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and Jonggeol Na *bc

The goal of most materials discovery is to discover materials that are superior to those currently known.

Fundamentally, this is close to extrapolation, which is a weak point for most machine learning models

that learn the probability distribution of data. Herein, we develop reinforcement learning-guided

combinatorial chemistry, which is a rule-based molecular designer driven by trained policy for selecting

subsequent molecular fragments to get a target molecule. Since our model has the potential to generate

all possible molecular structures that can be obtained from combinations of molecular fragments,

unknown molecules with superior properties can be discovered. We theoretically and empirically

demonstrate that our model is more suitable for discovering better compounds than probability

distribution-learning models. In an experiment aimed at discovering molecules that hit seven extreme

target properties, our model discovered 1315 of all target-hitting molecules and 7629 of five target-

hitting molecules out of 100 000 trials, whereas the probability distribution-learning models failed.

Moreover, it has been confirmed that every molecule generated under the binding rules of molecular

fragments is 100% chemically valid. To illustrate the performance in actual problems, we also

demonstrate that our models work well on two practical applications: discovering protein docking

molecules and HIV inhibitors.
1 Introduction

The task of discovering materials that are superior to those
currently known is a challenging problem in various elds of
materials science, including pharmaceutical substances,1–4

electrical and electronic materials,5–11 energy materials,11–14

metals and ceramics,10 nanomaterials,15 and polymeric mate-
rials.16,17 Some of these studies aim to discover materials with
two or more target properties that contradict each other,
meaning it is difficult for them to coexist.18 For example, super
engineering plastics used in automobiles should be lighter than
metals yet have similar mechanical strength.16,17 Similarly,
transparent conductors used in display panels should be both
optically transparent (requiring a large bandgap) and electri-
cally conductive (requiring high carrier concentration, which
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925
generally has a low bandgap).5,18 In some cases, the aim is to
discover materials that have properties with either extremely
high or low values. For example, the development of a better
organic light-emitting diode (OLED) requires chemists to
discover novel materials with higher efficiency and stability.6–8

Here, the problem is that there are no (or few) known samples
that have such properties compared to common substances.
This makes it difficult for chemists to gain insights or knowl-
edge from the known materials, that could help to infer the
molecular structures of the desired materials. Unfortunately,
this situation also holds for most machine learning models that
learn the data. Therefore, it is necessary to develop a model that
can discover materials, even in regions with little or no known
data. In this paper, we refer to this problem as materials
extrapolation.

In recent years, it has been reported that machine learning
techniques can solve many challenging problems in a wide
range of elds, including materials discovery. In particular,
models for goal-directed inverse molecular design are attractive
because they can directly infer the molecular structures that
meet a set of given target conditions such as scaffolds,2,21

physical properties,15,22–24 and biological activities.2,4,24 Some of
these studies have proposed models based on neural machine
translation (NMT) such as seq2seq24,25 and Transformer,26

which translate input target conditions to corresponding
© 2024 The Author(s). Published by the Royal Society of Chemistry
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molecular structures. Models based on conditional generative
models have also been proposed, such as conditional generative
adversarial networks (cGANs)27 and conditional variational
autoencoders (cVAEs).28 These models directly generate molec-
ular structures to meet a set of given target conditions.15,21–23 In
contrast, there are also ways to obtain the desired materials
from unconditional generative models, such as generative
adversarial networks (GANs)29 and variational autoencoders
(VAEs).30 These approaches use additional methods to nd
appropriate latent code, which is required to generate the
target-hitting substances. Navigating policies of latent space
trained by reinforcement learning (RL)31,32 and optimization
techniques33–35 belong here.

Unfortunately, all of the previously mentioned models
(NMT, GAN, and VAE-based) are difficult to use in materials
extrapolation for discovering novel materials with properties
that are out of training data distribution. To generate realistic
molecules with these models, the models should be trained to
generate molecular data that approximate the probability
distribution of the real-world chemical system. However, since
it is impossible to know the true probability of the real-world
chemical system, the models are trained to generate data that
approximate the empirical probability of the training data.
Regrettably, the empirical data at our disposal may exhibit
biases due to various factors, consequently leading to models
trained on such biased data failing to generate some molecules
that even exist in the real world (Fig. 1a). Hence, the probability
distribution-learning models are not suitable for generating
molecules in regions with little or no known data (such as
Fig. 1 Probability distribution-learningmodels for molecular generation.
in MOSES19 training data. The other colored dots denote the molecule
MOSES training data. Since the MOSES baseline models are probability
distribution of generated molecules approximates the distribution of the
molecules in ChEMBL20 database, which have extrapolated propertie
CHEMBL3230084;③ CHEMBL3358630;④ CHEMBL300801;⑤ CHEMBL
Xi, Yi, and z denote i-th molecular structure, properties of the i-th mole

© 2024 The Author(s). Published by the Royal Society of Chemistry
materials extrapolation). Furthermore, there are several
ongoing discussions about whether probability distribution-
learning models are suitable for extrapolation prob-
lems.9,10,19,36 In the same vein, we believe that employing an
approach that either avoids using data or minimizes data usage,
such as RL and genetic algorithm (GA), is appropriate for
materials extrapolation. Since GA is a method for deriving a set
of optimal solutions rather than a problem-solving policy, it
cannot guarantee the diversity of the derived solution set. On
the contrary, RL involves learning action policies to obtain
solutions based on the given current state. This advantage
enables RL to infer a wider variety of solutions. Therefore, we
intend to utilize RL in our approach. Despite several recent
studies utilizing RL in molecular design,2,4,37 the majority of
them do not prioritize presenting RL as a means to address the
limitations of probability distribution-learning models for
discovering substances beyond their trained domains.

Combinatorial chemistry38 was invented in the 1980s and can
generate molecules with properties out of known data. These
types of methods use a set of molecular fragments and rules for
fragment combination. Breaking of retrosynthetically interesting
chemical substructures (BRICS)39 is an example of combinatorial
chemistry. This technique involves combining randomly selected
BRICS fragments with their template-based fragment combina-
tion rules, which is similar to assembling Lego blocks. Therefore,
combinatorial chemistry can create all chemically possible
molecular structures that can be obtained from the combination
of molecular fragments. According to our estimation, approxi-
mately 4 × 1016 types of small molecules (#500 Da) can be
(a) Data distribution of log P–TPSA. The pink dots denote themolecules
s generated by MOSES baseline models which were trained with the
distribution-learning models such as NMT, GAN, VAE, and AAE, the

ir training data. The magenta triangles and blue diamonds indicate real
s from MOSES training data distribution. ① CHEMBL3216345; ②

501130;⑥ CHEMBL52004. (b–d) Types of inversemolecular designer.
cule, and latent code, respectively.
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combined with 2207 BRICS fragments. Considering that the total
number of small molecules was roughly estimated to be 1060 in
ref. 40, this means that it can cover a fairly wide area. However,
there is the limitation that the combinatorial chemistry-based
molecular generator does not know which molecular fragments
to be selected and combined to complete the desired molecule.
In other words, it has no policy to guide the selection of molec-
ular fragments to obtain the target molecule. Hence, it proceeds
with countless attempts to combine randomly selected frag-
ments and selects the best compound from the generated
molecular candidates, which can result in a combinatorial
explosion.41 If we assume that it takes 1 ms to assemble one
molecule, it would take 1.27 × 106 years to enumerate all
possible small organic molecules using 2207 molecular frag-
ments; 4 × 1016 molecules × 1 ms = 1.27 × 106 years.

Herein, we introduce RL to provide combinatorial chemistry
with a molecular fragment selection policy that guides the
generating molecule toward the target. With a randomly selected
initial fragment, the RL-guided policy iteratively selects the
subsequent fragment to be combined. In the training phase, the
policy is learned by giving a higher reward if the properties of the
generated molecule are closer to the target. Therefore, the learned
policy enables an efficient search of chemical space and helps to
escape from the combinatorial explosion problem by providing
direction to the target. Moreover, the proposed model—RL-
guided combinatorial chemistry (RL-CC)—has the potential to
enable materials extrapolation, which is impossible for proba-
bility distribution-learning models. To demonstrate the potential
empirically, we apply RL-CC and two probability distribution-
learning models to a toy problem of molecules discovery that
hits multiple extreme target properties simultaneously. The
results indicate that our model can discover extreme target
molecules that probability distribution-learning models cannot
reveal. Furthermore, we theoretically demonstrate why the prob-
ability distribution-learning models are not suitable for problems
involvingmaterials extrapolation. To illustrate the performance in
actual problems, we conduct two practical experiments. The rst
is to discover protein docking molecules to a 5-hydroxytryptamine
receptor 1B (5-HT1B receptor) with high binding affinity. The
second is the discovery of human immunodeciency virus (HIV)
inhibitors with high potency. These two experiments demonstrate
that the proposed approach can discover compounds with
extreme properties, which shows the potential to be extended as
materials extrapolation when it utilizes a set of domain-specic
molecular fragments and their combination rules.

2 Results and discussion
2.1 Theoretical review of probability distribution-learning
models

Inverse molecular design models based on NMT, VAE, and GAN
learn the empirical probability distribution of training data
Pdata. Let X, Y = (X1, Y1), ., (XN, YN) denote N-sampled training
data. Here, Xi = (xi,1, ., xi,T0) denotes sequence data of the i-th
molecular structure, and Yi = (yi,1, ., yi,T) denotes a set of
properties of the i-th molecule. The NMT-based models are
trained to translate the input Yi = (yi,1, ., yi,T) into a paired
7910 | Chem. Sci., 2024, 15, 7908–7925
output sequence Xi = (xi,1, ., xi,T0). Here, xi,t is a one-hot
encoded vector of the t-th token constituting a molecule Xi.
The q-parameterized translator GNLP

q should be trained to select
a token xi,t iteratively over t = 1, ., T0, by maximizing the

likelihood
QN

i¼1

QT
0

t¼1 G
NLP
q ðxi;tjYi; xi;1 : t�1Þ empirically. The

actual training process is conducted by minimizing its negative

log-likelihood �PN
i¼1

PT 0

t¼1
logGNLP

q ðxi;tjYi; xi;1 : t�1Þ, which is equiva-

lent to minimizing cross-entropy H($, $) of hypothesis X̂q from
training data X:

H
�
X ; X̂ q

�
¼ �

XN
i¼1

XT 0

t¼1

PðXÞlog P
�
X̂ q

�

¼ HðX Þ þDKL

�
PðXÞ k P

�
X̂ q

��
(1)

where HðXÞ ¼ �PN
i¼1

PT 0

t¼1
PðXÞlog PðXÞ denotes the entropy42 of

training data X, and DKL(P(X)‖P(X̂q)) is the Kullback–Leibler (KL)
divergence43 of hypothesis probability P(X̂q) from Pdata. Since
H(X) is not a function of trainable parameter q, minimizing the
cross-entropy H(X,X̂q) is equivalent to minimizing the KL
divergence term in eqn (1). Thus, the optimal GNLP

q* is obtained
by approximating P(X̂q)—which is the probability distribution
of data generated by GNLP

q —to Pdata. It means that GNLP
q learns

the empirical probability distribution of training data Pdata, not
the true probability distribution of the system P.

Second, VAE-based models are types of generative self-
learning models that learn the empirical probability distribu-
tion of training data Pdata. The models are trained to encode
training data X = X1, ., XN in the latent space with encoder
QVAE
f and reconstruct it with decoder GVAE

q . The difference from
autoencoders is that the latent variables z are constrained to
follow a prior distribution such as a normal distribution. The
VAEs are trained using the following objective function:30

f; q
XN
i¼1

�QVAE
f ðzjXiÞ

�
log GVAE

q ðXijzÞ
�þDKL

�
QVAE

f ðzrXiÞkPðzