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Neoplasias pose a significant threat to aging society, underscoring the urgent need to overcome the
limitations of traditional chemotherapy through pioneering strategies. Targeted drug delivery is an
evolving frontier in cancer therapy, aiming to enhance treatment efficacy while mitigating undesirable
side effects. One promising avenue utilizes cell membrane receptors like the folate receptor to guide
drug transporters precisely to malignant cells. Based on the cellular folate receptor as a cancer cell
hallmark, targeted nanocarriers and small molecule—drug conjugates have been developed that
comprise different (bio) chemistries and/or mechanical properties with individual advantages and
challenges. Such modern folic acid-conjugated stimuli-responsive drug transporters provide systemic
drug delivery and controlled release, enabling reduced dosages, circumvention of drug resistance, and
diminished adverse effects. Since the drug transporters’ structure-based de novo design is increasingly

Received 18th October 2023 relevant for precision cancer remediation and diagnosis, this review seeks to collect and debate the
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recent approaches to deliver therapeutics or diagnostics based on folic acid conjugated Trojan Horses

and to facilitate the understanding of the relevant chemistry and biochemical pathways. Focusing
exemplarily on brain and breast cancer, recent advances spanning 2017 to 2023 in conjugated

DOI: 10.1039/d3sc05539f

rsc.li/chemical-science

Open Access Article. Published on 17 January 2024. Downloaded on 10/2/2025 3:58:33 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

“Leibniz Institute for Plasma Science and Technology (INP), Center for Innovation
Competence (ZIK) Plasmatis, Felix Hausdorff-Str. 2, 17489 Greifswald, Germany.
E-mail: mohsen.ahmadi@inp-greifswald.de; kristian.wende@inp-greifswald.de
*Institute of Pharmacy, Section Clinical Pharmacy, University of Greifswald,
Greifswald, Germany

Dr Mohsen Ahmadi earned his
PhD in 2019 from the University
of Greifswald (Germany). His
research revolves around the
development and replication of
the chemical synthesis of active
sites found in molybdoenzymes,
with a focus on addressing
molybdenum  cofactor  defi-
ciency. Following this, he joined
the Center for Innovation
| Competence (ZIK) plasmatis at

the Leibniz Institute for Plasma

Science and Technology (INP) in
Germany, where his work centered on the development and acti-
vation of drugs/prodrugs for the treatment of cancer and inflam-
matory diseases. Currently, his primary research interests lie in
understanding the mechanisms of drug degradation and prodrug
activation through tumor-induced reactive species simulated by
cold physical plasma. He also explores the chemistry of mimetic
systems to create therapeutic agents.

Mohsen Ahmadi

1966 | Chem. Sci, 2024, 15, 1966-2006

“Institute for Hygiene and Environmental Medicine, Greifswald University Medical
Center, Ferdinand-Sauerbruch-StrafSe, 17475 Greifswald, Germany

“Clinic and Policlinic for Dermatology and Venereology, Rostock University Medical
Center, Strempelstr. 13, 18057 Rostock, Germany

Prof. Dr Christoph A. Ritter
studied pharmacy from 1991 to
1996 at the Friedrich Alexander
University in Erlangen-Nurem-
berg. In 2000, he received his
PhD at the Faculty of Mathe-
matics and Natural Sciences of
the Friedrich-Alexander Univer-
sity Erlangen-Nuremberg (Ger-
many). After his postdoc in
Hematology-Oncology in 2003
from Vanderbilt-Ingram Cancer
Center, Vanderbilt University,
Nashville, TN, USA, he joined
the Institute of Pharmacology at the University of Greifswald as
a junior professorship. In 2007/2008, he obtained his habilitation
in the subjects of pharmacology and clinical pharmacy. Since 2009
he has held a W2 professorship for a clinical pharmacy at the
University of Greifswald.

Christoph A. Ritter

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d3sc05539f&domain=pdf&date_stamp=2024-02-06
http://orcid.org/0000-0002-7018-0460
http://orcid.org/0000-0002-1097-4832
http://orcid.org/0000-0001-5217-0683
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05539f
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC015006

Open Access Article. Published on 17 January 2024. Downloaded on 10/2/2025 3:58:33 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

View Article Online

Chemical Science

nanocarriers and small molecule drug conjugates were considered, evaluating the chemical and biological
aspects in order to improve accessibility to the field and to bridge chemical and biomedical points of view

ultimately guiding future research in FR-targeted cancer therapy and diagnosis.

1 Introduction
1.1 Cancer therapy - state of the art

Global cancer statistics estimated the incidence and mortality
for 36 cancers in 185 countries with 19.3 million new cancer
cases and almost 10 million cancer deaths in 2020." Breast
cancer was diagnosed in 2.3 million patients (11.7%), while the
share of brain cancer was only 0.3 million cases (1.6%) due to
treatment-associated complications of glioblastoma brain
tumours. Europe, with 9.7% of the global population, accounts
for 22.8% of all cancer cases and 19.6% of cancer's death toll.
Despite the massive effort put into cancer prevention and the
advanced approaches developed to tackle cancer in the past
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decade,” new methodologies and seminal breakthroughs in
cancer therapeutics are desired to cut these numbers. Hope is
put in implementing nanotechnology tools, combined with
artificial intelligence, to boost structural-based drug transporter
design to pave the way for effective and selective cancer
therapy.® Among these approaches, nanocarriers (NCs) have
gained a major role. These are nano-transporter systems of one
to 500 nm in size utilized as transport modules for drugs. NCs
were designed not only to modulate the drug's pharmacoki-
netics and pharmacodynamics compared to the administration
of free drugs but also to increase safety and efficiency by
limiting undesired side effects.* Accordingly, NCs have been
designed with high encapsulation capacities, tailored surface
chemistry, and clever concepts to conjugate the therapeutic/
diagnostic agents.” Size, shape, and surface characteristics
determine the drug delivery efficiency, drug's half-life, and drug
cytotoxicity (Fig. 1). In parallel, small molecule-drug conjugates
(SMDCs), releasing a potent cytotoxic agent when reaching
a destination - e.g., the tumour microenvironment, decreasing
the off-target toxicity — have been developed. Here, a small
molecule acts as a targeting structure to direct the conjugate,
replacing the antibody in the elsewise similar concept of anti-
body-drug conjugate but without its immunogenic nature.® NCs
and SMDCs are applied to develop passive or active targeting
systems to deliver therapeutics to cancer cells.?*** The concept
of drug delivery via passive targeting was initially utilized, e.g.,
by taking advantage of the more leaky vasculature of some
tumours rendering it more permeable for macromolecules than
in healthy tissues. This universal pathophysiological phenom-
enon allows macromolecular compounds or particles such as
albumin or polymer-conjugated drugs beyond certain sizes
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Fig.1 Passive and active targeting systems for delivery of therapeutics into cancer cells. (A) Heterogenous tumour microenvironment. (B) Passive
targeting through the EPR effect for accumulating NCs inside the tumour. (C) Drug transporter internalization into the cytosol via receptor-
mediated endocytosis. (D) Blood capillary system of healthy cells vs. cancer cells.

(above 40 kDa) to accumulate and be retained in the tumour
tissue. It was coined as the enhanced permeability and reten-
tion effect (EPR, see Fig. 1). However, the EPR effect is not
universal due to differences in the tumour microenvironment
such as degree of vascularization, lymphatic vasculature,
immune systems activity, and angiogenesis patterns.” As
a result, not all tumours may exhibit a substantial EPR effect,
limiting the applicability of drug delivery systems relying on
this effect. Besides, the lack of cellular specificity of drug
transporters in cancer cells impedes drug accumulation and
efficiency, consequently leading to drug resistance.® Meta-
analysis studies by Chan et al® and Lin et al'° have indeed
shown that the median delivery efficiencies were only 0.7% of
administrated drug transporters dose accumulated in high EPR
xenografted tumours, which is due to endothelial barriers,
endosomal escape, and clearance from the blood via the kidney
and liver.*»" This highlights the challenges associated with
narrow drug accumulation in tumours and confirm the need for
more innovative drug delivery strategies to enhance drug
delivery to tumours. Hence, active targeting strategies have
been developed based on medical, chemical, and structural
considerations, revolutionizing medicinal chemistry and
grossly enhancing selectivity (Fig. 1).

Targeted drug transporters facilitate selective delivery to
primary cancer sites and metastasis lesions, particularly in
cases involving tumours with poor EPR effect.*” Targeting drug
delivery utilizing dedicated plasma membrane receptors (Fig. 1)
is considered to increase cellular uptake and enhance the
cytotoxicity of its cargo." Several targeted-based strategies, i.e.,
receptor-mediated  transporters, monoclonal antibodies,
carbohydrate-binding proteins (lectins) for cell-surface recog-
nition, and targeting vaccine delivery, have been utilized to
modulate targeted drug delivery.”> The most effective targeted

1968 | Chem. Sci, 2024, 15, 1966-2006

delivery systems to accumulate cytotoxic agents rely upon cell
surface proteins that tend to be overexpressed in malignant
tissues, such as folate receptors," glucose transporters,*
epidermal and hepatocyte growth factor receptors,'® trans-
ferrin,"” prostate-specific membrane antigen,'® angiopep-2,*
and asialoglycoprotein receptors.”® The FR, expression in
metastatic triple-negative breast cancer (TNBC) patients is
significantly higher than in early-stage patients.**

On the other hand, the blood-brain barrier and brain-
tumour barrier restrict drug delivery into the brain, resulting in
poor diagnosis and treatment.> Transportation of NCs and
SMDCs via folate receptor-mediated strategy improves the drug
accumulation on tumour site. Apart from that, drug trans-
porters can deliver specific drugs to inhibit the efflux trans-
posers like P-glycoprotein and mediate multidrug resistance in
brain tumour treatment.*

Accordingly, promising to overcome the passive targeting
limitations, innovative folic acid-conjugated drug transporter
systems have been given significant attention in recent years.
Most of our understanding of FR-targeted drug transporters is
based on in vitro and in vivo models using carcinoma cell lines
and mouse xenografts (Fig. 2). Hence, the translation into
clinical models is needed to explore the full potential of SMDCs
and NCs in human or humanized model systems. Hence, the
intrinsic relationship between the drug transporter's chemistry
and biology might regulate the boundary that needs further
justifications to address these knowledge gaps.

