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The competitive nature of type Il photosensitizers in the transfer of excitation energy for the generation of
singlet oxygen (*O,) presents significant challenges in the design of type | photosensitizers to produce the
superoxide anion radical (O, 7). In this study, we present an efficient method for the direct transformation of
type Il photosensitizers into type | photosensitizers through the implementation of an artificial light-
harvesting system (ALHSs) involving a two-step sequential energy transfer process. The designed
supramolecular complex (DNPY-SBE-B-CD) not only has the ability to generate O, as type Il
photosensitizers, but also demonstrates remarkable fluorescence properties in aqueous solution, which
renders it an efficient energy donor for the development of type | photosensitizers ALHSs, thereby

enabling the efficient generation of O, ~. Meanwhile, to ascertain the capability and practicality of this
Received 1st November 2023 thod. t . ti ducted v the phot idati ti f thi isol d
Accepted 5th December 2023 method, two organic reactions were conducted, namely the photooxidation reaction of thioanisole an

oxidative hydroxylation of arylboronic acids, both of which display a high level of efficiency and exhibit
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Introduction

Photosynthesis is a crucial natural process that enables plants
to harness energy from the sun and transform it into
biochemical energy, which serves as the foundation for the
survival of plants, animals, and microorganisms, making it
a vital activity in nature. Moreover, photosynthesis plays
a significant role in the material cycling process, ensuring the
continuous flow of essential resources.' Scientists are dedi-
cated to the advancement of limitless solar energy. Within
biological systems, green plants utilize pigment-protein
complexes that consist of numerous closely arranged chloro-
phyll molecules to capture solar energy and convert it into
chemical energy.**® Motivated by the wonders of nature, more
and more effort has been dedicated to developing photosensi-
tizers that can effectively transform solar energy into chemical
energy, emulating the process of photosynthesis in the natural
world.”*® Considerable efforts have been undertaken to facili-
tate the development of innovative and efficient photosensi-
tizers. However, previous studies have shown that the majority
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significant catalytic performance. This work provides an efficient method for turning type Il
photosensitizers into type | photosensitizers by a two-step sequential energy transfer procedure.

of photosensitizers possess hydrophobic conjugated back-
bones, resulting in low solubility in aqueous environments and
limiting their potential applications.*** The development of
photosensitizers has entered a new stage with the emergence of
supramolecular strategies,'*” which can be used to modulate
the activity of photosensitizers and regulate their photophysical
and photochemical properties through non-covalent interac-
tions, providing a novel approach to sensitize oxygen to produce
reactive oxygen species (ROS).**2° Due to their unique advan-
tages, supramolecular photosensitizers have gained significant
attention and have emerged as a promising research area,
showing broad application prospects in photocatalysis,*>*
photovoltaics,>*** photodynamic therapy (PDT),>™ triplet-
triplet annihilation-based molecular photon upconversion,*¢
and other fields.

At present, the majority of photosensitizers documented in
the literature are classified as type II photosensitizers, which
produce singlet oxygen ('0,) through direct excitation energy
transfer. However, the number of reported cases involving type I
photosensitizers that are deemed suitable for practical use is
limited. Kida and coworkers reported a noteworthy finding
about the functional properties of rhodamine 19 derivatives as
type I photosensitizers, which exhibited a significant enhance-
ment in the generation of ROS and a successful PDT effect in
mice with tumours, demonstrating the promise of supramo-
lecular assemblies in the advancement of highly efficient type I
photosensitizers.?” Very recently, Yang and coworkers employed

© 2024 The Author(s). Published by the Royal Society of Chemistry
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a supramolecular strategy to facilitate electron transfer via host-
guest interaction, resulting in the efficient conversion of
a conventional type II photosensitizer into a type I photosensi-
tizer.®® However, the development of type I photosensitizers
remains a challenge owing to the competition between energy
transfer and electron transfer processes, and also because the
excited states of most photosensitizers can be deactivated via
the energy transfer pathway.* Therefore, it is of great signifi-
cance to convert type II photosensitizers to type I photosensi-
tizers by adjusting the energy transfer and electron transfer of
excited states using a simple method.

