy geometry (at least to the extent
that the solid lines are higher than the dashed lines in the le
side of Fig. 6). In contrast, by the end of training, the model
learns to compensate for the curvature of the PES and to move
directly towards the ground state, but learning to do so takes
signicantly more epochs of training.

4.4 EDM as Boltzmann generator

Fig. 2 shows that diffusion takes monotonically decreasing step
sizes as n decreases. Because there is inherent stochasticity in
the diffusion process, the model does not always move directly
towards a local minimum of the PES (this is shown experi-
mentally by the bumpiness in Fig. 3). But given that the model
has a preference for low-energy geometries, there is a potential
for repeated application of the same diffusion step to a struc-
ture to result in sampling low-energy geometries more oen
than high-energy geometries. In particular, we might hope that
the distribution of geometries follows the Boltzmann distribu-
tion, and that different diffusion steps n would correspond to
particular temperatures T.

4.4.1 Methods. To investigate this possibility, we carry out
Markov chain Monte Carlo (MCMC) simulations on ten mole-
cules randomly from the QM9 validation set aer ltering to
select for exible and linear molecules, where we expect more
interesting behavior at non-zero temperature.‡ We run the
Metropolis–Hastings algorithm for 24 000 steps with an
isotropic Gaussian proposal distribution—initialized at the DFT
ground state with 5000 steps of burn-in—using eighteen
temperatures T between 10 K and 400 K. On the diffusion side,
we repeatedly apply a single step of diffusion to the structures
en the sum of the next k steps predicted by diffusion (Dk), the DFT-
he DFT-computed ground state (gs). Curves are averaged across atoms
t one standard deviation above and below themean (the shaded region

© 2024 The Author(s). Published by the Royal Society of Chemistry
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20 000 times, initialized at the DFT ground state with 1000 steps
of burn-in (we observed that the chain stabilizes signicantly
faster than for Metropolis–Hastings). We try fourteen different
steps n, from the n= 1 up to n= 40. In both cases, we use GFN2-
xTB45 to measure energies, as implemented in the
package (version 22.1).

For very low T and n, we expect both the MCMC simulation at
temperature T and the diffusion chain with step n to have an
energy of ∼0 relative to the ground state. However, because
there is sometimes disagreement between GFN2-xTB and the
DFT-calculated ground states that themodel was trained on, the
diffusion chains at low n settle to an xTB-computed energy
slightly above zero. To compensate for this, for each molecule
we subtract a constant energy (<2 kcal mol−1) from each chain
to equalize the minimum energies achieved by the two chains at
the lowest values of T and n.
Fig. 7 Comparing MCMC and diffusion. Violin plots showing the distribut
(orange), along with energies obtained by repeatedly applying a single d
simulation are on the top axis, and diffusion steps used are on the botto

Fig. 8 Quadratic relationship between diffusion step and energy. Left: a
corresponding to one standard deviation above and below themean. Valu
(top) and the diffusion step n used whenmaking the diffusion chain. Right
linearly to match the slope of the MCMC line.

© 2024 The Author(s). Published by the Royal Society of Chemistry
4.4.2 Results.Histograms of the chain energies for selected
values of T and n are shown in Fig. 7. These values of T and n
were chosen to maximize the overlap between the distributions,
but they are the same for each of the nine molecules,§ sug-
gesting that there may be a correspondence between n and T
that generalizes across molecules. Within each molecule, as T
and n increase, we see the same trend of the mean relative
energy increasing and the variance of the distribution
increasing.

As a point of reference, when repeatedly perturbing atomic
coordinates with an isotropic normal distribution instead of the
diffusion model, the energy diverges, even for extremely small
step sizes. Unlike repeated Gaussian perturbations, which have
no preferred direction, the diffusion model preferentially moves
the geometries closer to a local minimum of the PES, even
without the Metropolis–Hastings acceptance criterion, which
uses a ground-truth energy oracle. The model was trained only
ion of energies obtained with a Metropolis–Hastings MCMC simulation
iffusion step to a structure (blue). Temperatures used for the MCMC
m axis.

verage energy of the MCMC and diffusion chains, with shaded regions
es on the x-axis indicate the temperature used in theMCMC simulation
: Same as left, but the lower x-axis is scaled quadratically and stretched
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on geometries, with no energy supervision either on the ground-
state geometries or on any non-equilibrium geometries. Despite
this, we never observed a diffusion chain diverging, even for high
values of n, and there is even reasonable agreement between the
distributions of energies within the MCMC and diffusion chains.

