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from quantum chemistry to
predict experimental solvent effects on reaction
rates†

Yunsie Chung and William H. Green *

Fast and accurate prediction of solvent effects on reaction rates are crucial for kinetic modeling, chemical

process design, and high-throughput solvent screening. Despite the recent advance in machine learning,

a scarcity of reliable data has hindered the development of predictive models that are generalizable for

diverse reactions and solvents. In this work, we generate a large set of data with the COSMO-RS method

for over 28 000 neutral reactions and 295 solvents and train a machine learning model to predict the

solvation free energy and solvation enthalpy of activation (DDG‡
solv, DDH

‡
solv) for a solution phase reaction.

On unseen reactions, the model achieves mean absolute errors of 0.71 and 1.03 kcal mol−1 for

DDG‡
solv and DDH‡

solv, respectively, relative to the COSMO-RS calculations. The model also provides

reliable predictions of relative rate constants within a factor of 4 when tested on experimental data. The

presented model can provide nearly instantaneous predictions of kinetic solvent effects or relative rate

constants for a broad range of neutral closed-shell or free radical reactions and solvents only based on

atom-mapped reaction SMILES and solvent SMILES strings.
1 Introduction

Accurate prediction of reaction rates is essential for modeling
a variety of chemical kinetic systems such as pyrolysis,1,2 poly-
merization,3 oxidative degradation,4,5 and atmospheric chem-
istry.6 Detailed kinetic models enable one to predict key
products, identify major kinetic pathways, and optimize reac-
tion conditions for complex chemical systems. Kinetic mecha-
nisms oen involve hundreds to tens of thousands of
elementary reactions,7 and a fast, high-throughput method to
estimate reaction rates is thus needed. Ab initio methods like
quantum mechanics/molecular mechanics (QM/MM) can
provide accurate predictions of rate constants, but their high
computational cost has been a major limiting factor for large-
scale, automated predictions. As more kinetic data become
available, data-driven approaches such as linear group
contribution,8–10 decision tree based rate rules,11,12 and machine
learning (ML) models13–19 have emerged as more popular
choices for estimating kinetic parameters. Several ML
models15–17 have successfully predicted barrier heights and rate
constants of diverse gas phase reactions only based on readily
available 2D information (e.g. SMILES strings) of reactants and
products. However, such data-driven models for liquid/solution
phase reactions have been lightly investigated with limited
assachusetts Institute of Technology,

en@mit.edu

tion (ESI) available. See DOI:

24
applicability,20 and most approaches rely on the ab initio
methods with either implicit or explicit solvation models.21,22

Solvents can have signicant impacts on reaction rates and
outcomes, and it is crucial to accurately predict these kinetic
solvent effects. Recent research efforts have been devoted to
employing ML (e.g. deep neural network) for free energy
predictions of condensed phase reactions.15,18,19,23–28 Many of
these studies18,19,23–25,28 combine the ML models with semi-
empirical or lower-level QM/MM methods to obtain the energy
predictions that match the accuracy of higher-level QM/MM
methods. For example, Gómez-Flores et al.19 used a ML
approach to predict the energy difference between the density
functional tight-binding model and other higher level QM
methods for a thiol-disulde exchange reaction in water. In
a study by Pan et al.,18 a ML model was trained to reproduce ab
initio QM/MM potentials in free energy simulations for the
aqueous Menshutkin reaction between ammonia and chloro-
methane. Farrar and Grayson28 employed ML models to predict
DFT-quality activation barriers for various nitro-Michael addi-
tion reactions in toluene based on the features generated from
semi-empirical methods. These approaches, however, require
semi-empirical QM/MM steps that are less suitable for instan-
taneous, automatic rate predictions. Furthermore, their models
are limited to a single solvent and need the 3D coordinates or
QM features of reactants and transition states as inputs, which
are not readily available.

The MLmodels by Jorner et al.26 and by Heid and Green15 are
the few cases that can predict reaction properties in multiple
solvents only based on the 2D structural information of
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3sc05353a&domain=pdf&date_stamp=2024-02-09
http://orcid.org/0000-0002-3097-010X
http://orcid.org/0000-0003-2603-9694
https://doi.org/10.1039/d3sc05353a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc05353a
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC015007


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
1/

8/
20

25
 6

:5
1:

29
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
molecules. Jorner et al.26 employed a Gaussian process regres-
sion model and compared several 2D structural features to
predict the barrier height of 443 SNAr reactions in different
solvents. In their work, the best accuracy was reached by
adopting the BERT29 reaction ngerprint. Heid and Green,15 on
the other hand, used the condensed graph of reaction (CGR) as
an input reaction representation for a graph convolutional
neural network (GCNN). They applied the CGR GCNN model to
the same SNAr data set and were able to achieve better barrier
height predictions compared to the other models that used the
BERT ngerprint or different reaction representations. While
these models can provide fast kinetic estimations for solution-
phase reactions at a low computational cost, only one reaction
family was considered with a relatively small training set. A
larger data set that contains more diverse types of reactions and
solvents is needed in order to train a more generalized model
for kinetic solvent effect predictions. Moreover, both models
used xed descriptors to represent solvents, but prior
studies15,30,31 revealed that the learned molecular representa-
tions based on a graph convolutional approach outperform
xed molecular descriptors in many property prediction tasks.