In the present work, a supramolecular complex was con-
structed through the co-assembly of a positively charged
derivative of 9,10-di(yridine-4-yl)anthracene (DNPY) and
a negatively charged sulfobutylether-p-cyclodextrin (SBE-B-CD)
via electrostatic interactions. The self-assembling properties of
DNPY-SBE-B-CD were investigated using various techniques,
including UV-vis absorption spectra, fluorescence emission
spectra, zeta potential, "H-NMR, dynamic light scattering (DLS),
and transmission electron microscopy (TEM). The results
suggest that DNPY-SBE-B-CD can self-assemble to form spher-
ical structures in aqueous solution and can be used as a type II
photosensitizer with high efficiency to produce '0,, which has
been employed to perform photooxidation reactions of thio-
anisole and its derivatives in water, achieving an impressive
yield of 92%. Moreover, the remarkable fluorescence charac-
teristics of DNPY-SBE-B-CD can be effectively utilized as an
optimal energy donor for the development of artificial light-
harvesting systems (ALHSs). Therefore, a highly effective ALHS
has been developed by utilizing DNPY-SBE-B-CD as an energy
donor, and RhB and SR101 as energy acceptors. The ALHS
incorporates a two-step sequential energy transfer process,
starting from DNPY-SBE-B-CD and proceeding to RhB and
SR101, which successfully mimics the natural photosynthesis
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system. It is particularly interesting that compared with the 0,
produced by the type II photosensitizer DNPY-SBE-B-CD, the
construction of the ALHS (DNPY-SBE-B-CD+RhB+SR101) can
realize the effective conversion of a type II photosensitizer to
a type I photosensitizer, and realize the highly efficient gener-
ation of O, , which can be utilized to perform oxidative
hydroxylation of arylboronic acids, resulting in a remarkable
yield of up to 95%. In this way, the transformation of a type II
photosensitizer into a type I photosensitizer was successfully
accomplished by constructing an ALHS with a two-step
sequential energy transfer process, and applied to different
types of photooxidation reactions (Scheme 1).

Experimental section
Synthesis of DNPY

A mixture of DPA (0.33 g, 1 mmol), 2-(bromomethyl)naphtha-
lene (0.66 g, 3 mmol), and DMF (20 mL) was stirred at 70 °C for
6 h. The mixture was cooled down to room temperature and
then added dropwise to acetonitrile (200 mL), precipitating
completely. The precipitate was collected by filtration and the
precipitate was dried overnight under vacuum to give DNPY as
a yellow solid. 'H NMR (400 MHz, DMSO-d¢) 3 9.52 (d, J =
6.8 Hz, 4H), 8.38 (d, J = 6.8 Hz, 4H), 8.34 (s, 2H), 8.12 (d, J =
8.5 Hz, 2H), 8.04 (d, J = 15.2 Hz, 4H), 7.87 (d, J = 8.5, 2H), 7.64
(d,J = 6.7 Hz, 8H), 7.59 (d, ] = 10.2 Hz, 4H), 6.20 (s, 4H). °C
NMR (100 MHz, DMSO-dg) & 156.00, 145.82, 133.57, 133.31,
133.26, 131.82, 131.25, 129.66, 129.60, 128.66, 128.38, 128.27,
127.81, 127.68, 127.42, 126.94, 126.31, 63.80.

Results and discussion

DNPY was successfully synthesized by the reaction of DPA with
2-(bromomethyl)naphthalene, giving a yellow solid with a yield

type I
) photosensitizer

Scheme 1 Schematic of the transformation of a type Il photosensitizer into a type | photosensitizer by constructing an ALHS with a two-step

sequential energy transfer process.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Chem. Sci., 2024, 15, 1870-1878 | 1871


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05820d

Open Access Article. Published on 05 January 2024. Downloaded on 2/20/2026 8:24:15 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

of 75% (Scheme S17). The structure of DNPY was confirmed by
"H NMR (Fig. $31) and "*C NMR (Fig. S41). UV-vis absorption,
fluorescence emission, and 'H NMR spectroscopy were
employed to investigate the formation of the supramolecular
complex of DNPY and SBE-B-CD in aqueous solution. As
depicted in Fig. S5,1 the absorption of DNPY at wavelengths of
250 nm and 409 nm exhibits a gradual decline upon the intro-
duction of SBE-B-CD. However, a noticeable increase in the
fluorescence intensity of DNPY at 550 nm is observed, which
can be attributed to the electrostatic interactions between DNPY
and SBE-B-CD, as well as the formation of a supramolecular
complex known as DNPY-SBE-B-CD. Upon the addition of 0.20
equiv. of SBE-B-CD, the fluorescence emission intensity of
DNPY achieved its maximum value, accompanied by a transi-
tion in the fluorescence colour from yellow to green (Fig. 1). In
addition, the quantum yield and fluorescence lifetime of DNPY
and DNPY-SBE-B-CD were also measured. After the addition of
0.20 equiv. of SBE-B-CD, the quantum yield of DNPY increased
from 10.2% to 14.3%, and the fluorescence lifetime increased
from 2.30 ns to 7.04 ns (Fig. S61). However, subsequent addition
of SBE-B-CD resulted in a decrease in the fluorescence emission
intensity without an obvious change in the fluorescence colour
(Fig. S7t), but the quantum yield was reduced to 7.4%. This
phenomenon could be explained by the enhancement of -7
interactions between anthracene groups by electrostatic inter-
action, leading to fluorescence quenching.’ Therefore, the
supramolecular complex of DNPY-SBE-B-CD that demonstrated
the highest fluorescence intensity with a DNPY : SBE-B-CD ratio
of 1:0.20 was selected as the subject for investigation. "H NMR
experiments were conducted to further investigate the electro-
static interactions between DNPY and SBE-B-CD, in which the
"H NMR signals of the DNPY protons revealed a significant
change in chemical shift upon the addition of 0.20 equiv. of
SBE-B-CD (Fig. S87). The above results demonstrated that DNPY
can form a supramolecular complex with SBE-B-CD through
electrostatic interactions.

The self-assembly characteristics of DNPY and DNPY-SBE-f3-
CD were further investigated using DLS, zeta potential, and
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Fig. 1 Fluorescence emission spectra of DNPY with gradual addition
of SBE-B-CD in aqueous solution (inset: photographs of DNPY and
DNPY-SBE-B-CD). [DNPY] = 1.0 x 10> mol L ™™,
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Fig. 2 DLS plots and TEM images for (a), (c) DNPY and (b), (d) DNPY-
SBE-B-CD. [DNPY] = 1.0 x 107° mol L% [SBE-B-CD] = 2.0 x
10~® mol L%,

TEM. The results revealed that the average size of the DNPY
aggregates was about 343 nm (Fig. 2a). Upon the addition of
SBE-B-CD to the DNPY solution, the average size noticeably
increased to approximately 531 nm (Fig. 2b), which can be
attributed to the formation of a supramolecular complex
through electrostatic interactions. Meanwhile, in the presence
of a laser lamp, DNPY and DNPY-SBE-B-CD both exhibited an
obvious Tyndall effect, suggesting the formation of aggregates.
TEM experiments were further performed to investigate the
morphology of DNPY and DNPY-SBE-B-CD. As shown in Fig. 2c,
the TEM results revealed that DNPY self-assembled into irreg-
ular structures, with aggregate size distributed within the range
of 250-450 nm. However, after the addition of 0.20 equiv. SBE--
CD, spherical structures were observed with average aggregate
size of 535 nm (Fig. 2d). This modification might be attributed
to the electrostatic interactions between DNPY and SBE-3-CD.
The TEM results were consistent with the DLS findings, indi-
cating the formation of a supramolecular complex between
DNPY and SBE-B-CD. In addition, zeta potential studies were
conducted in an aqueous medium, which revealed that the
relative zeta potential of DNPY was +6.50 mV (Fig. S9af).
Nevertheless, when 0.20 equiv. of SBE-B-CD was introduced, the
zeta potential of DNPY-SBE-B-CD exhibited a negative value of
—2.41 mV (Fig. S9bt). The obtained results provide additional
evidence for the development of the supramolecular complex
between DNPY and SBE-B-CD through electrostatic interactions.

In order to investigate the ability of the supramolecular
complex to generate ROS, 9,10-anthracenediylbis (methylene)
dimalonic acid (ABDA) and N,N,N,N-tetramethyl phenylenedi-
amine (TMPD) were employed as the specific indicators for 'O,
and O, , respectively. ABDA can selectively react with 'O,,
resulting in a corresponding decrease in its absorbance. When
the aqueous solution of DNPY and DNPY-SBE-B-CD containing
ABDA was irradiated, a decrease in the ABDA absorption peak
was observed (Fig. S10b and S11bt). The 'O, quantum yield was
measured using Rose Bengal (RB) as the reference photosensi-
tizer, and the 'O, quantum yield of DNPY-SBE-B-CD (99.4%) was