To this end, the present review attempts to collect, sort, and
consider the available evidence of drug transporter chemistry
and related physical properties, as well as its delivery and
release mechanisms over the past five years. A wealth of original
contributions has been published in this considered time
frame. In order to keep the review and the number of citations

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Reported pertinent carcinoma cell lines corresponding to various FA-conjugated NCs and SMDCs for in vitro evaluation of distinct
tumours.

in a manageable scale, we selected based on the comprehen-
siveness of the material characterization, data reliability as far
as it could be judged from the publication, and on originality
and chemical aspects of the approach. We will focus on brain
and breast cancers since both malignancies have different
biological backgrounds and physiological barriers impeding
access (e.g., blood-brain barrier). A further major aspect is
shedding light on the relation the chemical modification of
drug transporters into their biological aspect to the outlook of
forthcoming directions in targeted cancer therapy and diag-
nosis. Apart from chemical interpretation, we discuss patho-
physiological and pre-clinical challenges and barriers toward an
effective and safe translation into clinical application.

1.2 Drug transporters

The concept of targeted drug delivery has been around for two
centuries, and active targeting remains a fascinating approach
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for scientists to design multi-functionalized therapeutics.**
Despite the rapidly growing domain of small molecule-drug
conjugates (SMDCs), only Lutathera (*”’Lu-DOTATATE) targeting
peptide receptor is approved for gastroenteropancreatic neuro-
endocrine tumours.®** In addition, the folate receptor targeted
SMDCs, such as vintafolide (folatedesacetylvinblastine hydra-
zide), OTL-38 (Pte-Tyr-NIR-dye), EC17 (folate-fluorescein iso-
thiocyanate), etarfolatide (folate->™Tc), etc. are in the clinical
trial.**** On the other hand, various types of folic acid (FA)-
conjugated NCs utilized for targeted drug delivery have been
developed and are schematically illustrated in Fig. 3A. To this
end, the percentage of reported FA-conjugated NCs and SMDCs
constructed for cancer diagnosis and therapy over the past years
underlines their importance (Fig. 3B). The current landscape of
Food and Drug Administration (FDA)-approved and currently in
clinical phases tested drug transporters have been reviewed
(Corrie et al.,”” and Anselmo and Mitragotri et al.?®). Liposomes,
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(A) Various types of nanocarriers (NCs) utilized for targeted drug delivery. (B) The approximate percentage of reported FA-conjugated NCs

for cancer management for all types of cancer (a) and specifically in brain and breast cancer (b). (C) Schematic visualization of NCs regarding the

physical properties.
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PEGylated liposomes, protein-based NCs, and polymeric NCs in
general are the main NCs that have been approved as nano
vehicles for drug delivery (Table 1).

Nanocarriers represent an excellent promise for efficient
drug delivery due to their high surface area and volume ratio for
drug encapsulation, enhancing drug pharmacokinetics and
biodistribution, and cytotoxicity via active targeting strategies.*
The physicochemical properties of NCs can be tuned as desired
depending on the target cancer via altering their composition,
morphology, size, shape, surface, and conjugation chemistry,
ultimately significantly impacting their biological activity along
the way and after reaching the tumour site.*® Surface charge is
a distinct property of NPs and refers to the net electric charge
present on the surface of the particles due to charged functional
groups or ions. The amphiphilic characteristics of NPs dictated
by their hydrophobic and hydrophilic properties, which are
fundamental determinants controlling their interactions within
complex biological matrices. However, the surface charge and
hydrophobicity/hydrophilicity can influence each other to some
extent. For instance, charged functional groups on the NP's
surface can contribute to its hydrophilicity, making it more
likely to interact with water molecules. A neutrally charged
surface may be hydrophilic (using, e.g., zwitterions or poly(-
ethylene glycol)). In contrast, a charged surface may be hydro-
phobic if the (negative or positive) charge density is low because
of, for example, hydrophobic linkers.

In parallel, the zeta ({)-potential needs to be considered as
a parameter that depends on the surface charge directly related to
the colloidal stability of NCs in suspension over time and influ-
ences their early adsorption (or adhesion) onto the cell
membrane circulation time, metabolism, clearance, and recog-
nition by cells of the immune system. Thus, various aspects of
interfacial phenomena regarding the {-potential in chemistry that
satisfyingly interplayed with biology evaluations have been
studied.*® The schematic visualization of NCs regarding the
physical properties is depicted in Fig. 3C. The {-potential should
not be considered an absolute criterion on its own. The {-poten-
tial, which is the electrical potential at the plane of shear or the
hydrodynamic slip plane near a solid surface, serves as an indi-
cator of the electrostatic repulsion forces acting between particles.
The repulsion force helps to prevent the aggregation or floccula-
tion of NPs. Particles have high {-potentials (either positive or

View Article Online

Review

negative), the electrostatic repulsion between them promoting
dispersion and stability. A range of +25 mV is often considered
a guideline for sufficient repulsion force to maintain colloidal
stability. The {-potential is not static and can shift depending on
the environment. For example, in a physiological medium, the
high concentration of counter ions (such as salts) screens the
electrostatic repulsion, reduces the effective {-potential and
weakens the repulsion forces, which may cause NC agglomera-
tion, even if their potential is beyond £25 mV in deionized water.
Moreover, highly charged NCs will interact strongly with proteins
(protein corona) and other macromolecules, making them less
stable in serum than neutrally charged but hydrophilic NCs.
Therefore, only {-potential values may not fully capture the NP's
stability in complex biological environments.

Apart from the surface charge, particle size mainly affects
the drug pharmacokinetics via the biodistribution of drug-
loaded cargo to the cancer tissue by the EPR effect. Indeed,
the optimal particle size is between 20-200 nm to prevent
particle clearance in the kidney and liver. Larger particles are
recognized and phagocytosed by Kupffer cells in the liver from
the bloodstream. In comparison, smaller particles below the
renal filtration threshold (typically around 5-6 nm) can be
excreted through kidney filtration and eliminated via urina-
tion.” It is worth noting that particle size alone is not the only
factor determining NP's clearance. Other factors, such as
surface charge, surface modifications, and surface coatings,
can also influence the interaction with the immune system
and clearance pathways.*” For example, the choice of spacers
and linkers in the chemical modification of NCs and SMDCs
holds the potential to influence crucial factors such as size,
shape, and charge.*® In parallel, these selections can also exert
a significant impact on loading capacity, circulation time
within the bloodstream, and the subsequent release dynamics
upon accumulation at the tumour site.* (refer to Section 1.3).
Zhang et al. recently reported the chemical structure of charge-
reversal NCs to enhance their cellular uptake to achieve pro-
longed blood circulation and decreased systemic toxicity.*
These factors were interpreted by Patra et al. in detail to
control renal clearance and improve the success rate of clinical
translation of NCs in cancer diagnosis and therapy®® (refer to
Section 4 for more details).

Table 1 The current overall status of approved or actively undergoing clinical assessment of nanocarriers (NCs)

Name Vehicle (loaded drug) Cancer type Ref.
Doxil® PEGylated liposome (doxorubicin) Breast and ovarian cancer 37
Onivyde” PEGylated liposome (irinotecan) Solid tumour entities: metastatic pancreatic cancer and breast cancer (phase I) 38
Myocet® Liposome (doxorubicin) Metastatic breast cancer 39
Abraxane? Albumin-bounded NC (paclitaxel) Metastatic breast cancer 40
Lipusu® Liposome (paclitaxel) Breast cancer and non-small cell lung carcinoma (NSCLC) 41
Genexol-PM Copolymeric micelle (paclitaxel) Breast cancer and NSCLC 42
EndoTAG-I¥ Liposome (paclitaxel) Triple-negative breast cancer 43

“ FDA-a}gproved nanocarrier (Cyelax in European union (EU)) composed of hydrogenated soy phosphatidylcholine (HSPC), cholesterol, and DSPE-

PEG,.

Known as MM-398. © European Medicines Agency (EMA)-approved nanocarrier composed of egg phosphatidylcholine (EPC) and

cholesterol. ¢ FDA-approved nanocarrier. ° Approved in China. Approved in South Korea (composed of the polylactide-block-PEGs copolymer).
¢ Developed by MediGene (composed of cationic dioleoyltrimethylammoniumpropane (DOTAP) and neutral dioleoylphosphatidylcholine (DOPC)).
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1.3 Structural design, loading, and release chemistry

1.3.1 Structural design. Fine-tuning the physicochemical
properties of folic acid (FA)-conjugated NCs and SMDCs
utilizing biocompatible linkers and spacers with negligible
toxicity to achieve desired pharmacological activity and remain
intact during systemic circulation.”** The use of linkers and
spacers is crucial to ensure the stability and integrity of the drug
transporters and used to connect the drug payload or trans-
porters to the targeting ligand (folic acid; FA) and allow for
controlled release of the drug at the target site. Linkers and
spacers are molecular components strategically designed to
fulfil multiple functions, e.g., cleavage in response to specific
stimuli, within drug transporters. These are strategically chosen
based on the desired drug release profile, target site conditions,
and the specific therapeutic goals of the drug delivery system.
Besides, a precise structural design of drug transporters needs
to be tailored not only for successful drug delivery and
controlled release but also to overcome the main biological
barriers like stability in the bloodstream, evasion of the retic-
uloendothelial system (RES), and overcoming cellular barriers,
such as endosomal escape for effective intracellular drug
delivery on its journey (see Section 4). However, the FR-targeted
NCs displayed a releasing itinerary after internalization into
cancer cells, which depends on (i) the composition of NCs, (ii)
the type of stimuli-responsive linkers and spacers employed in
NCs or SMDCs, (iii) degradation rate upon internal and external
stimuli at the tumour site.