Next we investigate the relationship between T and n as well as
the average and variance of the resulting energy distributions.
Fig. 8 plots, for a single molecule, the average energy ± the
standard deviation of the energy for each of the n and T values we
considered. As expected, the energy increases linearly with
temperature. On the other hand, the energy increases
Fig. 9 Right-hand plot of Fig. 8 for the nine molecules considered. Onl

Fig. 10 QM9 DFT relaxation speedup. Left: Each point is a structure th
required to converge when initializing DFT with the MMFF ground state
predicted by diffusion. Orange/blue dots used n = 50/n = 20 steps of diff
relaxed structure when starting from the MMFF structure vs. starting fro
relaxed structure had lower energy when the DFT relaxation was initia
proportional to the number of atoms in the structure. Right: median spee
shows results for epoch 5150.

13514 | Chem. Sci., 2024, 15, 13506–13522
quadratically with increasing n. This is unsurprising: near the
end of inference, the step size decreases roughly linearly, as seen
in Fig. 2, and near a local minimum, we expect the PES to be
modeled well as a harmonic oscillator. The le side of Fig. 8 plots
both chains with a linear scale on T and n. The right side of the
gure instead uses a quadratic scale for n, and the x-axis is
linearly scaled by a constant m to equalize the slope between the
two chains. Note that any linear and quadratic functions can be
made to line up using this method, so their alignment in this
plot is unsurprising. Fig. 9 plots the same quantities, but
repeated for each of the nine molecules considered. In this case,
y one linear scaling factor is used across all molecules.

at we relaxed using DFT. x Values are the number of relaxation steps
. y values are the number of steps when initializing with the structure
usion. Arrows indicate the difference between the energy of the DFT-
m the diffused structure. Downward-pointing arrows indicate that the
lized with diffusion rather than with MMFF. The area of each circle is
dup attained when using checkpoints throughout training. The left plot

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Schematic showing how we compute DFT relaxations, and how we calculate the energy delta (D).
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we use the same linear scaling m for eachmolecule, so there is no
guarantee that the lines will all line up. Even though there is
some variation in the heat capacities of the nine molecules (i.e.
the slope of the MCMC lines), the diffusion chain consistently
generates very similar average energies as theMCMC chain at the
corresponding temperature.

The variances of the distributions are also similar, though
the diffusion chain consistently results in a wider distribution
of energies than the MCMC chain. The energy distributions for
these simple molecules from QM9 are unimodal, but it would
be interesting to see whether the diffusion chain can reproduce
multi-modal energy distributions for more complex molecules.
Fig. 13 Force alignment plot, analogous to the plots in Fig. 6 but for
the EDM model trained on DRUGS for 250 epochs, and using xTB to
calculate forces instead of DFT.
5 Using equivariant diffusion models
to accelerate relaxations
5.1 Diffusion-relaxed structures accelerate DFT relaxations

This completes our investigation of what EDM models are
learning about the PES. Next, we turn to a practical application
that, to our knowledge, has not been explored with this sort of
self-supervised model: the acceleration of DFT structure relaxa-
tions by proposing better initial geometries than those obtained
with a classical force eld. In Section 4.2, we show that the
geometries predicted by EDM have signicantly lower energy
than those predicted by MMFF. We may therefore hope that DFT
Fig. 12 Speedup results for DRUGS. Figures are analogous to those in F

© 2024 The Author(s). Published by the Royal Society of Chemistry
relaxations starting at the EDM geometries will converge faster
than relaxations starting at the MMFF-produced geometries.

5.1.1 Methods. To test this, we compare the number of DFT
relaxation steps required to relax structures when initialized at
the MMFF-optimized structure vs. at the diffusion-generated
geometry. We perform DFT relaxations from three different
ig. 10.
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Fig. 14 Samples from QM9.
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starting points: the MMFF-optimized structure, and the struc-
tures obtained by further “relaxing” this MMFF-optimized
conguration using diffusion with both n = 20 and n = 50.
We also compare the energies of the DFT-relaxed structures
when starting at each of these starting congurations.