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05820d

Open Access Article. Published on 05 January 2024. Downloaded on 2/20/2026 8:24:15 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

significantly stronger than that of DNPY (59.7%) (Fig. S1, S10,
and S111). In addition, TMPD can selectively react with 0,7,
resulting in a corresponding increase in its absorbance. When
UV light was used to irradiate the aqueous solution of DNPY and
DNPY-SBE-B-CD containing TMPD, the absorption peak of
TMPD was slightly increased (Fig. S121). Moreover, we
measured the O, ~ generation efficiencies of DNPY and DNPY-
SBE-B-CD. The amount of O, ~ was quantitatively analyzed by
nitroblue tetrazolium (NBT) transformation. NBT, which can
react with O, ~ and displays a maximum absorbance at 260 nm,
was selected to determine the amounts of O, ~ generated. The
NBT conversion percentages of DNPY and DNPY-SBE-B-CD were
6.3% and 9.2%, respectively (Fig. S2 and S137), which suggests
that DNPY and DNPY-SBE-B-CD produce 0, ~ with low effi-
ciency. These results indicate that the main ROS produced by
DNPY-SBE-B-CD is 'O,, which can promote the photooxidation
reaction of thioanisole.**~** Therefore, we employed DNPY-SBE-
B-CD as a photosensitizer to enhance the photooxidation

Table 1 Optimization of photooxidation reaction conditions®?

©/S\

@
Photocatalyst S
410-415 nm LED, H,O, rt., 2 h

1 2a
Entry Conditions Light irradiation Yield [%]
1 None Yes 29
2 DNPY Yes 56
3 DNBY-SBE-3-CD Yes 92
4¢ DNBY-SBE-B-CD No No reaction

4 Reaction conditions: thioanisole (0.1 mmol), DNPY-SBE-B-CD aqueous
solution (0.5 mmol%, 3 mL), 410-415 nm LED, room temperature, 2 h.
b Isolated yields. ¢ Without LED.

Table 2 Photooxidation reactions of thioanisole derivatives®”
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reaction of thioanisole in water. As shown in Table 1, when
0.5 mol% DNPY-SBE-B-CD was added, the yield reached 92%
after 2 h of UV irradiation (Fig. S141). In contrast, the yield
obtained with DNPY was 56%. This clearly indicates that DNPY-
SBE-B-CD possesses the highest catalytic efficiency for the
photooxidation of thioanisole in aqueous solution.

To examine the universality of DNPY-SBE-B-CD as a photo-
catalyst for enhancing the photooxidation of thioanisole deriv-
atives in aqueous solution, a range of substrates were used to
conduct the photooxidation reaction (Fig. S15-S257). As shown
in Table 2, the thioanisole derivatives with electron-donating
groups (-CH; and -OCH3;) displayed notable yields (82% for
2b, 83% for 2¢, and 84% for 2d). Similarly, the thioanisole
derivatives containing electron-withdrawing groups (-F, -Cl, -
Br, etc.) also exhibited successful reactions with high yields
(81% for 2e, 91% for 2f, 88% for 2g, 86% for 2h, 87% for 2i, 89%
for 2j, 90% for 2k, and 87% for 21). These results demonstrate
the significant potential of DNPY-SBE-B-CD for facilitating thi-
oanisole photooxidation reactions under mild conditions.

To explore the mechanism and the active species of the
photooxidation reaction of thioanisole and its derivatives, four
free radical scavengers, 1,4-benzoquinone (BQ), triethylamine
(TEA), potassium iodide (KI), and sodium azide (NaNj;), were
added to the reaction system to scavenge superoxide anion
radicals (O, 7), hydroxyl radicals ("OH), holes (h"), and singlet
oxygen ('0,), respectively. As shown in Fig. 3a, the introduction
of NaN; resulted in a notable decrease in the yield of the
photooxidation reaction, reaching only 15% of the yield.
However, the addition of BQ, TEA, and KI under identical
reaction conditions did not significantly affect the reaction
yields, suggesting that 0, serves as the primary active species
in the photooxidation reaction of thioanisole. Therefore, DNPY-
SBE-B-CD is a typical type II photosensitizer formed by DNPY
and SBE-B-CD via electrostatic interactions.

0
1"
N S Photocatalyst . o N S
R—— > R——
A 410-415 nm LED, Hy0, r.t, 2 h Z
1 2a-21
o) o} 0 No o o} 0
1] 1] " n " "
o OO <8 /QS\ o
N\,
O // F
2a, 92% 2b, 82% 2c, 83% 2d, 84% 2, 81% 2f, 91%
Q c o 0 Br O 0 0
1 1 " 1 "
ol @fs\ ol @VS\ O
o
cl Br O,N X
29, 88% 2h, 86% 2i, 87% 2j, 89% 2k, 90% 21, 87%

“ Reaction conditions were: thioanisole and thioanisole derivatives (0.1 mmol), DNPY-SBE-B-CD solution (0.5 mmol%, 3 mL), 410-415 nm LED, 2 h,

room temperature. ? Isolated yields.
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Fig. 3 (a) Control experiments for the thioanisole photooxidation
reaction in the presence of different scavengers: NaNs, BQ, TEA, and
Kl. (b) The proposed mechanism for the photooxidation reaction of
thioanisole.