1.3.2 Loading chemistry. Loading (encapsulation) chem-
istry is essential to trap therapeutic or imaging agents into
a carrier matrix and improve their solubility, stability, and
bioavailability by altering their biodistributions. Thus, the size
and chemical composition of targeted NCs and SMDCs having
various intramolecular interactions impact the network
structure of carriers to trap various drug types. Therefore,
loading and release chemistry need to be aforethought
compelling a successful preclinical evaluation. For example,
several studies demonstrated*® that hydrogen bonds have
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significant properties to interact with hydrophilic or hydro-
phobic drugs to adjust loading efficiencies’® and maintain
intact drug delivery during blood circulation, reduce systemic
adverse to the healthy cell and enhance permeability into
tumour tissues.® in addition, drug loading capacity below 10%
wt/v is a crucial shortcoming that needs to be improved during
the fabrication and chemical modifications via creating
nanoporous materials, conjugation of drugs to the NC or
fabricating carrier-free nano-agents.*’

1.3.2.1 Linkers. Linkers carrying modifiable functional
groups such as thioether (sulphide, sulfoxide, thioketal),*®
acetal (ketal),* carbamate,*® amine and hydrazine,** hydroxyl,*>
borate ester,*** disulfide,** acetyl-hydrazone,* and carbodii-
mide,* (in particular via EDC-NHS cross-linked method)*” are
necessary for a facile conjugation with or release of the cargo
drug from NC and SMDCs** (Fig. 4A). EDC-NHS cross-linking
method is commonly employed to conjugate carboxylic acid (-
COOH) moieties with primary amine (-NH,) groups, resulting
in the formation of an amide bond. For example, amino acids
such as glycine, serine, and lysine contain both amino and
carboxyl groups, and can therefore serve as linkers. Disulphide
linkers are responsive to the reducing environment found in
intracellular compartments that can be selectively fractured, for
instance, by intracellular glutathione, enabling intracellular
drug release.*® Clickable linkers such as azides or alkynes allow
for specific and rapid conjugation reactions with complemen-
tary functional groups.® Light-responsive linkers such as pho-
tocaged C40-oxidized abasic site (PC4AP) incorporated into
peptide- and protein-drug conjugates that undergo photo-
decaging in response to light irradiation.*®

The incorporation of stimuli-cleavable linkers into drug
delivery systems provides a powerful strategy for on-demand
drug release. Structural modifications of the heterobifunc-
tional linker may control the physicochemical properties of
NCs,* SMDCs,** and antibody-drug conjugates,® resulting in
more effective cancer therapy and diagnosis. For example,
disulphide-containing linkers displayed superior activity
against folate receptor-positive FR(+) cells**** and could lead to
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the payload release upon reduction by glutathione.** According
to Song, Ding, and Yang et al., the utilization of amide, dis-
elenide, and ester linkers has significantly promoted on-
demand drug release.®> Notably, pH-responsive linkers such
as hydrazine and acetal linkers can be disintegrated from acid-
liable functional counterparts due to a lower endosomal and
lysosomal pH than cytosol pH.** Drugs such as mitomycin C**
and camptothecin® are masked using benzyl carbamate disul-
phide and disulphide carbonate, respectively. In a different
example, a thioether propargyl carbamate linker can be conju-
gated to a cysteine residue through site-specific protein
modification.*

1.3.2.2 Spacers. Spacers are flexible molecules with different
lengths or polarity that have been extensively utilized in bio-
conjugate chemistry and need to be biodegradable, non-toxic,
and biocompatible, having functional groups to correlate
linkers with other bioconjugates, such as folic acid and thera-
peutic agents (or vice versa) (Fig. 4A). Although spacers and
linkers are often equivalently categorized in the literature, they
must be classified according to discreet chemical properties
and activation (degradation) mechanisms. Hence, spacers
could respond to stimuli for degradation after accumulating in
tumour tissue (which could be different from linkers) to release
the payload. Thus, spacers could have similar structural func-
tionalization to bond with NCs and SMDCs, but not necessarily.
However, spacers are generally applied to reduce steric bulki-
ness for two main reasons: (i) to accelerate the release process
(drug release triggered by stimuli like enzyme, redox potential,
and reactive species), (ii) to increase the distance between the
triggered cleavable bonds conjugated between the folic acid and
drug transporter. Spacers are not only used for stimuli-
responsive payload NCs,*” but also utilized for SMDCs,* and
prodrugs concepts® for on-demand drug release.

1.3.3 Release chemistry. The ultimate objective in
achieving effective drug delivery lies in achieving precise and
controlled payload release triggered upon stimuli. The structure
of spacers and linkers utilized in NCs or SMDCs can be frac-
tured at the tumour site and prevent premature release,
resulting in a precise release of the therapeutics or imaging
agents. Disassembling of spacers and linkers upon stimuli has
been recently studied.”® Among various spacers, the stimuli-
triggered degradation of self-immolative polymeric spacers
has been extensively discussed.®””® For example, inserting pol-
y(ethylenglycol) (PEG) and polyethylene (PE) as a spacer
between the linker and the therapeutic agent or FA structure
could strongly correlate with polymer length and flexibility.”
Moreover, proteins, peptides, and polypeptides are remarkable
examples of conformational sequenced amino acids that can be
exploited as flexible spacers.” Furthermore, it is crucial to take
into account the cumulative and sustained release of payload to
ensure optimal efficacy in both therapeutic interventions and
diagnostic applications. Thus, the controlled-release mecha-
nism and precise kinetic of stimuli-responsive NCs after accu-
mulation in tumour tissue upon on-demand stimuli guarantee
high-dose drug delivery and reduce undesired uptake by non-
malignant cells.®»” Generally, the successful release mecha-
nism of stimuli-responsive NCs and SMDCs relies on triggered
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cleavability within the tumour microenvironment (internal
stimuli), such as pH, enzymatic acidity, glutathione, hypoxia,
redox potential change via ROS, or external stimuli, such as UV-
vis-NIR irradiation, electromagnetic or magnetic induction,
ultrasound, temperature, photo induction, and mechanical
factors. These elements facilitate the controlled degradation of
drug transporters into individual units through the fracture of
linkers and spacers, ensuring effective drug delivery (Fig. 4B).”

1.4 Folate receptors - distinct cellular markers

Folate receptors (FRs) are single-chain glycoprotein-based
receptors (35-40 kDa) that are expressed in four isoforms
(FR,, FRg, FR,, and FR;).** Those isoforms display almost 70%
amino acid sequence identity. FR,, FRg and FR; are glycosyl-
phosphatidylinositol-anchored proteins, whereas FR, lacks
the GPI-anchor region.” Cellular uptakes of folic acid (FA) occur
via FR,, and FRg which are located on the cell surface by a c-
terminal GPI-anchor. Despite the sequence divergence of FR,
and FRg on their carboxy-terminal, the binding affinities to FA
and its reduced folate forms (i.e., methyltetrahydrofolate and
tetrahydrofolate) are relatively similar. In this process, FA and
reduced folate bind to the FRs (binding affinity (Kg) ~10'° M)
in the extracellular milieu and are then internalized into the
cell, followed by the subsequent release of FA into the cytosol.
Dann et al. reported structural models of the endocytic traf-
ficking of FRs and their pH-dependent conformational
changes.” Changes in FR conformation at pH 7.4 before the
association of folate in an open state (Fig. 5A). In contrast, the
FR interacted with folate via amino acid residues aspartic acid
(Asp)97, tryptophan (Trp)154, histidine (His)151, and serine
(Ser)150 (Fig. 5B). The close form in acidic pH (pH range ~5.6 to
7.2), the conformation of FR was changed after folate release
(Fig. 5C).”

The pterin ring of the folate molecule is located at the end of
the active site cavity. At the same time, the 4-aminobenozyl
moiety interacts via hydrophobic interactions in the central
region of the cavity. In contrast, the y-carboxylate of the glutamyl
tail is partially exposed to solvent.” This group is more accessible
to solvents than the pterin amine (which is poorly reactive),
which makes it a preferred site for modification and conjugation
while maintaining the affinity of FA to the FR. A very classical
route that should be mentioned is the activation of the carboxylic
acid to form the folate N-hydroxysuccinimide (NHS) ester, which
is then reacted with a primary amine on the bioconjugation
partner, forming stable amide bonds. Of note, the pterin amine
can potentially participate in chemical reactions. However, the
pterin ring system leads to electron delocalization and stabili-
zation of the overall structure, reducing its reactivity and making
it less prone to undergo nucleophilic reactions. In the context of
drug conjugation, the limited reactivity of this amine requires
additional activation or modification steps to enhance its reac-
tivity and enable efficient conjugation with molecules or carriers.
However, the conjugation on the pterin amine site of FA
decreases the affinity to the FR.

FR, is predominantly overexpressed in brain, colon, kidney,
ovarian, breast, and lung cancers.” In contrast, the expression of
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FRg is detected mainly in activated macrophages due to stimu-
lation by mediators of inflammation.” The expression of FRs in
carcinomas is approximately 300-fold higher than in healthy
cells, estimated to be 1-10 million copies per cancer cell,***” and
the receptor-recycling rate is higher in malignant than in non-
malignant cells.* Of note, FA is a non-immunogenic water-
soluble B vitamin that can be converted to tetrahydrofolate via
dihydrofolate reductase. Besides, the FA is an essential cofactor
in single-carbon methylation reactions and two steps of de novo
purine biosynthesis, which is required for amino acid metabo-
lism, DNA synthesis, and repair.®* In principle, FA endocytosis is
crucial for tumour tissues to sustain their chronic proliferation.*
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FRs have the most potential for prognostic biomarkers for
a selective internalization of FA-conjugated drug transporters via
FR-targeting by the cancer cells, known as the - Trojan Horse - for
the delivery of therapeutics. Accordingly, the FA molecule can be
decorated by glutamic acid (at the a- or y-positions) to drug
transporter, with minimal change of their binding affinity to the
FRs (Fig. 6A). Therefore, drug transporter with small nucleotide
size to large polymeric or protein constructs have been consid-
ered for targeted delivery of drugs and multidrug to the tumour
tissue by FR-mediated endocytosis to enter the cytosol.** Fig. 6B
provides a schematic illustration demonstrating an FA-
conjugated drug transporter and the process of its internaliza-
tion via FR-mediated pathways. Cellular drug uptake reveals that
FA-conjugated drug transporter is internalized into endosomes
by FR-mediated endocytosis and detached from FR encountered
with a slight drop of pH to about five within the endosome
through the action of proton pumps.** FRs ideally return to the
cell surface for further FA-conjugated drug transporter internal-
ization, and the functionally active drug cleaved in the lysosome
enables drug accumulation in cancer cells.

2 Folic acid (FA)-conjugated
nanocarriers
2.1 Breast cancer

Breast cancer predominantly arises from mutations affecting
steroid receptors, specifically estrogen (ER) and progesterone
(PR) receptors.® This malignancy manifests primarily through
several molecular subtypes, with a notable emphasis on
hormone receptor-positive variations. These subtypes encom-
pass the ER- and PR-positive Luminal A and ER-positive
Luminal B categories. Conversely, the human epidermal
growth factor receptor 2 (HER2)-enriched subtype of breast
cancer, constituting a distinct category, is characterized by the
absence of ER and PR receptor expression, thus leading to
a notably more unfavourable prognosis.** Conclusively, basal-
type breast cancer, often referred to as triple-negative cancer,
exhibits an absence of ER, PR, and HER2 expression, leading to
an even graver prognosis and markedly reduced survival rates.
Current treatment options depend on the type, stage, and
individual conditions, usually a combination of surgery,
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chemotherapy, and radiotherapy, and are associated with
substantial adverse effects with severe personal and societal
impact.*” To ameliorate these challenges, FR-targeted strategies
by utilizing the FA-conjugated nanocarriers (NCs) hold consid-
erable promise in facilitating the specific delivery of chemo-
therapeutics to cancer cells.®® The following section will review
the advances in the field of FA-conjugated NCs for treating - or
diagnosing - breast cancer in vitro and in vivo.