In addition to measuring the speedup obtained by starting at
the diffusion-generated structure instead of the MMFF-relaxed
structure, we also compare the energies of the nal structures
themselves aer undergoing DFT relaxation. In most cases, DFT
nds nearly identical structures, regardless of which of the two
initial structures were used. However, in some cases, the two
structures do differ, and we quantify this difference using the
relative energy between the two structures. In the following
sections, we refer to this relative energy as the “energy delta”. An
energy delta greater than zero indicates that the DFT relaxation
converged to a higher-energy structure when initialized at the
MMFF-relaxed structure than at the diffusion-generated struc-
ture. Fig. 11 shows a schematic of the overall calculation
workow, with the structures used to calculate the energy delta
circled in red.
13516 | Chem. Sci., 2024, 15, 13506–13522
5.1.2 Results. The number of DFT-based geometry optimi-
zation steps required for n= 20 and n= 50 are shown on the le
of Fig. 10, plotted vs. the number of steps required when
starting at the MMFF-optimized structure. For both n = 20 and
n = 50, the DFT relaxations are consistently faster: the median
number of steps required is 40% lower for n= 20 and 57% lower
for n = 50. On each point in Fig. 10, we plot an arrow that
indicates the energy delta (positive values correspond to
upward-pointing arrows). If the diffusion-generated geometries
stay within the same local minimum of the DFT potential
energy surface as the MMFF-relaxed structures, then we expect
the energy delta to be approximately zero (the scale bar for the
arrows is shown in the lower right of the gure). A downward-
pointing arrow means that the structure obtained by relaxing
the diffusion-generated structure using DFT resulted in a lower
energy than that of the structure obtained by relaxing the
MMFF-relaxed structure. In other words, a downward-pointing
arrow indicates that diffusion moved the geometry into
a deeper basin of the DFT potential energy surface than the
basin found by MMFF.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 15 Samples from DRUGS.
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The energy deltas are approximately zero in every structure
but one, in which diffusion with n = 50 steps moved the
geometry to a better local minimum than MMFF found, as
indicated by the negative arrow of magnitude ∼1 kcal mol−1.
This structure is also one of the few where the relaxation takes
longer when starting from the diffusion-generated geometry.
We visualize this particular structure in Appendix B, where it
becomes clear that diffusion has rotated the hydrogen atoms of
a methyl group just far enough around the central carbon to get
relaxed by DFT to a more favorable position. Interestingly, when
using only n = 20 steps on the same structure, diffusion does
not stray from the PES basin found by the MMFF relaxation,
which is unsurprising given the results in Fig. 4.

We also calculate the median speedup obtained using EDM
checkpoints throughout training. Results are shown on the
© 2024 The Author(s). Published by the Royal Society of Chemistry
right of Fig. 10. The improvement slows down over the course of
training, but there may still be further improvements possible
by simply training longer. By the end of training, while in some
cases the diffusion-generated structure leads to a slowdown
rather than a speedup, even the 25th percentile speedup is
nearly 2×. For 25% of structures, the speedup is at least 4×
(75th percentile is at 75% speedup).
5.2 Exploring larger molecules with GEOM

Clearly, for the very small molecules in the QM9 dataset,
diffusion-generated structures are generally signicantly better
initialization points for DFT relaxations. Now, we turn to the
larger and more realistic structures found in the Geometric
Ensemble Of Molecules (GEOM) dataset.4 We use the “drugs”
Chem. Sci., 2024, 15, 13506–13522 | 13517
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subset of GEOM, which consists of drug-like molecules, most of
which are signicantly larger than the molecules in QM9. We
use the version of the dataset as prepared by Hoogeboom et al.,7

who keep only the 30 lowest-energy conformations for each
molecule. In this manuscript, we refer to this dataset as simply
the DRUGS dataset. The typical number of heavy atoms in
a conformation drawn from DRUGS is 22–29 (25th–75th
percentile), whereas QM9 contains structures with only up to 9
heavy atoms.