A reaction mechanism for the photooxidation reaction of
thioanisole has been proposed based on the experimental
results and previous literature (Fig. 3b).**** Under light irradi-
ation, DNPY-SBE-B-CD is excited from the ground state [DNPY-
SBE-B-CD] to the excited state [DNPY-SBE-B-CD]*, subsequently,
the energy of [DNPY-SBE-B-CD]* is transferred to oxygen,
leading to the formation of 'O, and [DNPY-SBE-B-CD]. Then, the
substrate interacts with 'O, to generate the intermediate
substance I. Finally, I further reacts with the thioanisole, fol-
lowed by the loss of H,O to produce the final product. Mean-
while, the thioanisole is oxidized to [thioanisole] ¥, which
further reacts with intermediate substance I to form another
molecule of target product.****

Due to the impressive fluorescence characteristics in the
aqueous solution, DNPY-SBE-B-CD shows great promise as an
optimal energy donor for the construction of ALHSs. In the
fluorescence resonance energy transfer (FRET) process, the
presence of a fluorescent acceptor with matching energy is
crucial. Hence, for the fabrication of ALHS with DNPY-SBE-[3-
CD, RhB was chosen as the energy acceptor, because there is
a favorable overlap between the absorption band of RhB and the
emission band of DNPY-SBE-B-CD (Fig. S267), in which the
absorption band of RhB is at 500-600 nm and the emission
band of DNPY-SBE-B-CD is at 525-575 nm. As shown in Fig. 4a,
the emission peak of DNPY-SBE-B-CD at 545 nm exhibited
a notable decrease upon the gradual addition of RhB, while
a distinct fluorescence emission peak appeared at 590 nm,
which corresponds to the fluorescence emission of RhB. In
addition, the CIE 1931 chromaticity coordinates (Fig. S271)

1874 | Chem. Sci, 2024, 15, 1870-1878
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Fig. 4 (a) Fluorescence emission spectra of DNPY-SBE-B-CD with
gradual addition of RhB (inset: fluorescence colour of DNPY-SBE-B-
CD before and after addition of RhB). (b) Time-resolved fluorescence
decay curves of DNPY-SBE-B-CD and DNPY-SBE-B-CD+RhB. (c)
Fluorescence emission spectra of DNPY-SBE-B-CD+RhB with gradual
addition of SR101 (inset: fluorescence colour of DNPY-SBE-B-
CD+RhB before and after addition of SR101). (d) Time-resolved fluo-
rescence decay curves of DNPY-SBE-B-CD+RhB and DNPY-SBE-B-
CD+RhB+SR101.

clearly showed the transition of the fluorescence emission
colour from green to orange in the presence of RhB. In addition,
the quantum yields and fluorescence lifetimes of DNPY-SBE-f-
CD and DNPY-SBE-B-CD+RhB were also measured. The
quantum yield of DNPY-SBE-B-CD was 14.3%. With the addition
of RhB, the quantum yield increased to 16.1%, however, the
fluorescence lifetime decreased from 7.04 ns to 4.04 ns (Fig. 4b).
These results indicate that an energy transfer process takes
place from DNPY-SBE-B-CD to RhB, with an energy transfer
efficiency (®xr) of 76% (Fig. S28at) and an antenna effect (AE) of
15.7 (Fig. S28bt), when the donor (DNPY-SBE-B-CD) to acceptor
(RhB) ratio was 100 : 10. The results mentioned above suggest
that a high-efficiency ALHS was successfully formed between
DNPY-SBE-B-CD and RhB in aqueous solution.