2.1.1 Polymeric nanocarriers. Polymers contain repeating
subunits with several functional groups having a large surface
area/volume ratio and the ability to conjugate with biomole-
cules or encapsulate (entrap) molecules in the particle bulk or
its surface. The essential advantages of polymeric NPs (PNPs)
driving lasting interest are their multifunctional ability to
conjugate with drugs, low immunogenicity, high biocompati-
bility, and biodegradability - e.g., natural polymers — making
them an appropriate candidate for targeted drug delivery. PNPs
are stimuli-responsive drug transporters; thereby, their physi-
cochemical properties, such as size, surface charge, and
morphology, can be tuned by adjusting the molecular and
structural composition. For example, their morphology can be
altered by varying the preparation method and composition
matrix, leading to the formation of micelles, spheres, core-shell
particles, or capsules as desired for better drug loading and
release control.’

Chitosan is widely utilized to build drug transporters due to
its unique properties, such as nontoxicity, hydrophilicity, and
water solubility. Chitosan is a linear cationic polysaccharide
composed of randomly distributed B-(1 — 4)-linked p-glucos-
amine and N-acetyl-p-glucosamine that has been considered to
fabricate PNPs. Chitosan's properties can be improved and
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tailored to introduce new functional groups on its skeleton
through chemical modifications. Sohail et al.* grafted thiol and
folic acid (FA) onto chitosan to formulate PNPs for delivery of
docetaxel (DTX), resulting in an enhanced internalization into
MDA-MB-231 cells and improving the oral absorption level of
DTX (Fig. 7A). In this method, drug is encapsulated into PNPs
using the ionotropic gelation technique with tripolyphosphate
(TPP) as the crosslinking agent.”® The positively charged amine
groups on chitosan can interact with the negatively charged
phosphate groups on TPP to form a nanoparticle structure via
ionotropic gelation. In this context, Shao et al®* and Li et al.”*
utilized TPP to formulate cross-linked FA-conjugated chitosan-
based NPs to deliver ligustrazine and catechin to breast
cancer cells. When NPs are introduced into the body, they may
interact with various cell types, including immune cells, endo-
thelial cells, and other healthy cells. The reported formula-
tions®**> had no significant cytotoxicity in vitro as high as
~0.5 mg mL ™" of unloaded PNPs. However, Sohail et al.® first
found that PNPs show improved antitumour cytotoxicity (ICso ~
0.58 ug mL ') against MDA-MB-231 cells, which is significantly
lower than free DTX. Additionally, ex vivo analysis demon-
strated that in the presence of verapamil (100 pg mL ™), DTX
absorption of DTX-loaded thiolated-chitosan-based NPs was
enhanced, which is related to the P-glycoprotein (P-gp) efflux
pump inhibition. The apparent permeability coefficient
enhancement ratio from the apical to the basolateral surface of
rat intestine was reported to be about 11-fold higher for the
thiolate-modified PNPs due to the inhibitory effect of their
thiolated bonds to conjugate with cysteine of the protein tyro-
sine phosphatase, indicating a promising avenue in FA-
conjugated NC research. The impact of thiolation on the
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chemical, physical, and biological properties of chitosan is
extensively reviewed by Bernkop-Schniirch.”®* As shown in
Fig. 7B, Rafienia et al.** fabricated MBZ-loaded FA-conjugated
chitosan-based NPs cross-linked with TPP to increase their
mechanical strength, stability, and drug release properties. The
cylindrical subcutaneous implants containing the chitosan-
based NPs are implanted in BALB/c mice xenografted with
triple-negative 4T1 cells, which are known to be designed for
under-skin implantation for sustained release of the drug.” The
implanted NPs in the tumour-bearing mice's flank were
degraded after 18 days, released the NPs on 4T1 cells, inter-
nalized with FR-mediated endocytosis, and inhibited tumour
volume growth.

The degree of folic acid (FA) substitution refers to the
number of FA conjugated to each chitosan molecule that
significantly affects NPs properties such as size, morphology,
release profile, loading efficiency, and loading capacity. Cur-
cumin (CUR)-loaded chitosan-based NPs reported by Bagheri-
Khoulenjani et al.®® showed the highest degree of substitution
when the 16: 1 ratio of FA: H-chitosan (400 kDa) was utilized.
However, the 1:1 ratio of FA with L-chitosan (40 kDa) showed
better loading efficiency (~90%), and faster CUR release
kinetics by decreasing the pH from 7.4 to 5. However, the choice
between H-chitosan and L-chitosan for FA conjugation depends
on the specific application and desired properties of the
resulting NPs.

In contrast to chitosan, dextran is a branched polysaccharide
consisting of «-1,6 linked glucose monomers with «-1,3
branches that have been used to encapsulate hydrophobic and
hydrophilic drugs (Fig. 7C). However, the drug-loaded dextran-
based NPs stability and release profile can be affected by the
physiological environment, such as pH and ionic strength. Yang
and Li et al. explored pH-dependent self-assembled doxorubicin
(DOX)-loaded FA-conjugated dextran NPs that can be degraded
in an acidic tumour microenvironment.’” The esterification of
the accessible y-COOH of FA and -OH of dextran was reported
as the central polymeric core to encapsulate the DOX (Fig. 7C).
The DOX release was about 76% at pH 5.5, significantly higher
than at pH 7.4 (~42%). The authors claimed that the high
degree of substitution (79 FA molecules/per dextran) is due to
protonation/dissociation of the free a-COOH at pK, ~5.8 not
only stabilized dextran NPs but also enhanced in vitro FR-
mediated cellular uptake of FA-decorated NPs in FR(+) 4T1
cells. They reported that FA-conjugated PNPs show the highest
tumour inhibition, about 75%, compared to non-targeted NPs.

Cyclodextrins (CDs) are amphiphilic cyclic oligosaccharides
with 6 to 8 glucopyranose units that can encapsulate poorly
water-soluble drugs in the inner hydrophilic cavity and release
the content under physiological conditions of tumour tissue
(Fig. 7D). Bilensoy et al. reported active targeting delivery of
paclitaxel (PTX) via FA-conjugated CD-NPs for reducing toxicity
and increasing the PCX antitumour efficacy for metastatic
breast cancer.”® In their system, the FA was conjugated through
the Cg linker chain onto the CD's derivatives on the secondary
face (FCD-1 with neutral surface charge) and primary face (FCD-
2 with negative surface charge) to render active targeting
(Fig. 7D). The reported PNP formulation has caused cytotoxicity

© 2024 The Author(s). Published by the Royal Society of Chemistry
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and cellular uptake of FCD-1 NPs into the 4T1 cells. The large
number of aliphatic chains of FCD-1 compared to FCD-2
provided stronger interactions with PTX and more sustained
drug release. The in vitro PTX release was about 96% after 24 h.
Due to the low aqueous solubility of PTX, a mixture of Cremo-
phor EL (CrEL), and dehydrated ethanol (1:1 ratio v/v),
a compatible anticancer activity was reported in so-called
CrEL formulations.”® Along the same lines, Bilensoy and
colleagues state that CrEL-free PTX-loaded FCD-1 and FCD-2
NPs significantly reduced tumour burden.”® It was shown that
FCD-1 NPs significantly improved the survival rate of mice by
reducing in vivo toxicity to healthy tissues. An enhanced anti-
tumour efficacy was achieved by administrations of 1.25 mg
kg™" of FCD-1 NPs per day for 20 days compared to unloaded
FCD NPs.

Sarrafzadeh and Khorramizadeh investigated B-CD with
seven glucopyranose units to incorporate zinc oxide (ZnO).'*
ZnO with a high surface area and low toxicity has the ability not
only to encapsulate the drugs but also to conjugate with CUR, as
described by the authors. In addition, ZnO mediates anti-cancer
effects on its own. Therefore, ZnO B-CD nanostructures func-
tionalized with 3-mercaptopropionic acid (MPA) and FA in order
to target the delivery of CUR to MDA-MB-231 cells. The MPA can
be coordinated by substituting the S atom at the ZnO site, while
B-CD can bind to the ZnO surface.'** The hydrodynamic particle
size was reported at about 120 nm with a {-potential of
—22 mv." The authors claimed that the CUR was mainly
placed into B-CD cavities on the surface of ZnO. However, CUR
loaded in the outer layer of B-CD is not excluded. The authors
reported that FA-conjugated PNPs displayed superior toxicity
activity against MDA-MB-231 cells, with no effect on healthy
HEK 293 cells.

Poloxamers, also called pluronic, belong to amphiphilic tri-
block copolymers that have been used to fabricate PNPs suitable
as water-insoluble drug carriers due to their core-shell struc-
tures, critical micelle concentration value (CMC), and a higher
ratio of hydrophilic-lipophilic balance (HLB) in aqueous
media.'* Following this rationale, Bothiraja et al. fabricated FA-
conjugated triblock pluronic F127 micelles in which festin (FS)
is encapsulated in hydrophobic poly(propylene oxide) (PPO)
cores (Fig. 7E)."* Rupture of the micelles and full cumulative
release of FS were reported within 12 h, while the initial burst
release was about 30-40%. Notably, about 80% of FS was
released from the micellar cores at pH 5, which was higher than
at pH 7.4 (~50%). In addition, the authors found that FS's
cellular uptake from FA-conjugated micelles increased about 6-
fold compared to non-targeted micelles. In another study,
a mixed pluronic PF127/F68 micelle was utilized by Patil and co-
workers.'” In this design, the micelle was conjugated with FA
for targeted delivery of chrysin to MCF-7 cells and enhanced the
drug's oral bioavailability. Pluronic F68 is composed of
a shorter hydrophobic polypropylene core resulting in low
loading capacity due to its high CMC value. To address this
problem, the proportional contribution of F127 and F68 must
be considered to balance the HLB and improve the drug
encapsulation efficiency and release.'” The proportion affected
micelle size from 152 to 420 nm ({-potential ~ —21 mV), which
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is attributed to the hydrating of polymer chains.** The authors
found that about 75% of chrysin was released after 24 h from
the micelles at pH 6.8. The CMC of the FA-conjugated mixed
micelle was 1.52 mg mL ™', which was lower than the FA-
conjugated PF127 micelle due to its higher lipophilicity. The
GI5, value of the conjugated micelle was reported at about
16.5 mM, higher than free chrysin and non-conjugated
micelles.