In this study, we present a ML model that can predict kinetic
solvent effects for a wide range of neutral reactions and solvents
only based on atom-mapped reaction SMILES and solvent
SMILES strings. More precisely, the model predicts the solva-
tion free energy and solvation enthalpy of activation
(DDG‡

solv,DDH
‡
solv) for a reaction–solvent pair, which can be used

to estimate a relative rate constant between a solution phase
and a gas phase reaction or between the reaction in different
solvents. Our model adopts a CGR GCNN architecture with
separate GCNN layers for solvent molecular encoding. A large,
diverse set of training data containing over 28 000 reactions and
295 solvents is generated in this work by performing ab initio
COSMO-RS32 calculations. The performance of the model on
unseen reactions is rigorously assessed by comparing the ML
predictions with both COSMO-RS calculations and experi-
mental data. A transfer learning approach and various addi-
tional features are explored to further improve the model. Our
ML model can provide accurate predictions of relative rate
constants, and together with the existing predictive models or
databases for gas phase rate constants (e.g. RMG database12), it
can provide the estimates of absolute rate constants for many
different liquid phase reactions.
Fig. 1 Potential energy diagram of a reaction in a gas phase and
a solution phase.
2 Background on the prediction
targets

Our ML model aims to predict the solvation free energy and
solvation enthalpy of activation (DDG‡

solv, DDH
‡
solv) at 298 K for

a reaction in a solvent. Solvation free energy (DGsolv) and
solvation enthalpy (DHsolv) are the changes in Gibbs free energy
and enthalpy when a molecule is transferred from an ideal gas
to a solvent at a xed condition. The DDG‡

solv and DDH‡
solv of

a reaction–solvent pair are dened as the solvation free energy
and solvation enthalpy differences between a transition state
(TS) and reactant(s):
© 2024 The Author(s). Published by the Royal Society of Chemistry
DDG‡
solv = DGTS

solv − DGR
solv (1)

DDH‡
solv = DHTS

solv − DHR
solv (2)

where DGTS
solv and DGR

solv represent the solvation free energies of
a TS and a reactant, and DHTS

solv and DHR
solv represent the solva-

tion enthalpies of a TS and a reactant, respectively. For
a bimolecular reaction, DGR

solv and DHR
solv each correspond to

the sum of the solvation free energies and solvation enthalpies
of all reactants. The standard state of 1 M ideal gas and 1 M
solution is used for solvation free energy and enthalpy in this
work.

As depicted in Fig. 1, a solvent medium can affect the ener-
gies of reactants and a TS by different degrees, causing the
activation free energy to shi when a reaction occurs in a solu-
tion (liquid) phase. The DDG‡

solv of a reaction corresponds to the
difference in the free energy of activation between a gas phase
and a solution phase and is an important kinetic parameter for
solution phase reactions. For example, DDG‡

solv can be directly
used to estimate the ratio of a gas phase rate constant (kgas) to
a liquid phase rate constant (kliq) as follows:33

kliq

kgas
¼ exp

��DDG‡
solv

RT

�
(3)

where R is the universal gas constant and T is a temperature. It
can be also used to calculate the relative rate constant between
two solvents:

krel ¼
ks1
liq

ks2
liq

¼ exp

�
� DDG‡

solv;s1 � DDG‡
solv;s2

RT

�
(4)

where ks1liq and ks2liq are the rate constants of a reaction in
a solvent 1 and in a solvent 2, respectively, and DDG‡

solv,s1 and
DDG‡

solv,s2 are the corresponding solvation energies of activation
for the reaction in each solvent.

Ourmodel predicts DDH‡
solv in addition to DDG‡

solv at 298 K to
account for the temperature dependence of DDG‡

solv. The
Chem. Sci., 2024, 15, 2410–2424 | 2411
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DDG‡
solv at a different temperature can be linearly extrapolated

using the two model outputs at 298 K as follows:

DDG‡
solvðTÞzDDH‡

solvð298 KÞ � T�
DDH‡

solvð298 KÞ � DDG‡
solvð298 KÞ

298 K

�
(5)

The linear approximation is found to be generally valid for
a moderate temperature range (250–400 K),34 but the error is
expected to increase as the temperature signicantly deviates
from 298 K.
3 Methods
3.1 Data generation

Table 1 shows the summary of the data sets used in this work. A
total of three data sets are prepared: (1) a pre-training set con-
taining the reactions from Grambow et al.,35–37 (2) a ne-tuning
set containing the reactions from Harms et al.,38 and (3) an
experimental test set from our prior study.33 The data sets
include diverse range of neutral closed-shell and free radical
reactions and nonionic solvents. For both pre-training and ne-
tuning sets, DDG‡

solv and DDH‡
solv are computed for each reac-

tion–solvent pair with the COSMO-RS calculations based on the
geometries obtained from Grambow et al. and Harms et al. The
ML model is trained, validated, and tested on the computed
data, and the experimental set is used as an additional test set
for the nal error assessment. The reaction and solvent infor-
mation is stored as atom-mapped reaction SMILES and solvent
SMILES in all data sets.

We separated the computed data into the pre-training and
ne-tuning sets because the two data sets signicantly differ in
the types of reactions included and the level of theory used for
geometry optimizations. The pre-training set is the largest, but
the majority of its reactions are uncommon reactions with high
gas phase barrier heights (e.g. Ea > 50 kcal mol−1), and it does
not contain any reactions that are bimolecular in both forward
and reverse directions (e.g. only A/ B, A + B/ AB, and AB/ A
+ B reactions appear). In contrast, the ne-tuning set is smaller
but contains more common reactions. To leverage the different
types of data, we employ a transfer learning approach in which
the model is rst pre-trained on the reactions from Grambow
Table 1 Summary of the data sets used in this study. The number of reac
reverse directions. “N data chosen” represents the number of data sampl

Data set N data total N data chosen N re

Pre-training set 7 796 583 500 000 (6.4%) 26 4

Fine-tuning set 542 833 46 122 (8.5%) 187

Experimental test set 165 165 15

2412 | Chem. Sci., 2024, 15, 2410–2424
et al. and subsequently ne-tuned on the reactions from Harms
et al.Details on each data set and the computational method are
described below, and all data sets are provided through Zenodo
(https://zenodo.org/record/8423911).

3.1.1 Computational method. The pre-training and ne-
tuning data sets are generated by performing COSMO-RS
calculations at the BP86/def2-TZVPD39–41 level of theory with
ne grid cavity,42 which is commonly known as a BP-TZVPD-
FINE level. The COSMO-RS is a hybrid solvation model that
uses quantum chemistry and statistical thermodynamics to
compute the chemical potential of a compound in
a solvent.32,43,44 We have previously demonstrated that the
COSMO-RS method can provide accurate predictions of
DDG‡

solv for various neutral closed-shell and free radical reac-
tions in different solvents with a mean absolute error of around
0.45 kcal mol−1.33

The computational workow used in this work follows that
employed in our earlier study.33 Single-point energy calculations
are performed at the BP-TZVPD-FINE level of theory in
a COSMO phase and in a gas phase with TURBOMOLE 7.5 (ref.
45 and 46) for reactants, products, and TSs based on the opti-
mized gas phase geometries obtained from Grambow et al. and
Harms et al.; this step generates screening charge densities and
energies that are needed for the COSMO-RS calculations. Then,
the DGsolv and DHsolv of reactants, products, and TSs are
computed in 295 common solvents at 298 K with COSMOtherm
(release 2021)47 using the BP_TZVPD_FINE_21 parametrization
based on the COSMO-RS theory, and the DDG‡

solv and DDH‡
solv of

each reaction are subsequently calculated in 295 solvents at 298
K using eqn (1) and (2). Because COSMOtherm does not directly
output solvation enthalpy, DDH‡

solv is obtained by rst
computing DDG‡

solv at 297, 298, and 299 K, estimating the
temperature gradient at 298 K, and then using the denition

DH ¼ DG� T
dDG
dT

. Our prior studies showed that the proposed

way can yield accurate approximations of solvation enthalpy
and these approximated values together with eqn (5) can give
accurate estimates of solvation free energy at a temperature
range of 250–400 K.34,48 The screening charge densities and
energies of the 295 solvents are acquired from the COSMObase
database.49 The reactions from Grambow et al. and Harms et al.
were each optimized in gas phase at the uB97XD3/def2-
TZVP50,51 and M06-2X/cc-pVTZ52,53 levels of theory in their
tions in the pre-training and fine-tuning sets include both forward and
ed from the total data to construct the training, validation, and test sets

actions
N
solvents Data type & reference

48 295 In-house COSMO-RS calculations based
on the optimized geometries from
Grambow et al.35–37

0 295 In-house COSMO-RS calculations based
on the optimized geometries fromHarms
et al.38

49 Experimental relative rate constants from
Chung and Green33

© 2024 The Author(s). Published by the Royal Society of Chemistry
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original work. Although these levels of theory are different from
the level used for the COSMO-RS calculations, our prior work33

demonstrated that the accurate COSMO-RS calculations can be
made with the gas phase geometries that are optimized at
different levels of theory, which justies the current computa-
tional workow.

A total of 7 814 610 and 614 780 COSMO-RS calculations were
completed successfully for the pre-training and ne-tuning sets,
respectively. The results were then further cleaned by only
including the reaction–solvent pairs that successfully ran for
both forward and reverse directions of the reaction. While most
of the computed DDG‡

solv and DDH‡
solv values were within

±10 kcal mol−1, a small fraction of the data had unreasonably
large values for neutral reactions. For instance, a DDG‡

solv of
±40 kcal mol−1 corresponds to around 29 orders of magnitude
increase/decrease in a liquid phase rate constant compared to
a gas phase rate constant (see eqn (3)). We suspected that these
are likely due to the COSMO-RS calculation errors as the
COSMO-RS method may not have been parameterized well for
certain reactions and geometries. Therefore, we ltered out 241
reaction–solvent pairs from the pre-training set that had
jDDG‡

solvj > 40 kcal mol−1 or jDDH‡
solvj > 56 kcal mol−1 (14

standard deviations away from means). Higher quality data are
usually expected for the ne-tuning set. Thus, more strict cutoff
values of jDDG‡

solvj > 10 kcal mol−1 and jDDH‡
solvj > 18 kcal mol−1

are applied to the ne-tuning set to remove potentially erro-
neous data.

3.1.2 Pre-training set. The nal pre-training set contains
a total of 7 796 583 reaction–solvent pairs with 26 448 unique
reactions and 295 solvents. Both forward and reverse reactions
are included in the data set to augment the data. As mentioned
earlier, the geometry optimizations were done at the uB97XD3/
def2-TZVP level of theory for these reactions in the original work
by Grambow et al.35–37 The histograms and statistics of the data
set are provided in ESI Fig. S1.† The computed DDG‡

solv and
DDH‡

solv have nearly normal distributions with high peaks at
zero. The DDG‡

solv and DDH‡
solv have absolute mean values of

1.81 and 2.58 kcal mol−1, respectively, with standard deviations
of 2.76 and 3.92 kcal mol−1. The reactions contain diverse types
of neutral closed-shell and free radical reactions that involve H,
C, N, and O atoms and have at most 7 heavy atoms. Due to
errors from Open Babel54 when perceiving connectivity, a small
set of the original reaction SMILES from the Grambow et al. had
incorrect bond orders and formal charges, and therefore, the
corrected atom-mapped SMILES from Spiekermann et al.55 are
used for our pre-training set.

The entire data set has nearly 7.8 million data points.
However, it is unlikely that every reaction–solvent pair is needed
since the total number of unique reactions and solvents would
remain xed even if the number of reaction–solvent pairs
increases. To investigate the effect of the data size on the model
performance, we prepared 8 different data sets containing 10k,
50k, 75k, 100k, 250k, 500k, 750k, and 1m data points. These
data are sampled in a semi-random manner such that all
reactions and solvents appear in the data sets at least once,
except the 10k set which has fewer data than the total number of
reactions. From the results, we determined 500k to be the
© 2024 The Author(s). Published by the Royal Society of Chemistry
optimal data set size for the model as explained further in the
Results section.