In order to further simulate the natural photosynthetic
system with multi-step sequential energy transfer,'®*¢
selected SR101 dye as the second energy acceptor, which
exhibits excellent overlap between the absorption band of
SR101 and the emission band of DNPY-SBE-B-CD+RhB
(Fig. S29%). As shown in Fig. 4c, it can be observed that the
fluorescence intensity of DNPY-SBE-B-CD+RhB at 590 nm
decreased after the addition of SR101, while the emission of
SR101 at 625 nm increased gradually. Meanwhile, as shown in
the CIE 1931 chromaticity coordinates, the fluorescence colour
changed from orange to red (Fig. S27t). Furthermore, the
fluorescence quantum yield of DNPY-SBE-B-CD+RhB increased
from 16.1% to 20.1% after the addition of SR101, while the
fluorescence lifetime decreased from 4.04 ns to 2.02 ns (Fig. 4d).
When the molar ratio of DNPY-SBE-B-CD+RhB (donor) and
SR101 (acceptor) was 100 : 10 : 10, @ and AE were calculated to
be 81% (Fig. S30at) and 7.4 (Fig. S30b¥), respectively. These
results clearly demonstrate the successful construction of an

we

© 2024 The Author(s). Published by the Royal Society of Chemistry
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efficient ALHS with a two-step sequential energy transfer
process.

In addition, there was a significant overlap between the
absorption bands of SR101 and the emission bands of DNPY-
SBE-B-CD (Fig. S317). We attempted to construct an ALHS using
SR101 as an energy acceptor and DNPY-SBE-B-CD as an energy
donor. According to the data presented in Fig. S32,f there was
a significant decrease in the fluorescence emission at 545 nm
for DNPY-SBE-B-CD upon the gradual addition of SR101, and
a new emission peak appeared at 625 nm, which corresponds to
the presence of SR101. At the same time, the fluorescence
emission colour of DNPY-SBE-B-CD changed from green to red
(Fig. S337). Moreover, the fluorescence quantum yield of DNPY-
SBE-B-CD increased from 14.3% to 16.9%, and the fluorescence
lifetime decreased from 7.04 ns to 4.58 ns, after the addition of
SR101 (Fig. S347). These results indicate that the FRET process
took place from DNPY-SBE-B-CD (donor) to SR101 (acceptor).
The ®¢r and AE were calculated to be 84% and 7.5, respectively
(Fig. S357). In addition, we also studied the effects of the
addition of energy acceptor molecules on the assembly struc-
ture of DNPY-SBE-B-CD by DLS and TEM. As shown in Fig. S36,F
the structure and size of the assemblies of DNPY-SBE-B-CD did
not change significantly after the addition of dye molecules.
These results show that the addition of dyes has no obvious
effect on the assembly structure.

In order to study the effect of the energy transfer processes
on the ROS production, the ability of the ALHS to generate ROS
was investigated. ABDA and TMPD were employed as specific
indicators for 'O, and O, ~, respectively. When the aqueous
solutions of DNPY, DNPY-SBE-B-CD, DNPY-SBE-B-CD+RhB,
DNPY-SBE-B-CD+SR101, and DNPY-SBE-B-CD+RhB+SR101 con-
taining ABDA were irradiated, a decrease in the absorption peak
of ABDA was observed (Fig. S10b, S11b, S37b, S38b and S39bf).
The ABDA absorption decay and irradiation time curve proves
that they can all produce 'O,, and DNPY-SBE-B-CD+RhB+SR101
exhibits the weakest 'O, productivity detected by ABDA (Fig. 5a).
Furthermore, the 'O, quantum yield was measured using RB as
the reference photosensitizer. The '0, quantum yields of DNPY,
DNPY-SBE-B-CD, DNPY-SBE-B-CD+RhB, DNPY-SBE-§-

—e—1

—A— DNPY-SBE--CD
DNPY

60 80 450 500 550 600 650 700

iation Time(s) Wavelength(nm)