Several polyesters such as PGA, PBL, PVL, PCL, PLA, PLGA,
and PDO have been used for the fabrication of amphiphilic
block copolymers. In this context, Vu-Quang and Tran et al
reported a self-assembled pluronic P123-grafted chitosan
nanogel conjugated with FA for the co-delivery of PTX/CUR to
MCF-7 cells.’® Pluronic P123 was activated by p-nitrophenyl
chloroformate (NPC) and substituted with a poly-3-amino-1-
propanol sidechain. The resulting NPC-P123-OH is conjugated
with -NH, of chitosan at pH 5 via carbamate formation. The size
of the nanogels was distributed about 51 nm utilizing a micelle
admixture of chitosan:P123 with a weight ratio of 1:20 and
a CMC value of 0.08 mg mL™". Both PTX and CUR were
encapsulated in the hydrophobic PPO core. The cumulative
release rate was reported as about 23% of PTX/CUR at pH 5.6
after 48 h. The CMC indicates the polymeric network's micellar
stability, size, and viscosity that influence drug loading effi-
ciency and release from the micelles. The authors reported
more sustainable stability at a lower concentration of P123 ({-
potential ~ +39 mV) and a lower CMC profile (~0.036 mg mL™%).
In addition, the synergistic effect of PTX/CUR was confirmed via
observation of a pronounced anticancer activity for dual-loaded
micelles (ICso ~ 5.7 nM) compared to PTX-loaded micelles (ICs,
~ 8 nM). In line with the above investigation, the approach was
studied in multi-drug resistant MCF-7/ADR cells by Hong et al.
utilizing pH-sensitive pluronic L61 unimers for the co-delivery
of CUR and DOX.'” Unimers refer to individual polymer
chains (micelles) formed in solution with unassembled struc-
tures. Micellar copolymer poly-histidine (Phis)-PLA-PEG-PLA-
Phis and pluronic 127 (F-pHSM-L61/CUR/DOX) was partially
conjugated with FA for two reasons: first, the hydrophilic
poly(ethylene oxide) structures of F127 ensure the prolonged
circulation of the micelles and could also promote gelation.'*®
Second, L61/CUR facilitates endosomal escape to overcome the
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MDR of breast cancer.'” The authors found that the pluronic
L61/CUR micelles downregulated the expression of P-gp in
response to drug efflux from the cancer cells."” In vivo DiR
fluorescence imaging after administration of FA-conjugated
DOX/CUR/DiR micelles onto the tumour-bearing mouse
model exhibited the accumulation of DiR in the tumour site,
cell proliferation inhibition, and mitochondria-mediated cell
death. Poly(ADP-ribose) polymerase protein (PARP) cleavage
corroborated that the antitumour effect is associated with pro-
apoptotic effects. Very recently, Yang and Liu et al. designed
dual-targeted pH-sensitive polymeric micelles constructed
using the hyaluronic acid-modified poly-histidine (HA-PHis)
and FA-conjugated F127."° Interestingly, the effect of FA-
conjugated DTX-loaded micelles on the cell survival rate (ICs)
in HepG2 and MCF-7 cells was reported about 2.5 and 10 pg
mL ", respectively.

The a-tocopheryl polyethylene glycol succinate (TPGS) is
a water-soluble synthetic derivative of a-tocopherol combining
hydrophilic PEG and hydrophobic alkyl chain (Fig. 8A). In this
context, Su and Ping et al. utilized TPGS2k, a polymeric carrier,
to conjugate the FA and mitoxantrone (MTO) (Fig. 8B)."** This
system was designed to deliver MTO via FR-targeting to MCF-7
cells. The optimized CMC of TPGS2k, MCT, and FCT were found
to be about 0.0251, 0.072, and 0.0338 mg mL™ ", respectively,
lower than that of TPGS1k (0.2 mg mL ™ '). A lower CMC can
contribute to improved stability of micelles and resistance to
dissociation in certain contexts, such as the bloodstream. The
authors found that the initial drug release at pH 5 was 35% for
MTO-MCT and 40% for MTO-FMCT. In contrast, the cumulative
drug release reached 76%, and 86% after 40 h, remarkably
higher than that observed at pH 7.4.

Advanced breast cancers tend to metastasize in bones, lungs,
liver, and brain;'** therefore, several studies have been per-
formed utilizing biomarkers for diagnosis and chemo-
therapy.'** The bones are the first site of action (60-80%) often
detected in those with stage IV breast cancer.'** Recently,
Chiang and Chiu et al. reported dual bone- and tumour-targeted
chemotherapy utilizing a polymeric-based vehicle comprising
PLGA core coated with alendronate-modified FA-conjugated
TPGS to deliver PTX to 4T1 cells and bone matrix (Fig. 8C)."**
Alendronate, a member of the N-containing bisphosphonate,

Tibia (L) Tibia (R)

Ca? ‘
v Far T )
B - )2 €a?

Dil-labeled FEL- S50

(A) The chemical structure of TGPS. (B) Schematic diagram of MTO-FMCT NPs. Reproduced with permission from ref. 111. Copyright

2017, American Chemical Society. (C) ALN/FA-decorated PTX-loaded NPs utilized for bone metastatic breast cancer (left) and ex vivo NIR
fluorescence images of the isolated tibias of 4T1 tumour-bearing mice at 8 h post-injection with PBS and different Dil-labeled NPs (right).
Reproduced with permission from ref. 115. Copyright 2020, Royal Society of Chemistry.
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can be conjugated to TPGS, providing additional functionalities
such as targeting bone tissue™® or inhibiting osteoclast
activity.”*® The results demonstrated a superior alendronate-
mediated binding affinity for hydroxyapatite in the bone
matrix using Rho-labelled NPs. An elevated level of cellular
uptake of drug payload via FR-targeting to FR(+) 4T1 cells was
reported compared to FR(—) A549 cells. Meanwhile, in vivo PTX
accumulation in bone metastases was monitored via enhanced
fluorescence signals of the tumour-bearing right tibia compared
to the left tibia after intravenous injection of various Dil-loaded
PNPs (Fig. 8C).

PLGA enhances the bioavailability of encapsulated drugs
from degradation and premature release. Hence, an FA-
conjugated PLGA-based NC reported by Debnath et al. for co-
delivery of gemcitabine (GEM) and CUR to MDA-MB-231 and
MCF-7 cells,*” to address an issue for TNBC that has become
increasingly resistant to GEM due to overexpression of hypoxia-
inducible factors. The authors reported a biphasic release
pattern with an initial burst that was followed by a sustained
release of GEM/CUR. The FA-conjugated drug-loaded PNPs led
to a strong apoptotic cell death attributed to significantly
upregulated p53 and Bax proteins. At the same time, B-cell
lymphoma 2, cyclooxygenase-2, NF-kB, and p65 were down-
regulated in PNP-treated cancer cells. PLGA-based NPs can also
be radiolabelled by attaching a chelator to the surface of the NPs
that can be complex with the radioisotope. In another study, the
authors fabricated technetium-99m (°°™Tc)-radiolabelled
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PLGA-based NPs for non-invasive diagnostic imaging and FR-
targeted delivery of epigallocatechin-3-gallate against MDA-
MB-231 and MCF-7 cells.*® NCs were radiolabelled with **™Tc
using stannous chloride dihydrate (SnCl,-2H,0) as a reducing
agent, enabling the tracking and non-invasive imaging of the
NCs in vivo. The reported scintigraphy images by authors
showed higher tumour accumulation of °°™Tc-labeled FA-
conjugated PNPs than non-targeted PNPs.

In general, the chemical modification of polymers on the
surface or core via linkers and lipophilic agents is a promising
strategy to improve nanomaterial's performances, solubility,
and multi-functionalization ability to conjugate with other
molecules. For example, a unique PNP was constructed by
Zhang et al. through the conjugation of two units of hydro-
phobic PCL via S-S bonds to the hydrophilic PEG7.5k segment
using mercaptoethanol (Fig. 9A).**° This copolymer was utilized
for the co-delivery of DOX and indocyanine green (ICG) as an
imaging and hyperthermia agent to EMT-6 cells. DSPE-PEG2k-
FA was utilized for FR-targeted delivery; thereby, hydrophobic
tails of DSPE interacted with the hydrophobic block and PEG-FA
located on PNP's surface. The film hydration method was used
in their system to admix PCL-SS-PEG-SS-PCL and DSPE-PEG2k-
FA. In the following, DOX/ICG were trapped into polymer after
sonication. In line with this polymeric design, Danafar et al.
served lysine as a linker to conjugate FA and PEG to form
a multifunctional drug delivery system.'* FA can be conjugated
to one end of lysine via the -NH, group, while PEG can be
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Fig. 9 The chemical structure of (A) PCL-ss-PEG-ss-PCL, (B) FA-conjugated chitosan-lipid NPs, (C) FA-PEG-b-p-(MTC-Chol-co-LA) lip-

opolymer, (D) FA-conjugated chitosan/phospholipids (lipoid S75).
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conjugated to the other end of lysine via the -COOH group. The
obtained FA-lysine-PEG-PCL micelles were utilized to deliver
tamoxifen (TMX) to MCF-7 cells. The TMX-loaded FA-
conjugated micelles had a diameter of 97 nm with a {-poten-
tial of about —23 mV. Cumulative TMX release at pH 5.5 was
about 60% within 72 h, twice than that observed at pH 7.4. The
authors found that the MCF-7 cell viability was decreased by
about 53% using TMX-loaded FA-conjugated micelles instead of
non-targeted micelles.”” In another study, they utilized the
same micellar system to co-deliver TMX and quercetin to 4T1
cells.”” The authors found that by applying FA-conjugated
micelles containing the highest dose of TMX/quercetin (~20
ug mL™ 1Y), the cell viability decreased to about 29%. In another
work, an FA-conjugated PEG2k-DSPE nanoemulsion was con-
structed by Hu et al. using high-pressure homogenization.'**
The PTX was loaded into a PEGylated nanoemulsion to achieve
in vivo delivery to 4T1 cell-based tumours in mice. Surface
modifications via PEGylation are utilized not only to extend
their plasma half-life circulation but also to abrogate their
systemic elimination via the reticuloendothelial system." An in
vitro cumulative release of 47% was reported after 12 h, along
with a higher uptake into 4T1 cells of the FA-conjugated PNPs
compared to the non-targeted NPs. The authors reported in vivo
studies focusing on tumour growth inhibition, reduced drug
side effects, and prolonged survival, resulting in enhanced
antitumour effect and interference of passive and active tar-
geting using PEGylated PNPs."*

Further, Koul et al. utilized redox-responsive PNPs via ring-
opening polymerization of lactide with PEG that was followed
by isomerization polymerization of this copolymer and 2-
hydroxyethyl disulphide (Fig. 9B)."** The random multiblock FA-
PLA-PEG-PLA-urethan-S-S was used to deliver DOX to MCF-7,
BT474, and L929 cells. Urethane (carbamate) contributes to
the stability and mechanical properties of the NCs, while
disulphide linkages can be selectively cleaved in the presence of
reducing agents such as glutathione (GSH). The reaction of OH-
PLA-PEG-PLA-OH with 2-hydroxyethyl disulphide and hexam-
ethylene diisocyanate under an N, atmosphere led to the
formation of multiblock copolymer that later conjugated with
FA in the presence of NHS/DCC. Drug release studies showed
different outcomes in neutral and acidic pH in the presence and
absence of GSH as a reducing agent. The authors found that
about 72% of DOX was released at pH 5.5, higher than at pH 7.4
(~18%). The drug release profile upon GSH showed accelerated
drug release at pH 7.4 and 10 mM GSH (~55% drug release after
96 h). Enhanced in vitro uptake into MCF-7 cells of up to 22%
was reported for FA-conjugated PNPs compared to non-targeted
PNPs. In vivo studies of Ehrlich ascites tumours in mice showed
that about 91% of the tumour regressed by using FA-conjugated
PNPs compared to free DOX-treated mice with only 35% anti-
tumour activity.