3.1.3 Fine-tuning set. The ne-tuning data set has 542 833
reaction–solvent pairs with 1870 unique reactions including
both forward and reverse directions and 295 solvents. The
geometry optimizations were performed at the M06-2X/cc-pVTZ
level of theory in the original work by Harms et al.38 for these
reactions. The data set contains three specic reaction types:
bimolecular hydrogen abstraction (H-abstraction), unim-
olecular hydrogen migration (H-migration), and radical addi-
tion to a multiple bond (R-addition). These are neutral, free
radical reactions that are ubiquitous in both gas and liquid
phase systems. The reaction templates are illustrated in the ESI
Fig. S2.† In total, there are 1402 H-abstraction, 146 H-migration,
and 322 R-addition reactions. The reactions involve maximum
10 heavy atoms and include H, C, and O atoms. The histograms
and statistics of the data are presented in ESI Fig. S3.† The
DDG‡

solv and DDH‡
solv have absolute average values of 1.40 and

2.32 kcal mol−1, respectively, with standard deviations of 1.91
and 3.17 kcal mol−1.

Similar to the pre-training set, only a subset of the ne-
tuning data was chosen for the model. We sampled around 25
solvents per each reaction semi-randomly with more weights on
polar solvents in order to include more data with stronger
solvent effects. A total of 46 122 data points were selected, and
all reactions and solvents appear in the chosen set at least once.
The detailed data sampling method is explained in ESI Section
S2.†

3.1.4 Experimental test set. The experimental data set33

consists of 165 relative rate constants (krel) for 15 neutral reac-
tions and 49 solvents from 273 K to 392 K. None of the experi-
mental reactions appear in the pre-training and ne-tuning
sets, and therefore these data serve as a reaction split test set for
the nal model evaluation. The reactions are depicted in ESI
Table S1,† and they include 2 b-scission, 5 H-abstraction, 3
Diels–Alder, and 5 other types of reactions. The reactions
involve H, C, N, O, and S atoms and have up to 22 heavy atoms,
which are much larger than the reactions found in the pre-
training and ne-tuning sets. The atom mappings of these
reactions are obtained using the tool from ref. 56, and incorrect
atom mappings are then manually xed. The errors on the
experimental test set are computed in both log10(krel) and
DG‡

rel units, where the DG‡
rel error is calculated as follows:

DG‡
rel error = −RT(ln(krel,expt) − ln(krel,calc)) (6)

3.2 Data splits

The pre-training set is split into a 90% training/validation and
a 10% test set using reaction and solvent splits to evaluate the
model's predictive performance on unseen reactions and
unseen solvents. For our test splits, 5% reactions and 5%
solvents are randomly selected, and all reaction–solvent pairs
that include the chosen reactions or chosen solvents are added
to the test set and excluded from the training/validation set.
Both forward and reverse directions of the selected reactions are
Chem. Sci., 2024, 15, 2410–2424 | 2413
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included in the test set to prevent data leakage; this procedure is
very crucial for evaluating the true performance of a model on
unseen reactions since the model can gain the information on
the reaction and TS from its own reverse reaction. The impor-
tance of the proper reaction split is addressed in the recent
studies by Heid and Green15 and Spiekermann et al.16 The
remaining 90% data are randomly split into a 80% training and
20% validation set. The validation set is used for early stopping
to determine the epoch that gives the lowest validation error
and prevents over-tting. Five folds are used to prepare ve
different training, validation, and test sets from the pre-training
set.

The ne-tuning set is randomly split into a 80% training and
a 20% validation set using one fold. We did not construct
a separate test set from the ne-tuning set. Instead, the exper-
imental set is used as a nal reaction-split test set for the ne-
tuned model. We ensured that none of the experimental reac-
tions (both forward and reverse) appear in the pre-training and
ne-tuning sets.
3.3 Machine learning model architecture

The schematic of the ML architecture is depicted in Fig. 2. Our
model takes the atom-mapped reaction SMILES and solvent
SMILES as inputs and predicts DDG‡

solv and DDH‡
solv at 298 K.

The model is constructed using Chemprop,30,57 an open-source
soware that uses a directed message passing neural network
(D-MPNN) for chemical and reaction property predictions. A D-
MPNN is a type of GCNN that converts atom and bond features
into a latent representation of a molecule through bond-level
message passing. To encode a reaction, we adopt the estab-
lished CGR representation15,58,59 as it has shown to outperform
other representations for various reaction property predictions.
The CGR is a superposition of the reactant and product graphs,
Fig. 2 Schematic of a machine learning model architecture. The model t

2414 | Chem. Sci., 2024, 15, 2410–2424
whichmimics the 2D-structure of the TS. In our model, the CGR
representation is constructed from the atom-mapped reactants
and products and passed into a D-MPNN to give a reaction
embedding. A separate D-MPNN is employed to convert
a solvent graph into a solvent molecular embedding. The
learned reaction and solvent representations are then concate-
nated together and passed into a feed forward neural network
(FNN) to predict the regression targets. The initial atom and
bond features are generated using RDKit60 within Chemprop
and include several features such as atom type, bond type,
formal charge, chirality, and etc. The hyperparameters are
optimized via 47 iterations of Bayesian optimization with the
Hyperopt package.61 Only the training/validation set of the pre-
training data is used for the hyperparameter optimization to
prevent data leakage. The full list of atom and bond features
and the optimized hyperparameters can be found in ESI Tables
S2 and S3.†

As mentioned in the earlier section, a transfer learning
approach is used to rst train the model on the pre-training set
and subsequently ne-tune the model on the ne-tuning set
with fewer epochs. Within each of the 5 folds of the pre-training
set, an ensemble of 5 different models are generated by using
different random initialization of model parameters. This
results in a total of 25 individual models from the 5-fold pre-
training set. The optimized parameters from the 25 pre-
trained models are then used to initialize the 25 ne-tuned
models that are trained on the ne-tuning set. When evalu-
ating the reaction- and solvent-split errors on the pre-training
test set, average predictions from the ensemble of 5 models
are employed to compute the error in each fold. When evalu-
ating the nal error on the experimental set, an ensemble of all
25 ne-tuned models are used to make the average predictions.
We ensured that no models are trained or validated on the
tested reactions or solvents.
akes an atom-mapped reaction SMILES and a solvent SMILES as inputs.

© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc05353a


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
1/

8/
20

25
 6

:5
1:

29
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
3.4 Additional features

Five additional sets of features that are listed in Table 2 are
explored to improve the model performance. The RP-solv
features represent the solvation free energies and solvation
enthalpies of reactants and products that are calculated in this
work. We also tested the Abraham parameters of solvents (S-
abr) that are obtained from the ML model by Chung et al.48

The Abraham parameters consist of ve descriptors that can
describe various solute/solvent interactions.64 The RDKit-mol
represents the 2D molecular features generated from RDKit.
There are 200 2Dmolecular features available within RDKit, and
20 and 15 features were selected for reactants/products and
solvents, respectively, based on the variance threshold and
random forest methods imported from scikit-learn.65 Six addi-
tional RDKit atomic features (Addit-atom) that are adopted
from Vermeire and Green62 are also tested as they have shown to
improve solvation free energy predictions. These include the
number of radical electrons, ring size, number of lone electron
pairs, H-bond donating and accepting characters, and electro-
negativity. Lastly, the QM atomic and bond descriptors (QM-
desc) obtained from the ML model by Guan et el.63 are
explored. The QM-desc contains 4 atomic descriptors (Hirshfeld
partial charge, two Fukui indices, NMR shielding constants)
and 2 bond descriptors (bond lengths, bond orders) that were
shown to improve reaction property predictions.63,66

The performances of the additional features are compared
using the pre-training test set. Within the ML model, additional
molecular features are concatenated with the reaction and
solvent embeddings and fed into the FFN layer to make the
predictions. Additional atom and bond features are concate-
nated with the initial atom and bond features prior to the CGR/
D-MPNN layers. Note that nearly all features can be calculated
instantly or predicted by existing ML models. The only excep-
tion is the RP-solv features which are computed with the
COSMO-RS method. Yet, several ML models are available for
predicting solvation energy and enthalpy of closed-shell
compounds,48,62,67–70 and the RP-solv features can be therefore
estimated with the ML models if fast approximations are
needed. We did not consider the 3D structures of the reactants
and products as additional inputs in our study as they are
usually not readily available and prone to calculation noise and
error. Furthermore, Spiekermann et al.16 showed that the 2D D-
MPNN model outperformed the 3D ML model for gas phase
Table 2 List of additional features investigated

Name Type

RP-solv Molecular

S-abr Molecular
RDKit-mol Molecular

Addit-atom Atomic

QM-desc Atomic, bond

© 2024 The Author(s). Published by the Royal Society of Chemistry
barrier height predictions on the Grambow et al.'s reactions.
Since the same data set and similar model architecture are used
in our study, we expect the result to be similar and hence do not
consider the 3D ML model in this work.

4 Results and discussion
4.1 Data set size and additional features

The effects of the data set size and additional features are
investigated using the pre-training set prior to ne-tuning any
models. The resulting test root-mean-square errors (RMSE) on
the reaction and solvent splits are presented in Fig. 3. The
reaction and solvent splits each test the model's performance
on unseen reactions in seen solvents and on seen reactions in
unseen solvents. As previously explained, the pre-training set of
around 7.8m data is divided into smaller subsets to identify the
optimal data set size that can balance accuracy and training
time. From Fig. 3a, it can be seen that the test error initially
decreases with an increasing data set size and plateaus out from
500k for the reaction split. For the solvent split, the error
continues to decrease at a higher data set size, but the change in
the error is very small beyond 500k. Therefore, 500k is chosen as
a nal data set size for the pre-training set. This result was ex-
pected since only the number of reaction–solvent pairs
increases with the increasing data set size whereas the number
of unique reactions and solvents remains constant. The infor-
mation gain from more reaction–solvent pairs is likely to satu-
rate aer the model sees enough data on each reaction and
solvent, causing the errors to level out.

Fig. 3b shows the results of the additional features tested
with the 500k data set. In all cases, only the RP-solv feature
improves the errors and other features do not have noticeable
impacts on the model performance. The reactions tend to
accelerate/decelerate in a polar solvent when the products are
more/less strongly solvated than the reactants.71,72 The RP-solv
feature, which consists of solvation energy and solvation
enthalpy of reactants and products, describe how strongly the
reactants and products are solvated in a solvent and therefore
helps the DDG‡

solv and DDH‡
solv predictions for our model. The

results also show that the QM-desc feature worsens the model
performance, which is consistent with results from Spie-
kermann et al.16 that show the descriptors offer no improve-
ment. The QM-desc feature was predicted by the ML model
from Guan et al.63 which was trained on three classes of
Description Ref.

Solvation energy and enthalpy of
reactants and products at 298 K
(DGR

solv, DG
P
solv, DH

R
solv, DH

P
solv)

This work

Abraham parameters of solvents 48
2D molecular features generated
from RDKit

60

Additional atom features generated
from RDKit

60 and 62

QM atom and bond descriptors 63

Chem. Sci., 2024, 15, 2410–2424 | 2415
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Fig. 3 Pre-trained model results on the reaction split and solvent split test sets. (a) RMSE vs. the data set size for the model trained with the RP-
solv feature. (b) RMSE error of different additional features for the model trained with the 500k data set. The chosen data set size and feature are
marked with dashed vertical and horizontal lines, respectively. The error bars indicate the standard deviation between five folds.

Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
1/

8/
20

25
 6

:5
1:

29
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
substitution reactions. Our data set includes more diverse types
of reactions, and therefore, it is likely that their model is not
suitable for our reaction data. Moreover, it is possible that the
chosen QM descriptors are not related to our targets and act as
noise to the model.
4.2 Comparison of the pre-trained and ne-tuned models

Table 3 summarizes the performances of the pre-trained and
ne-tuned models with and without the RP-solv feature. The
MAE (mean absolute error) and RMSE are reported
in kcal mol−1, and the standard deviations are calculated
between the 5 folds for the pre-training set. For the experi-
mental test set, the krel error is converted to a Gibbs free energy
unit (DG‡

rel or RT(ln krel)) using eqn (6) to allow easy comparison.
The ne-tuned model with no additional feature achieves

overall the best performance on unseen reactions for both
pre-training and experimental test sets. The model has the
RT(ln krel) MAE/RMSE of 0.68/0.88 kcal mol−1 on the
experimental set and has theDDG‡

solv andDDH‡
solv MAE/RMSE of

0.71/1.16 and 1.03/1.63 kcal mol−1, respectively, on the pre-
training set reaction split. The model has higher
DDH‡

solv errors than DDG‡
solv in all cases as the COSMO-RS

method, which was used to generate the training data, has
higher calculation errors for DDH‡

solv.48 Furthermore,
DDH‡

solv generally has a larger magnitude than DDG‡
solv, which

leads to larger absolute errors. The results also show that the
pre-trained model has much lower errors on the solvent split
2416 | Chem. Sci., 2024, 15, 2410–2424
than the reaction split. The model is able to provide very
accurate predictions on unseen solvents with 295 training
solvents whereas it has much higher errors on unseen reactions
even with 26 448 training reactions. We believe this is because
the chemical space of viable solvents is not as nearly big as that
of reactions. Furthermore, the reaction split is a more chal-
lenging task since the model has to infer the TS information
from the reactants and products. The ne-tuned model was not
separately tested on the solvent split as it was trained on all
solvents that are found in the ne-tuning set. Since the major
limitation is on the reaction split, we expect the ne-tuned
model to have a similarly low error on unseen solvents.

Contrary to the earlier results on the pre-trained model, it is
found that the RP-solv feature does not improve the ne-tuned
model. Upon closer examination, we observed that the ne-
tuned model with the RP-solv feature has lower training and
validation loss than the model without the feature, but has
higher error on both pre-training and experimental test sets. The
discrepancy in performance suggests that the model overts to
the RP-solv feature during ne-tuning. The ne-tuning set
contains only three classes of reactions, which are more common
reactions but are less diverse than the pre-training set. It appears
that the information learned about the RP-solv feature during
ne-tuning does not generalize well to other reaction classes. In
contrast, the ne-tuned model without the feature performs
better by avoiding overtting and also benets from a reduced
computational cost as it no longer requires the RP-solv features
that need to be calculated for each reaction–solvent pair.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Model MAE vs. the number of fine-tuning epochs. The model is
trained with no additional feature. The error on the pre-training set is
evaluated on the reaction split test set, and the error on the fine-tuning
set is evaluated on the random split validation set.T
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Table 3 shows that the best ne-tuned model achieves around
0.1–0.2 kcal mol−1 lower error than the pre-trained model on
the unseen experimental reactions. The performance gain is
relatively big considering the small size of the ne-tuning set
compared to the size of the pre-training set. The ne-tuning set
contains bimolecular reactions that the pre-training set lacks
and includes more common classes of reactions while the pre-
training set largely contains uncommon reactions with high gas
phase barrier heights (Ea > 50 kcal mol−1).35 Hence, even
a relatively small number of ne-tuning data greatly enhances
the model's performance on the experimental set, which mostly
contains low-barrier reactions and several bimolecular reac-
tions. A similar result was observed in the work by Spiekermann
et al.16 where a model that was initially pre-trained with lower
accuracy DFT data showed substantial improvement on barrier
height predictions aer ne-tuning with a small number of
higher accuracy CCSD(T)-F12 data. Both their and our studies
demonstrate that different types of data sets can be best lever-
aged via transfer learning when only a limited amount of higher
quality or more relevant data is available. Transfer learning is
particularly benecial for our study since we could avoid mixing
the two data sets that differ in the level of theory used for
geometry optimizations and also put more emphasis on the
data set that is considered to be more relevant to real liquid
phase systems.

It is also worthwhile to note that the model has similar or
slightly lower errors on the pre-training set reaction split aer
ne-tuning. Even though the pre-training and ne-tuning sets
differ in the level of theory used for geometry optimizations and
the types of reactions included, ne-tuning improves the
model's performance on the pre-training test set as well. Our
prior study33 demonstrated that the DDG‡

solv calculations using
the COSMO-RS method are not too sensitive to the level of
theory used for geometry optimizations for the 15 experimental
reactions tested. Similar conclusion can be deduced from the
current result as the ne-tuning set, which is based on the M06-
Chem. Sci., 2024, 15, 2410–2424 | 2417
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2X/cc-pVTZ geometries, still helps or does not exacerbate the
model's predictions on the pre-training set, which is based on
the uB97XD3/def2-TZVP geometries.

However, the model can have drastically different outcomes
depending on the number of ne-tuning epochs used. In this
work, the ML model was trained up to the chosen number of
maximum epochs, and the nal model was selected based on
the best validation loss. We used the maximum epoch of 80 for
pre-training and used the smaller maximum epoch of 10 for
ne-tuning to prevent the pre-trained information from being
completely overwritten by the three reaction families used in
the ne-tuning set. The ne-tuning epoch was set to 10 because
the validation error plateaued out aer 10 epochs, as depicted
in Fig. 4. Fig. 4 shows that the error on the pre-training set
initially has a sharp drop as the model learns new reactions but
gradually increases as the number of maximum ne-tuning
epochs increases. The error on the experimental set also
decreases at rst but soon levels off at around 10 epochs. The
result indicates that the chosen epoch maintains a good
balance between retaining previously learnt knowledge and
learning new data. At higher epochs, however, the model starts
to lose prior knowledge without much added benets as it
Fig. 5 Parity plots of the predicted vs. experimental krel values. (a) The p
with the RP-solv feature. (c) The fine-tuned model with no additional fea
reported in both log10(krel) and DG‡

rel units, and R2 represents the coeffic

2418 | Chem. Sci., 2024, 15, 2410–2424
becomes biased toward the three reaction families found in the
ne-tuning set. It is thus important to identify optimal epochs
and hyperparameters for the ne-tuned model if one seeks to
preserve the pre-trained information.

The parity plots of the pre-trained and ne-tuned models are
presented in Fig. 5 for the experimental test set. It can be seen
that the predictions on the H-abstraction reactions are
substantially improved aer ne-tuning the model. This was
expected as the ne-tuning set primarily comprises H-
abstraction reactions. The ne-tuned models also have
slightly improved predictions on b-scission reactions. The
models, on the contrary, have relatively poor performance on
Reactions 9, 11, 12, and 13 (see ESI Table S1† for details on the
reactions). Notably, the ne-tuned model with the RP-solv
feature exhibits high deviations for Reaction 12,† which is
a nucleophilic addition reaction. Our former study33 revealed
that while varying the level of theory had little impact on
log10(krel) calculations for most reactions, Reaction 12† dis-
played particularly high sensitivity to the levels of theory used in
calculations. Therefore, it is possible that the RP-solv features
(DGsolv and DHsolv of reactants and products) calculated for
Reaction 12† were not accurate enough and led to higher errors.
re-trained model with no additional feature. (b) The pre-trained model
ture. (d) The fine-tuned model with the RP-solv feature. The errors are
ient of determination.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Considering that the sizes of reactants and TSs in the
experimental set are approximately twice as large as those in the
training sets, the model demonstrates satisfactory extrapolation
capability aer ne-tuning. Specically, when no additional
features are used, the pre-trained model predicts the log10(krel)
values to be close to zero for nearly all reactions, whereas the
ne-tuned model shows noticeable enhancement in capturing
the trend. We expect the model to improve further as more
diverse and larger reactions become available for training. It is
also worth highlighting that the model was trained with the
calculated data, which inherently carry some degrees of error.
We previously found that the COSMO-RS method has a DG‡

rel-

MAE/RMSE of around 0.4 kcal mol−1 (0.28 in log10krel units) on
these reactions.33 This implies that only a part of the prediction
errors are attributed to the model's performance, and the rest
stems from the intrinsic calculation errors within the training
data.

The parity plots and error histograms of the best pre-trained
and ne-tuned models are provided in Fig. 6 for the
DDG‡

solv predictions on the pre-training set reaction split. The
corresponding plots for all models on the DDH‡

solv predictions
and for the solvent split are presented in ESI Fig. S4–S6.† The
test errors are centered around zero for both models, and the
majority of the errors fall within ±2 kcal mol−1. Yet, higher
errors are observed in regions where the data are sparse. The
pre-trained model predicts nearly zero DDG‡

solv values for many
reaction–solvent pairs whose computed DDG‡

solv values are
Fig. 6 Parity plots and histograms of the DDG‡
solv errors on the 5-fold pre

feature. (b) The fine-tuned model with no additional feature. The MAE and
points found in the test set are provided. The top and right subfigures on t
and the colorbars display the scale of the 2D kernel density estimate plo

© 2024 The Author(s). Published by the Royal Society of Chemistry
highly negative. Such trend is less pronounced in the ne-tuned
model, but the model still tends to underpredict the magnitude
of the DDG‡

solv values when the computed DDG‡
solv have large

positive or negative values. It is important to clarify, though,
that the model is compared with the computed values and not
with the true values. The DDG‡

solv of±10 kcal mol−1 corresponds
to around 7 orders of magnitude difference between the liquid
phase and gas phase rate constants at room temperature. Such
large solvent effects are very rare for neutral reactions, and thus,
it is possible that the COSMO-RS method overpredicted the
magnitude of the target values on some of these extreme data
points.

Fig. 7 delves into the results of the ne-tuned model. The
reactions within the pre-training set are categorized into
different types based on bond changes to investigate potential
variations in test error across reaction types. The pre-training
set comprises 4476 reaction types identied for 13 224 reac-
tions (considering only forward directions), with 1571 of these
reaction types found in the reaction split test set. Approximately
90% of the reaction types have fewer than 5 reactions matching
each type and aremostly unique. In Fig. 7a, theDDG‡

solv errors of
reaction types are plotted against the number of the corre-
sponding reactions in each type. The error distribution appears
larger for the reaction types with fewer than 20 reactions, but
the mean error values remain similar across all ranges. The test
set error distributions of the 10 most frequent reaction types are
also examined in Fig. 7b. The examples of the reactions
-training set reaction split. (a) The pre-trained model with the RP-solv
RMSE are in kcal mol−1. The numbers of reactions, solvents, total data

he parity plots show the distribution of computed and predicted values,
ts.
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Fig. 7 The results of the fine-tunedmodel with no additional feature on the pre-training test set reaction split. (a) Distribution of theDDG‡
solv MAE

categorized by the number of training reaction data found in each reaction type. (b) Distribution of the DDG‡
solv MAE for the 10 most frequent

reaction types. The reaction type is specified by the bond changes. For example, +C–H,–C–H,–C–C indicates that one carbon–hydrogen bond
is formed, one carbon–hydrogen bond is broken, and one carbon–carbon bond is broken. Outliers are not shown in the plots.