Fig. 5 (a) Plots of AAbs (Ag—A) for ABDA at 375 nm upon light irradi-
ation (410-415 nm, 10 W) for different times in the presence of DNPY,
DNPY-SBE-B-CD, DNPY-SBE-B-CD+RhB, DNPY-SBE-B-CD+SR101,
and DNPY-SBE-B-CD+RhB+SR101 (control: ABDA without any addi-
tive). (b) UV-vis absorption spectra for cationic radicals of TMPD
generated by indicated samples under the same conditions (control:
TMPD without any additive). [DNPY] = 1.0 x 10~> mol L%, [SBE-B-CD]
=2.0 x 10® mol L™, [RhB] = 1.0 x 107° mol L%, [SR101] = 1.0 x
10~ ¢ mol L.
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CD+SR101, and DNPY-SBE-B-CD+RhB+SR101 were measured as
59.7%, 99.4%, 6.9%, 4.2%, and 5.4%, respectively (Table S1,
Fig. S1, S10-S11 and S37-S397). In contrast, when UV light was
used to irradiate the aqueous solutions of DNPY, DNPY-SBE--
CD, DNPY-SBE-B-CD+RhB, DNPY-SBE-B-CD+SR101, and DNPY-
SBE-B-CD+RhB+SR101 containing TMPD, the absorption peak
of TMPD increased in all samples, and DNPY-SBE-B-
CD+RhB+SR101 led to the strongest increase (Fig. 5b). We also
measured the O, generation efficiencies by NBT, which can
react with O, ~ and displays a maximum absorbance at 260 nm.
The amount of O, was quantitatively inspected by NBT
transformation. The O, generation efficiencies of DNPY,
DNPY-SBE-B-CD, DNPY-SBE-B-CD+RhB, DNPY-SBE-f3-
CD+SR101, and DNPY-SBE-B-CD+RhB+SR101 were measured as
6.3%, 9.2%, 19.7%, 24.9%, and 44.1%, respectively (Table S2,
Fig. S2, S13, and S407). Compared with DNPY-SBE-B-CD, the 10,
quantum yield of DNPY-SBE-B-CD+RhB was reduced 14.4-fold,
while the 0, ~ generation efficiency was increased 2.1-fold.
More interestingly, compared with DNPY-SBE-B-CD, the 'O,
quantum yield of DNPY-SBE-B-CD+RhB+SR101 was reduced
18.4-fold, while the O, ~ generation efficiency was increased 4.8-
fold. This distinctly proved that the type II photosensitizer
(DNPY-SBE-B-CD) is effectively converted to the type I photo-
sensitizer (DNPY-SBE-B-CD+RhB+SR101) through a two-step
sequential energy transfer process.

Subsequently, the ALHS (DNPY-SBE-B-CD+RhB+SR101) with
a two-step sequential energy transfer process was employed to
provide a reaction platform for the oxidative hydroxylation of
arylboronic acid. As shown in Table 3, the addition of 0.5 mol%
DNPY-SBE-B-CD+RhB+SR101 (100:20:10:10) resulted in
a yield of 93% after being exposed to light irradiation for 12 h
(Fig. S417). In contrast, under the same conditions, the yields of
other systems including DNY, DNPY-SBE-B-CD, DNPY-SBE-3-
CD+RhB, and DNPY-SBE-B-CD+SR101 were found to be 36%,

Table 3 Optimization of oxidative hydroxylation reaction
conditions®?
(I)H
| X B\OH Photocatalyst, DIPEA ‘ @OH
Nz 410-415 nm LED, H,0, rt, 12 h Nz
3 4a

Entry Conditions Light irradiation Yield [%]

1 None Yes 10
2 DIPEA Yes 20
3 DNPY Yes 36
4 DNPY-SBE-B-CD Yes 40
5 DNPY-SBE-3-CD+RhB Yes 53
6 DNPY-SBE-B-CD+SR101 Yes 57
7 DNPY-SBE-B-CD+RhB+SR101  Yes 93
8¢ DNPY-SBE-B-CD+RhB+SR101  No No reaction

“ Reaction conditions: 4-pyridylboronic acid (0.1 mmol), DIPEA (0.4
mmol), DNPY-SBE-B-CD+RhB+SR101 aqueous solution (0.5 mmol%, 3
mL), 410-415 nm LED, room temperature, 12 h. ” Isolated yields.
¢ Without LED.
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40%, 53%, and 57%, respectively. In addition, we also indicated
the influence of the base on the catalytic efficiency in the
oxidative hydroxylation reaction. The experimental results are
shown in Table S3.7 When the base of the oxidative hydroxyl-
ation reaction was DIPEA, the reaction yield was 93% (entry 1).
On reducing the amount of base, the reaction yield was reduced
to 75% (entry 2). When the base was changed to triethylamine
or trimethylamine, the reaction yields were 88% and 72%,
respectively (entry 3 and 4). The above results indicate that the
novel ALHS has the potential to serve as an effective catalyst for
the oxidative hydroxylation of arylboronic acids. In order to
determine the effectiveness of DNPY-SBE-B-CD+RhB+SR101 as
a catalyst for oxidative hydroxylation of arylboronic acids, we
conducted investigations on various arylboronic acid deriva-
tives. As shown in Table 4, the yields of the arylboronic acid
derivatives were 88% (4b), 80% (4c), 92% (4d), 90% (4e), 87%
(af), 91% (4g), 95% (4h), 85% (4i), 85% (4j), 89% (4k), 86% (4l),
85% (4m), 82% (4n), and 84% (40), respectively (Fig. S42-S557),
indicating the universality of its catalytic activity.