In a recent approach, self-assembled lipopolymeric NPs with
higher stability than liposomes were utilized by Chitkara et al.
to deliver DTX via FR-targeting for the treatment of TNBC using
MDA-MB-231 cells.”” The authors grafted an amphiphilic lip-
opolymer with cholesterol and pi-lactide by microwave-assisted
ring-opening polymerization. The microwave energy promotes
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the opening of cyclic monomers (lactide) and their subsequent
polymerization into linear chains enhances reaction rates, and
yields uniform polymerization compared to traditional
methods. The structure of FA-PEG-b-p-(MTC-Chol-co-LA) lip-
opolymer is shown in Fig. 9C. Two major advantages of PEG
chain biopolymers are: first, the self-assembly of PEG chain co-
polymers and the form of disc-like micelles with stacked-like
morphology that enable a higher drug payload, and second,
linear or branched aliphatic polycarbonates are susceptible to
stimuli-responsive degradation.’”® However, the authors re-
ported that about 13% of DTX was released in the first 12 h,
while the cumulative release reached around 77% after 7
days." The fabricated FA-conjugated lipopolymeric NPs offered
a desirable property profile and showed significant in vitro and
in vivo stability, prolonged DTX release on the tumour site,
a significant intracellular uptake, improved pharmacokinetic
profile, enhanced EPR effect, improved cytotoxicity, apoptosis,
and change in expression levels of Bcl-2, BAX, and Ki-67.
Following these findings, Li and Zhu et al. reported that the
Bax, Bcl-2, caspase-3, and caspase-9 were activated in apoptotic
cells by extrinsic and intrinsic pathways utilizing FA-conjugated
chitosan-based NPs via co-delivery of DOX and oleanolic acid.**”
The highest mRNA expression levels were exhibited for those
genes and induced apoptosis in MDA-MB-231 cells. This
concept was further exploited in an exciting study by Khan and
Madni et al, utilizing  FA-conjugated  chitosan-
phosphatidylcholine-based NPs to enhance the antitumour
efficiency of cisplatin toward SK-OV-3, A2780, and MCF-7
cells.”® In this system, the phosphate head group of lipoid
S75, consisting of 70% phosphatidylcholine, engages in inter-
actions with the positively charged FA-conjugated chitosan
(Fig. 9D). Notably, the ratio of lipid : FA-chitosan in the ionic
gelation method impacts NP's size and polydispersity index and
the encapsulation efficiency of cisplatin. Gel-like particles can
be created by inducing the cross-linking of polymers through
electrostatic interactions between oppositely charged ions. They
found a sustained release profile of up to 90% within 48 h.
Folate receptors mediate higher cellular uptake of FA-
conjugated cisplatin-loaded PNPs and enhanced cytotoxicity
of cisplatin-loaded PNPs compared to free cisplatin in vitro.
PEGylation has been applied for clinical NC formulation to
shield particles from opsonization and reduce the rapid uptake
by the reticuloendothelial system of the blood."**” Another study
by Arias et al. showed the great potential of FA-conjugated
PEGylated PLGA NPs for targeted 5-FU delivery."* The authors
optimized several polyvinyl alcohol (PVA) concentrations (0.5-
1.5% w/v) and sonication time (from 0.5 to 5 min) to stabilize
uniform size distribution, polydispersity, and optimal formu-
lation of PLGA-PEG-FA NPs. The negative surface charge of FA-
PEG-PLGA NPs at about —15 mV exhibited a relatively lower
value before FA conjugation. By protonation of -NH, groups of
FA, the negative charge on PLGA is diminished. The authors
reported that the initial burst release of 5-FU was only 25% after
1 h, attributed to 5-FU release that is weakly bound on the
surface. In contrast, complete polymer degradation after 6 days
led to about 80% 5-FU release. Cytotoxicity studies in FR(+)
MCF-7 and HT-29 cells demonstrated that the IC;, of FA-
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conjugated PNPs was 4-fold lower than that of the non-targeted
PNPs in vitro.

An interpenetrating polymeric network (IPN) is a hydrogel-
based drug carrier comprising at least two polymers cross-
linked - simultaneously or sequentially — with each other."*
An IPN refers to a unique type of polymer structure where two or
more polymer networks are intertwined or interlocked at
a molecular level without covalent bonds. Raj et al. utilized an
IPN comprising carboxymethyl cellulose and egg white (EW)
that was cross-linked with PEG and PVA to deliver cyclophos-
phamide (CP) to MCF-7 cells.*** The authors blended the car-
boxymethyl cellulose with EW via the heat coagulation process
to improve the mechanical properties of IPN and CP release
efficiency. In principle, hydrogen bonds in cellulose hydrogels
enhanced physicochemical properties and pH sensitivity
expanding its applications.*** The low drug loading is attributed
to the steric barrier of cross-linked PEG, which prevents IPN
aggregation and stabilizes its structure. Notably, the hydrody-
namic size of FA conjugation on CP-loaded IPN was reported at
about 239 nm (DPI ~0.19) with a {-potential of —36 mV, con-
firming grafting of FA-EW conjugate on the polymer surface.
The encapsulation efficiency of CP-loaded FA-conjugated IPN
was reported at about 94% higher than carboxymethyl cellulose-
EW IPN (~64%) because of the higher capacity of cross-linked
PEG/PVA to entrap the CP. Furthermore, the authors found
that the CP release from FA-EW/CP IPN at pH 5 (~55%) is
relatively higher than at pH 7.4 (~29%) after 48 h.**!

Multi-shelled hollow capsules, including organic, polymer,
metal oxides, and metallic-based capsules, are mainly utilized in
drug carriers due to their layer-by-layer assembly to create
a unique internal cavity to carry drugs and the well-controlled
release upon stimuli. The choice of materials depends on the
desired properties of the capsules, such as biocompatibility,
stability, and responsiveness to external stimuli. The distinct
compartments within the capsules can be loaded with different
drugs, enabling combination therapies or sequential release of
multiple therapeutic agents. In a pioneering study, Kim et al.
reported FA-conjugated hollow polymeric capsules (HPCs) for
delivery of DOX to MCF-7 cells and mouse embryonic fibroblast
(NIH/3T3) cells.*** As shown in Fig. 10G, the benzenedimethanol-
based HPCs, and naphthalenedimethanol-based HPCs were
synthesized via a self-assembly Friedel-Crafts polymerization
composed of hydroxyl-branched hollow capsules. The authors
assume that the -OH was converted to -COOH in order to
conjugate with the FA molecule and stabilize DOX through m-m
interactions within the aromatic structure. The authors have
developed an acid-base interaction-mediated self-assembly
method to generate in situ functionalized HPCs with tuneable
wall thickness.”® The particle's porosity provided a maximum
DOX encapsulation of up to 86%. An efficient drug release of up
to 50% was reported after 30 h in an acidic medium. In
comparison, the cumulative release was only 16% after 150 h
under neutral and weak basic conditions due to the pH-
responsible release performance of PNPs. Furthermore, the in
vitro delivery of DOX to MCF-7 cells showed that FA-HPCs had
higher cellular uptake than non-targeted HPCs. Noteworthy,
naphthalenedimethanol-based capsules had stronger DOX
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Fig. 10 Schematic illustration of the FA-conjugated hollow polymeric
capsule FA-HPCs for delivery of DOX. (a) Self-assembly of HPCs, (b)
FA-conjugated HPC synthesis, (c) illustration of drug delivery to cancer
cells. Reproduced with permission from ref. 133. Copyright 2021,
American Chemical Society.

fluorescence inside the nuclei due to higher mw-m interactions.
Multi-shelled structures possess several desirable properties,
including high loading capacity, sequential drug release, and the
ability for multifunctional modification, making them versatile
and attractive for receptor-mediated targeted therapies.

2.1.2 Lipid-based nanocarriers. Self-assembled lipid-based
nanocarriers (NCs) are formed based on the hydrophobicity of
lipid tails and hydrophilicity of head groups in an amphiphilic
process in an aqueous solution. Hence, therapeutics can be
dispersed into the lipid matrix via a drug-enriched shell model
and drug-enriched core model (Fig. 11A) that depends on the
composition and applied formulation techniques, NC size,
surface charge, and drug loading capacity. Liposomal systems
are one of the subsets of (phospho)lipid-based NCs composing
spherical lipid bilayers that were developed to improve phar-
macokinetics performance biodistribution delivery of hydro-
phobic or hydrophilic therapeutics. In this context, Selvaraj and
Srivastava et al. reported DOX-loaded FA-conjugated Au nano-
rods and liposomes for dual chemotherapy and imaging-guided
photothermal therapy (PTT) upon NIR irradiation for cancer
metastasis (Fig. 11B).*** They found that Au nanorods are
located on both the inner and outer surfaces of the self-
assembled liposome when a 1:9 ratio of dipalmitoylphospha-
tidylcholine (DPPC): 1,2-distearoyl-sn-glycero-3-phosphocholine
(DSPC) was utilized. The gold rods stabilize the liposome and
prevent premature drug release. In contrast, the drug was
trapped during the film hydration and sonication process. The
complete NC disintegration and subsequently DOX release and
uptake by MDA-MB-231 cells was reported upon near-infrared

Chem. Sci., 2024, 15, 1966-2006 | 1979


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05539f

Open Access Article. Published on 17 January 2024. Downloaded on 10/2/2025 3:58:33 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Chemical Science Review

A drug payload drug payload .
PEG-FA :
* ¥ » Hydrolytic S
& DSPC s . 2 enzymes o Sms
sold i core Gold nanorod (GNR) ] | f
> iy 5
DOX . ~imp ~d
DPPC g . g
* e o8 N Aggregated GNRs Disintegration
Ypid shell ) Laser irradiation over exposing the surface of
heterogenous lipid matrix drug-enriched shell drug-enriched core PS (GNR-Lipos) ~ 170 nm, Au nanorode = 27 X 9 nm GNR-Lipos nanohybrid liposome for lipase
FA@AUNRs-DOX-LPs™\ D St
0

Control AuNRs-DOX-LPs FA@AuUNRs-DOX-LPs +NIR
DSPE-PEG-FA . ’
DPPC-Chol
Au nanorod
DOX
DSPE-PEG

0 CyHys

(>

PS (Au-BSA) ~ 154 nm, {-potential ~ -9 mV
Au nanorode = 29 X 7 nm, Z-potential ~ + 33 mV.