Fig. 8 Distribution of the DDG‡
solv MAE categorized by the number of

rotatable bonds found in the reactant(s) of each reaction (outliers not
shown). The N indicates the number of reactions in each distribution.
The fine-tuned model without additional feature tested on the pre-
training set reaction split.
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corresponding to the 10 types are provided in the ESI Table S5.†
The results show that the +C]C, +C–H, –C–C, –C–H type
exhibits the highest mean error of 0.88 kcal mol−1. However, the
error is still close to the overall DDG‡

solv MAE of the ne-tuned
model. It appears that a few outliers contribute to the higher
errors of the +C]C, +C–H, –C–C, –C–H type (see Table S5†), but
it is not obvious which chemical functionalities are associated
with higher errors in these reactions. Table S5† reveals that the
reactions within the same type are also diverse and unique,
making it challenge to establish a clear correlation between
reaction type and prediction error. This observation aligns with
the ndings of Grambow et al.,13 who also did not see a clear
correlation between reaction type and test set error in their
study on predicting activation barriers.

We further examined the outliers of the ne-tuned model on
the pre-training test set reaction split. The top 20 reactions with
the highest test errors are given in ESI Table S4† along with their
gas phase barrier heights obtained from Grambow et al.35–37 It is
found that the majority of the outliers are unusual reactions
such as those forming biradical products, involving TSs with
high ring strain, and with high barrier heights (Ea >
85 kcal mol−1). These reactions are unlikely to occur in real
condensed phase systems, and therefore we anticipate the
model to have lower errors on more feasible reactions.

Overall, our model gives reliable predictions of solvent
effects on numerous neutral reactions. The model is easy to use
as only reaction and solvent SMILES are needed without
requiring any additional computational steps. However, it
should be highlighted that the proposed method is constructed
based on some assumptions. We assume that the solvation
effect does not change the 3D geometries of the reactant and TS.
The training set is generated by performing single-point energy
calculations in a solvent with the geometry of the lowest-energy
conformer optimized in the gas phase, as provided by the
2420 | Chem. Sci., 2024, 15, 2410–2424
original work of Grambow et al. and Harms et al., and potential
conformational changes upon solvation were not considered.
While prior studies33,73 indicate that the assumption generally
gives acceptable predictions, conformer effects can be very
crucial for the reactions involving compounds with many
rotatable bonds, or zwitterions/tautomers and can lead to
higher prediction errors. Fig. 8 illustrates the distribution of the
DDG‡

solv errors per the number of rotatable bonds found in the
reactant(s). While there is no clear correlation between the test
error and the number of rotatable bonds, it can be seen that the
majority of the reactants are rigid, with no or less than 4
rotatable bonds. Thus, future studies should focus on
© 2024 The Author(s). Published by the Royal Society of Chemistry
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generating more thorough training set that contains more
exible and larger compounds and should consider various
conformers of reactants, products, and TSs.

It is also essential to note that the effect of solvent friction
has been neglected. Our ML model predicts the solvent effects
on the activation barriers, but diffusion control should be taken
into account if the predicted reaction rate is above the diffusion
limit for a bimolecular reaction. Moreover, the majority of the
reactions in the training set are unimolecular in a either
forward or reverse direction (e.g. A/ B, A + B/ AB, and AB/

A + B), and the bimolecular H-abstraction in the ne-tuning set
is the only reaction family that are bimolecular in both forward
and reverse directions. We assume the learning of unimolecular
systems can also provide good approximations for bimolecular
systems. However, the model could have larger predictions
errors for a new class of bimolecular reactions, and caution
should be made for such reactions.

5 Conclusions

We developed a machine learning model that can provide fast
and accurate predictions of kinetic solvent effects for a wide
range of neutral reactions and solvents. A large set of training
data were generated using the COSMO-RS method for over 28
000 reactions and 295 solvents. The performance of the model
was evaluated with both calculated and experimental data using
rigorous data splits. The model achieves the MAEs of 0.71 and
1.03 kcal mol−1 on unseen reactions for the prediction of
solvation free energy and solvation enthalpy of activation
(DDG‡

solv, DDH‡
solv), respectively, relative to the COSMO-RS

calculations. The model is shown to provide reliable predic-
tions of relative rate constants when tested on the experimental
set that contains unseen reactions with much bigger molecules
than those found in the training set. We also demonstrate that
different types of data sets can be effectively used via a transfer
learning approach to rene the predictions.

The presentedmodel can be used to estimate the relative rate
constants between a gas phase and a liquid phase or between
two solvents for a temperature range of around 250 K to 400 K. If
a rate constant in one solvent or in a gas phase is known for
a reaction, our model outputs can be used to estimate absolute
rate constants in many different solvents for a given reaction.
One of the advantages of the model is that it only needs the
atom-mapped reaction SMILES and solvent SMILES as inputs,
which are more amenable for automatic high-throughput
predictions in comparison to requiring optimized 3D geome-
tries as input. We anticipate the model to be particularly useful
for the design of chemical processes and automatic construc-
tion of reaction mechanisms where fast estimations of kinetic
parameters and solvent screenings are needed for a large
number of reaction–solvent pairs.

Data availability

All data sets and the ne-tunedMLmodel can be found through
Zenodo: https://zenodo.org/record/8423911. A sample script for
making DDG‡

solv and DDH‡
solv predictions with the ne-tunedML
© 2024 The Author(s). Published by the Royal Society of Chemistry
model can be found at https://github.com/yunsiechung/
chemprop/tree/RxnSolvKSE_ML. The data sets and model are
open access and distributed under the terms and conditions
of the Creative Commons Attribution (CC BY 4.0) license
(https://creativecommons.org/licenses/by/4.0/). The details on
the data sets, model hyperparameters, parity plots of all
model predictions, prediction outliers, and examples of
reaction types are provided in the ESI.†
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