5.2.1 Methods. We carry out the same speedup analysis as
in Section 5.1 but using structures from the DRUGS dataset.
Instead of calculating energies and performing relaxations
using DFT, we use GFN2-xTB, both to match how the DRUGS
dataset was created and to save on computational cost. As
Fig. 16 Example molecule where the DFT-relaxed structures differed by
structure. Diffusion rotates the hydrogens on the top methyl group slig
minimumof the PES. Arrows between structures indicate which structure
the MMFF-relaxed structure and were computed using single-point DFT

13518 | Chem. Sci., 2024, 15, 13506–13522
above, all relaxations are carried out with = 0.03. We train
an EDM model on the DRUGS dataset using the same hyper-
parameters as used by Hoogeboom et al.7 However, Hoogeboom
et al.7 train for only 13 epochs, or 1.2 million iterations, whereas
we train for an additional 250 epochs, or about 23 million
iterations, starting at their pretrained model. Training takes 2.8
hours per epoch on 8 NVIDIA Quadro RTX 6000 GPUs. The
validation loss continues to improve throughout training, so
additional training time is likely to increase the quality of the
model. Fig. 15 in Appendix A shows a random sample of the
molecules used in this section.

5.2.2 Results. As when trained on QM9, EDM nds struc-
tures with lower energies than those found by relaxing with
MMFF. However, the reduction in energy is smaller than for
∼0.9 kcal mol−1 when starting at the MMFF structure vs. the diffused
htly, which leads the subsequent DFT relaxation to find a better local
was used to initialize each calculation. Energies indicated are relative to
calculations.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 17 Speedup in number of DFT geometry steps required to converge as a function of howmany epochs themodel was trained for. Left: EDM
trained on QM9. Right: EDM trained on DRUGS. Structures were excluded from this plot if the absolute energy gap is greater than 0.2 kcal mol−1.
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QM9: the diffusion-generated structures have an average energy
relative to the xTB ground state of 8.3 kcal mol−1 vs. MMFF's
14.3 kcal mol−1—a 42% reduction, compared to nearly 90% for
QM9.{ The median speedup to xTB relaxations by starting at
these diffusion-generated structures instead of the MMFF
structures is correspondingly smaller, at 7%, compared to
a 57% speedup to DFT relaxations for QM9. Fig. 12 shows
results for DRUGS analogous to Fig. 10. The speedup attained
increases nearly linearly with the number of training epochs,
but it does appear to start tapering off by epoch 250. As with the
model trained on QM9, structures generated by diffusion
sometimes cause the DFT relaxation to nd a different local
minimum of the PES; this can be seen by the points with high-
magnitude arrows in the le side of Fig. 12. However, the
speedup we observe is not due to the model nding worse local
minima that take fewer steps to reach the bottom: when
excluding any structure that led to an absolute energy delta
>0.2 kcal mol−1, the right side of Fig. 12 remains nearly
unchanged except a slight reduction in variance (see Appendix
C). Although further training is likely to lead to some
improvements, most likely, improvements in model architec-
ture or training hyperparameters would be needed to attain
signicantly higher speedups.

Lastly, we carry out a similar analysis of how the steps taken
by diffusion align with the ground-truth forces on the atoms,
using xTB to calculate forces instead of DFT. For QM9 struc-
tures, early in training the model's predictions align better with
the DFT-computed forces, and later in training they align better
with the direct path to the ground state (Section 4.3). In the case
of DRUGS, the model behaves similarly to how the QM9 model
behaves early in training; the model's predictions are more
aligned with the xTB-computed forces than with the path
directly to the ground state. This is shown Fig. 13, where the
solid lines tend to go higher than the dashed lines.

This result helps paint a picture of how these models
improve throughout training. Early on, the QM9 model's
predictions align better with the forces than with the direction
to the ground state, and the structures produced by the model
© 2024 The Author(s). Published by the Royal Society of Chemistry
are only slightly better than those produced by MMFF: aer 50
epochs of training, the QM9 model reduces energy relative to
the DFT ground state by 2× compared to MMFF, and using the
diffusion-produced structure yields no speedup to DFT relaxa-
tions whatsoever (aer 100 epochs, the energy reduction is 3×,
the median DFT speedup is 4%, and the force alignment plot
looks similar to the plot for 50 epochs). Later on in training, the
model's predictions trend towards pointing straight to the
ground state instead of aligning with the forces, the energy
improvement is close to 10×, and the median speedup to DFT
relaxations is nearly 60%. The DRUGS results mimic the QM9
results early on in training: the model predictions align better
with the forces than with the path to the ground state, the
energy relative to the xTB ground state is reduced by a factor of
∼2 compared to MMFF, and there is only a few percent speedup
to xTB relaxations. With a better model—whether through
further training of this same EDM or aer improving the model
architecture—we might expect the model to behave more like
the QM9 model behaves at the end of training.
6 Conclusions