In order to investigate the mechanism and the active species
of the oxidative hydroxylation of arylboronic acid derivatives,
BQ, TEA, KI, and NaN; were employed to scavenge superoxide
anion radicals (0, ~), hydroxyl radicals ("OH), holes (h*), and
singlet oxygen ('0,), respectively. As shown in Fig. 6a, the yield
of the oxidative hydroxylation of arylboronic acids decreased
significantly to only 18% after the addition of BQ. However, the
addition of NaNj3, TEA, and KI had no significant impact on the
reaction yields under the same reaction conditions, indicating
that O, is the main active species in the oxidative

Table 4 The oxidative hydroxylation of arylboronic acid derivatives®”
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Fig. 6 (a) Control experiments for the oxidative hydroxylation of
arylboronic acids in the presence of different scavengers: NaNs, BQ,
TEA, and KI. (b) The proposed mechanism for the oxidative hydroxyl-
ation of arylboronic acids.

hydroxylation of arylboronic acids. Therefore, the ALHS with
a two-step sequential energy transfer process is a typical type I
photosensitizer.

(I)H

SN Photocatalyst, DIPEA xOH

OH

> |

& q
Z 410-415 nm LED, H,O, rt,, 12 h F

4a-41

‘@/OH ©/OH /©/OH /@,OH /©/OH
NF E Cl

4a, 93% 4b, 88%

4c, 80%

4d, 92% 4e, 90%

/©/OH OOH /©/OH OHC\©/OH OH
Br O,N OHC ©/\\
2 \N

af, 87% 49, 91% 4h, 95% 4i, 85% 4j, 85%
EtO__O
NS Q
A OH OH OH
\@ T\%j/OH OH Eto)b/
X EtO
N
(@]
4k, 89% 41, 86% 4m, 85% 4n, 82% 40, 84%

“ Reaction conditions: 4-pyridylboronic acid (0.1 mmol), DIPEA (0.4 mmol), DNPY-SBE-B-CD+RhB+SR101 aqueous solution (0.5 mmol%, 3 mL),

410-415 nm LED, room temperature, 12 h. ? Isolated yields.

1876 | Chem. Sci, 2024, 15, 1870-1878

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05820d

Open Access Article. Published on 05 January 2024. Downloaded on 2/20/2026 8:24:15 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

Based on the results of the above experiments and previous
literature,**** a reasonable mechanism for the photocatalytic
reaction of arylboronic acids was proposed (Fig. 6b). Under
illumination with light, the excited state [DNPY-SBE-B-CD]*
transfers the energy to the acceptor dye to form the excited state
[RhBJ*, followed by energy transfer from [RhB]* to [SR101] to
form [SR101]*. The [SR101]* undergoes an electron transfer
process with DIPEA to form [SR101] ~ and DIPEA*, followed by
oxygen bursting [SR101] ~ and formation of O, ~, which reacts
with arylboronic acid to form the intermediate radical anion
(). 1L grabs a hydrogen atom from DIPEA™ to form interme-
diate III. Finally, intermediate III is rearranged to form inter-
mediate IV, which is subsequently hydrolysed to give the final
aryl phenol product.

Conclusion

In summary, we propose a novel approach for the effective
conversion of type II photosensitizers to type I photosensitizers
using a supramolecular strategy that employs a two-step
sequential energy transfer mechanism. The supramolecular
complex DNPY-SBE-B-CD exhibits remarkable self-assembly
and fluorescence properties in aqueous solution, and it is ex-
pected to be used as a type II photosensitizer to generate 'O,,
facilitating the photooxidation reaction of thioanisole and its
derivatives with the highest yield of 92%. Furthermore, an
efficient ALHS with a two-step sequential energy transfer
process was constructed to simulate the natural photosynthesis
system by using DNPY-SBE-B-CD as the energy donor and two
dyes, RhB and SR101, as energy acceptors, which can be used as
a supramolecular type I photosensitizer to generate O, ~ to
promote the oxidative hydroxylation of arylboronic acid deriv-
atives with the highest yield of 95%. This study not only pres-
ents an innovative methodology for constructing a sequential
energy transfer ALHS using supramolecular co-assembly facili-
tated by electrostatic interactions, but also offers an appealing
strategy for regulating the types of photosensitizers, and has
been successfully applied for efficient photooxidation reactions.
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