PS ~ 165 nm, I-potential ~ - 29 mV
MCF-7

WBUokNP  OFresDTX  BGLA
120 SPLNDTX  OFAPLNDTX

Cell viability (%)
3

8

DPSE-PEG2k-Ce6 DPSE-PEGSk-FA

o B

PS~ 120 nm, {-potential ~ - 38 mV

PS (PMNCF-25) ~ 165 nm, {-potential ~ - 24 mV/
PS (PMNCF-18) ~ 158 nm, {-potential ~ - 17 mV
PS (DOX-loaded PMNCF-25) ~ 163 nm, {-potential ~ - 20 mV

£
- PTX
Celastrol Z
Lipid bilayer CUR
**—|rinotecan -
" DSPE-PEG-NH, § CUR/HP-CD
DSPE-PEG-FA = FA-stearic acid  ps (neutral NCs:FA-PE:DMPC:DTPA-PE)~ 128 nm
': T-potential ~ - 3.8 mV.
» g - PS (positive NCs:FA-PE:DMPC:DTPA-PE:SA) ~ 132 nm
PS~174 nm, {-potential ~ - 8 mV Do PS (FPCHN-30) ~ 175 nm, {-potential ~ + 26 mV L-potential ~ - 4.2 mV

Fig.11 (A) Schematic representation of lipid matrix, drug-enriched shell model and drug-enriched core model. (B) Schematic illustration of gold
nanorods-liposome “FA-PEG-GNR-Lipos” (left) and the schematic release of embedded liposomes upon NIR (right). Adapted with permission
from ref. 135. Copyright 2018, American Chemical Society. (C) Schematic of FA@QAUNRs-DOX-LPs (left) and CLSM images of calcein-AM/EthD-1
stained 4T1 cells treated with NCs upon NIR (right). Rearranged with permission from ref. 137. Copyright 2018, Elsevier. (D) Chemical structure of
PTX@FA-NLC-PEG-Ce6. (E) Schematic illustration of PMNCF structure and micelle formation. Reproduced with permission from ref. 140.
Copyright 2019, American Chemical Society. (F) FA-conjugated PUFA-based LNPs and antitumour activity of NCs in vitro after 24 h. Reproduced
from ref. 143 (CC BY). (G) FA-conjugated liposomes (left) and in vivo biodistribution of NCs on MDA-MB-231 tumour-bearing mice (right).
Reproduced with permission from ref. 145. Copyright 2018, Elsevier. (H) PTX/CUR-HP-CD co-loaded LNPs. Adapted from ref. 148 (CC BY 3.0). (1)
FA-conjugated radiolabeled liposome. Reproduced with permission from ref. 155. Copyright 2019, Elsevier.

irradiation (NIR, 2 = 750 nm) at pH 2 within 12 h. Au nanorod/ endothelial growth factor (VEGF) expression and induced
liposome system was aggregated after irradiation, while apoptosis via up-regulation of caspase-3.

hydrolytic lipase led to full disintegration of liposome at acidic PEGylated artificial phospholipid vesicles were mainly used
pH of tumour microenvironment, and consequently the DOX to stabilize the chemotherapeutics and prolong blood circula-
release. This NC system also displayed a good contrast after NIR tion. PEGylation forms a hydrophilic layer on the liposome
exposure in computer tomography as well as transmission surface, resulting in reduced affinity to the mononuclear
electron microscopy imaging. Similarly, the luteolin (LUT)- phagocyte system, reduced systemic toxicity, and clearance
loaded liposomal system coated with poly-lysine-FA, as re- immunogenicity. Han, Park, and Choi et al. introduced a rele-
ported by Mudavath et al.,"** is an interesting formulation that vant liposomal platform intending to evaluate in vivo activity of
delivered the payload upon NIR laser at A = 808 nm. The size of breast tumour regression by the synergistic effect of PT and
the FA-conjugated LUT-loaded liposome was about 180 nm with DOX chemotherapy.'®” The liposomes are composed of DPPC/
a positive surface charge of +33 mV. LUT was reported to inhibit cholesterol/DSPE-PEG2k. The seedlessly synthesized Au nano-
cell migration and proliferation by regulating vascular rods were coated with bovine serum albumin (BSA) to reduce
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the toxicity caused by cetrimonium bromide as an emulsifier.
The co-loaded DOX and Au nanorods were decorated with FA-
conjugated liposomes (Fig. 11C). About 46% of encapsulated
DOX was released at endosomal environmental pH upon
exposure to NIR (1ex = 808 nm) for 5 min. FA-conjugated lipo-
somes induced significantly higher toxicity against 4T1 cells
(ICso ~ 3.1 pg mL ') than non-targeted carriers. Cell viability
decreased upon NIR irradiation, and a higher dose of DOX
entered the cell (ICso ~ 1.9 ug mL ™), which is attributed to local
hyperthermia. Confocal laser scanning microscopy imaging of
calcein-AM/EthD-1 stained 4T1 cells before and after treatment
indicated that the most efficient anti-tumour effects belong to
synergistic therapy using FA-conjugated NPs and NIR (Fig. 11C).
In another study, Feng et al. constructed an FA-conjugated
PEGylated nanostructured lipid carrier loaded with PTX and
photosensitizer chlorin e6 (Ce6) for effective photothermal
therapy.’*® The amine group of DSPE-PEG2k was conjugated
with Ce6 to enhance water solubility, while FA interacted with
amphiphilic DSPE-PEG5k-NH, guided targeted drug delivery
(Fig. 11D). This nanocarrier system enhanced the solubility of
PTX and Ce6, increased their intracellular uptake, and
produced sufficient local ROS, such as singlet oxygen'*® that was
triggered by laser irradiation via electron intersystem crossing,
eventually inducing increased cytotoxicity on MDA-MB-231 cells
by moderate synergistic effects. The cell viability of cancer cells
was reported at about 95 pg mL ™" of FA-conjugated LNPs irra-
diated with light of wavelength 660 nm."® The cumulative
release value of PTX was about 55% within 72 h. The in vivo
imaging of tumour-bearing nude mice after NPs injection
showed increased fluorescence intensity regarding FA-
conjugated NPs than non-targeted NPs (Fig. 11D).

Contrary to liposomes, micelles are closed lipid monolayers
with a hydrophobic or hydrophilic core with hydrophobic fatty
acids on the surface (known as an inverted micelle). Micelles are
extensively utilized not only for efficient endosomal escape due
to their self-assembly structure having a hydrophobic core and
a hydrophilic shell but also related to their higher affinity to
accumulate in cancer cells. In this context, Gong et al. reported
on FA-conjugated cell membrane mimetic copolymeric micelles
(PMNCF) constructed via amidation reaction of the -O-C=0 of
PMN with the -NH, of phosphorylcholine zwitterion and
cholesterol.™® Of note, free-radical copolymerization was
utilized by the authors to develop PMN copolymers.'' The FA
molecule conjugated at the end of the polymer side chains
bearing the amino group (Fig. 11E). The FA conjugation and
equal ionic charges of phosphorylcholine zwitterion affect
cancer cell targeting and cellular uptake. By increasing the
percentage of dimethyl sulfoxide to 10% of the solution, the
authors reported better FA solubility and higher FA connectivity
to the micelle surface. Hence, the killing efficacy was enhanced
to 160% upon the above optimization. The molecular weight of
PMNCEF influences the NPs size, {-potential, and consequently
cell viability. Cell viabilities of DOX-loaded micelles (0.02 mg
mL ") reduced free DOX toxicity to 20% for normal 1.929 cells.
The strong hydrophobicity of the cholesterol core led to the
well-controlled release of hydrophobic DOX at pH 7.4 and
decreased cytotoxicity. Increasing the hydrophobicity of the
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micellar core induced a higher loading capacity and sustained
DOX release, which follows previous research.**?

Polyunsaturated fatty acids (PUFAs) are another group of cell
membrane-compatible molecules that was utilized by Yong and
Kim et al. to design FA-conjugated PUFA-based lipid NPs to
increase the efficacy of DTX in multi-resistant metastatic breast
cancers (Fig. 11F)."** This compatibility can enhance the effec-
tiveness and bioavailability of these NCs in drug delivery
applications. The results corroborated that the PUFA synergis-
tically improved the anticancer efficacy of DTX against MCF-7
and MDA-MB-231 cells by inducing a G2/M phase arrest and
cell apoptosis in line with other investigations. A dose-
dependent cytotoxic effect reported by exposing cells to 10 pg
mL ™" of DTX yielded 50% cell death in MCF-7 cells. One-half of
the loaded DTX was released from FA-conjugated NPs after 96 h.
The authors also reported that the PUFA/DTX combination not
only downregulated the expression of PARP, caspase-3, and
caspase-9 but also blocked the phosphorylation of the Akt sig-
nalling pathway in tumour models revealed by western blot
analysis. This phenomenon is in accordance with the down-
regulation of the phosphatidylinositol 3-kinase (PI3K) and
protein kinase B (Akt) signalling pathway in breast cancer to
regulate cell growth, cell proliferation, and apoptosis."** In
addition, the authors found that the Bcl-xI as a transmembrane
protein family was markedly downregulated upon treatment
with FA-conjugated lipid NPs.

FR-targeted liposomes loaded with bioactive agents exhibi-
ted selective cytotoxicity against FR(+) breast cancer cells. As
depicted in Fig. 11G, FA-conjugated celastrol- and irinotecan-
loaded liposomes were fabricated and evaluated by Yong and
Kim et al. for treating FR(+) MCF-7 and MDA-MB-231 cells.**
Liposomal NPs were prepared by a thin-film hydration tech-
nique**® utilizing DPPC, cholesterol, and DSPE-PEG-FA. Irino-
tecan and celastrol with different solubility rates were safely
encapsulated in lipophilic and aqueous environments of the
lipid bilayer resulting in a sustained release mechanism. Of
note, irinotecan has gastrointestinal toxicity and myelosup-
pression, limiting its usage and administration.**” In vitro
uptake of both drugs was reported for FR(+) cells using FA-
conjugated PEGylated liposomes, whereas their uptake in
A549 as FR(—) lung cancer cells was insignificant. This was
demonstrated by Cyanine 5.5 loaded liposomes that yielded
higher intensity using FA-conjugated liposomes than non-
targeted liposomes (Fig. 11G). In addition, tumour cell
volumes, angiogenesis, and cell proliferating markers CD31 and
Ki-67 were significantly downregulated, while the PARP and
caspase-3 were upregulated by treating with FA-conjugated
drug-loaded liposomes. Unlike the above research, for the
purpose of overcoming MDR in MCF-7 and ADR cells,
a sequential release of encapsulated CUR in the lipophilic cavity
of 2-hydroxypropyl-p-cyclodextrin (HP-B-CD) and PTX-trapped
in FA-conjugated LNPs reported by Baek and co-workers
(Fig. 11H).**® The hydroxypropyl groups introduced into the -
CD molecule improve its solubility and enhance its ability to
interact with hydrophobic molecules. This molecule was
utilized to improve drug stability and water-solubility for earlier
release of CUR compared to PTX. Several clinical trials utilizing
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CUR have reported its impact on the expression and regulation
of growth factors, protein kinases, inflammatory cytokines, and
apoptosis-related proteins.'*® However, a faster CUR release
enables P-gp mediated efflux pump inhibition,*** which allows
increased cellular uptake and cytotoxicity of PTX. It is known
that P-gp suppression in a dose-dependent manner of CUR can
be achieved by downregulating the PI3K, AKt, and NF-kB
pathways.*>*

Solid lipid NCs were designed by admixing glyceryl mono-
stearate and TPGS in the oil phase to the polysorbate 80 in the
aqueous phase and blended with stearic acid and FA in the
organic lipid phase.**® However, they found that the lip-
ophilicity, location of drugs on lipid NPs, amount of used HP-3-
CD, the lipid matrix, surfactant concentration, and solubility of
the drugs could affect the release profile of drugs from NPs."*®
The same strategy was employed using dual CUR/GEM-loaded
PNPs."” In another work, lipoprotein-based NCs were fabri-
cated by Pandita et al, comprised of phosphatidylcholine,
cholesterol, and stearyl amine."** The natural biocompatibility
and targeting capabilities make lipoprotein a promising plat-
form for targeted drug delivery, imaging, and diagnostics, e.g.,
by incorporating fluorescent dyes or contrast agents into low-
density lipoproteins. The authors found that the FA was
conjugated to BSA by amino groups and oriented outward
lipophilic center of NCs. Resveratrol (RSV) was loaded into
LNPs, and about 91% of the drug was released within 72 h. FA-
conjugated LNPs inhibited the growth of MCF-7 and A549 cells
with an IC5, value of 9.6 and 16.8 pg mL ™", respectively.

Strategies using radiolabeled NCs are one of the major
studies on the limitation of endogenous (interstitial) radio-
therapy.'®® For example, technetium-99m (°**™TC) and indium-
111 (*"'In), gallium-67 (*’Ga), gadolinium-153 (***Gd), iodine-
123 (***1), and copper-67 (*’Cu) are known as y-emitting
radionuclides that have been employed for non-invasive moni-
toring of the biodistribution and accumulation of the drug via
single photon emission computed tomography (SPECT), while
iodine-131 (**') has been used as B+ emitter in positron emis-
sion tomography (PET)."** To visualize liposome distribution
and their accumulation sites, a **™Tc-radiolabeled liposomal
platform was employed by Silindir-Gunay et al. for molecular
tumour imaging SPECT and CT.**® In principle, NCs such as
liposomes can be labeled by indirect labeling that involves
attaching a radiolabeled molecule (such as a chelator or a tar-
geting ligand) to the surface of previously prepared NCs using
conjugation chemistry®® or by direct labeling via incorporating
a radiolabeled ligand or chelator to label metal radionuclides
into the NC's surface during the preparation.’® The authors
reported neutral and positive charged FA-conjugated and
PEGylated DTPA-PE containing liposomes (Fig. 11I). DTPA was
applied as a metal chelating agent for direct radiolabeling of
liposomes with *°™Tc. The authors formulated this liposomal
platform according to the film hydration method using DMPC,
PEG2k-DSPE, cholesterol, and DTPA-PE."** In this design, the
particle size increased by adding a positive charge inducer, such
as stearyl amine, to liposomes. FA-conjugated liposomes (either
neutral and positively charged) were effective as tumour-
imaging agents and exhibited a significant uptake
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enhancement and brighter fluorescence than unmodified lipo-
somes in 4T1 breast cancer cells in vitro.

2.1.3 Magnetic Magnetic nanoparticles
(MNPs) are extensively utilized in drug delivery due to their
specific on-demand drug release mechanism via an external
magnetic field. The MNPs are also well known for in vitro and in
vivo diagnostics such as MRI application, CT, PET, SPECT, and
hyperthermia effect via alternating magnetic fields (AMF).**® Of
note, MNPs can be coated with polymers via cross-linking
reactions or inorganic matrices such as silica to reduce MNPs'
susceptibility to leaching and mediating toxicity while gener-
ating the potential to be activated by alternating magnetic field
(AMF)."* With this in mind, Ramazani and Rezaei et al. re-
ported MNPs prepared by co-precipitation of FeSO, and FeCl; to
obtain Fe;0,-(COOH), superparamagnetic iron oxide nano-
particles (SPIONs), which were coated with PCA-PEG copol-
ymer.* In this design, the hydroxy groups of the PEGylated
surface of MNPs were conjugated with the carboxylic acid of FA,
while the PCA was employed for the initial coverage surface of
MNPs. Quercetin was loaded into MNPs to treat MDA-MB-231
and HeLa cells. About 60% of cells were killed by treatment
with 100 pg mL™" of quercetin loaded in FA-conjugated Fe;-
0,@PCA-PEG within 24 h. In addition, the authors reported
areduction in the signal intensity at higher iron concentrations,
indicating a negative contrast enhancement of MNPs in MRI as
a dark signal (T2 MRI contrast). MNPs, due to their unique
magnetic properties, can induce signal voids of decreased
signal intensity in the surrounding tissues, creating a “negative
contrast” effect in order to provide valuable diagnostic infor-
mation in medical imaging applications. Notably, the positive
contrast agents have more radiopaque in T1-weighted MRI.**
Combinations of MNPs and metal-organic frameworks (MOFs)
have gained significant attention for the development of
magnetic MOF composites. MOFs exhibit high surface areas,
tunable pore sizes, chemical stability, and versatile chemical
compositions, enabling them to host and deliver diverse
molecules in a controlled manner. In this context, a CUR/5-FU-
loaded magnetic MOF reported by Khoobi et al. was coated with
chitosan and decorated to the FA molecule on the surface via
electrostatic interactions.'® The surface adsorption after
modification of Fe;0,@Bio-MOF with FA-chitosan conjugate
was changed to a positive value of {-potential (Fig. 12A). In this
work, they verified a selective uptake of FA-conjugated NCs
towards MDA-MB-231 cells by active and passive targeting and
releasing the 5-FU upon pH change.'®® The initial burst release
of 5-FU at pH 5.5 occurred after about 10 h (~40%), followed by
a sustained release up to 87% after 78 h. They reported that
a higher release of 5-FU could be attributed to the sensitivity of
the FA-chitosan layer in the acidic tumour microenvironment.
However, the MRI displayed negative contrast enhancement,
confirming the NC's ability to be applied as a diagnostic agent
and a T2 MRI contrast. This phenomenon is in accordance with
the T1-T2 dual-modal MRI for diagnosis using contrast
agents."® Similarly, a chitosan-coated MOF decorated with FA
was fabricated by Karmakar et al. to deliver CUR toward MDA-
MB 468 and 4T1 cells."®* The size of FA-conjugated NCs was
about 117 nm with a {-potential of about —11 mV, while the

nanocarriers.
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(A) Schematic preparation of 5-FU-loaded FezO,@Bio-MOF-FC. Rearranged with permission from ref. 162. Copyright 2019, Elsevier. (B)

Schematic of DOX-loaded Mag-Alg-PEG-FAG (left) and magnetic hyperthermia effect on DOX release from MNPs along with confocal fluo-
rescence microscopy images of the uptake of rhodamine-labelled Mag-Alg-PEG-FA NPs by the MDA-MB 231 cells after 24 h under a static
magnetic field (right). Reproduced from ref. 167 (CC BY). (C) 3D illustration of DOX-loaded CMC-ARG-FA MNPs along with the chemical
structure of CMC-ARG-FA_DOX. Reproduced with permission from ref. 168. Copyright 2020, Royal Society of Chemistry. (D) Schematic
representation of the FA-mPEG-PAMAM G3-CUR@SPIONSs. Adapted from ref. 172 (CC BY). (E) The chemical structure of FA-conjugated ®*Cu-

labeled MNPs.

hydrodynamic size of the CUR-loaded IRMOF-3@FA NCs was
increased to about 371 nm. About 55% of CUR was released
from MNPs within 24 h, at pH 5.5. ROS levels increased about
1.5-fold for MDA-MB 468 and 4T1 cells after treatment, trig-
gering cell death via ROS-induced apoptosis by disrupting the
mitochondrial membrane. FA-conjugated MNPs-induced
apoptosis in TNBC cells by downregulation of Bcl-2 and upre-
gulation of Bax.'® Besides, the authors reported increased
activity of c-Jun N-terminal kinases (JNK) as the regulatory
pathway of Bcl2, Bax, and p53. Noteworthy, the p53 tumour
suppressor is partly involved in apoptosis by inducing Bax
expression.'®®

Alginate (Alg)-PEG copolymer was employed by Angelopoulou
et al. to coat the condensed magnetic iron oxide NPs (termed co-
MIONS; Fig. 12B) not only to improve the DOX loading efficiency
by about 10% via Alg shell but also for a better response than
conventional magnetic nanocrystals to a magnetic field in MRI
by employing co-MIONs.'*” PEG (OH-PEG-NH,) is conjugated to
the carboxylic acid end group of Alg, while FA is conjugated to the

© 2024 The Author(s). Published by the Royal Society of Chemistry

hydroxyl terminal group of PEG to produce FA-functionalized
pegylated co-MIONS. The MNPs exhibited sustained DOX
release of about 60% within 48 h, responsive to pH and magnetic
hyperthermia (Fig. 12B). In the acidic tumour microenviron-
ment, the -COOH of Alg protonated and facilitated DOX release.
The granular distribution of the MNPs in the cytoplasm after
24 h (Fig. 12B). The FA-conjugated MNPs enhanced DOX uptake
and increased apoptosis and cytotoxicity against the MDA-MB-
231 cells under a 0.5 T magnetic field. Similar MNPs named
“all-in-one nanosoldier” were reported by Mansur et al. to treat
MDA-MB-231 cells th