We investigate how much can be learned about the PES by
training a diffusionmodel on only ground state geometries. Our
investigation is motivated by the need to lessen our reliance on
supervised datasets generated via physics-based calculations.
The trained model is able to relax QM9 structures to 10× lower
relative energy than MMFF, and it can produce structures that
require 57% fewer DFT steps to relax than MMFF-relaxed
geometries. When “relaxing” QM9 structures, the model
follows a noisy estimate of the path directly to the ground state
rather than taking the path of steepest descent, suggesting that
it has learned about at least the second-order curvature of the
PES near the local minimum. The model can also sample
geometries around a local minimum in the PES from a distri-
bution that resembles the Boltzmann distribution, and it can
model the varying heat capacity of different materials.
Chem. Sci., 2024, 15, 13506–13522 | 13519
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In contrast, for more complex and larger GEOM-DRUGS
molecules, the model's predictions align better with the
ground-truth forces on the atoms, suggesting the model has not
yet learned beyond rst-order information about the PES.
Correspondingly, geometries predicted by EDM are of lower
quality, both in terms of the energy improvement over MMFF
and in terms of the speedup in DFT relaxations when starting at
the EDM-predicted structures.

Although we present some of our ndings in terms of
capabilities that the model has, we are not proposing that a self-
supervised model could outperform state-of-the-art supervised
NNIPs on tasks like structure relaxations or MCMC simulations.
Aer all, the training data for the diffusion model used in this
manuscript consists of only a single point on the PES for each
molecule or conformation. NNIP training datasets, in contrast,
contain many points on the PES for each molecule, all labeled
with energies and forces. Rather, we investigate the model's
capabilities as a way both to see how far it is possible to get with
self-supervision alone, and to gain insight into what informa-
tion these models are learning about the PES from a training set
of only ground-state geometries.

We see a number of avenues for future work. One exciting
direction is to explore new tasks that have traditionally required
an interatomic potential but that could be carried out with
a self-supervised model instead. For example, in Section 4.4, we
establish a correspondence between diffusion steps and
temperature; future work could make use of this correspon-
dence to use EDM for replica exchangeMCMC. In a similar vein,
repeatedly applying EDM to a structure while progressively
increasing the diffusion step could allow the model to accel-
erate reaction prediction calculations and/or transition state
estimation. By starting at a known structure and progressively
raising the diffusion step (i.e., temperature), the system should
eventually start hopping to nearby basins in the potential
energy landscape. Future work could also explore whether our
ndings generalize to different types of materials, such as
crystals and glasses. Lastly, on the modeling side, future work
could explore other existing denoising models, and could also
develop new model architectures and training paradigms
designed specically to improve performance on, e.g., structure
relaxations.
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the data we trained on are contained within the repository.
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Appendices
A Sample molecules

We visualize sample molecules that were used in the analyses
from the main text. All structures shown are the geometries
from the respective datasets (QM9 and DRUGS). Colors are as
follows: hydrogen (white), carbon (grey), oxygen (red), nitrogen
(blue), chlorine (light green), uorine (dark green), sulfur
(yellow), bromine (brown) (Fig. 16).

B Fig. 10 outlier structure
C Speedup excluding large energy gaps

Fig. 10 and 12 show how the speedup in DFT relaxation time
increases as the model is trained. Because some structures have
a nonzero energy gap, it is possible that some speedup in DFT
results from diffusion nding structures that lie within shal-
lower basins of the DFT PES. To investigate this possibility, we
reproduce the right-hand side of these gures when excluding
any structure for which the absolute value of the energy gap is
greater than 0.2 kcal mol−1. Results are shown in Fig. 17.
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Notes and references
† The diffusion step is usually referred to as t ˛ [1, T], but we reserve T for
temperature and use n ˛ [1, N] for the diffusion step instead.

‡ In particular, we use a simple lter based on the molecules' SMILES strings: we
lter out SMILES containing “=” or “#”, SMILES containing numbers, and SMILES
with more than 15 “(” (to bias towards more linear molecules).

§ We tested on ten molecules, but we discarded one because GFN2-xTB disagrees
strongly with DFT about where the local minimum of the PES is.

{ The equivalent of Fig. 4 for the DRUGS dataset is qualitatively similar, but the
energies don't converge to as low of a value, and the average for the N = 50 line is
higher than the other two due to a single outlier with very high energy (out of∼500
samples).
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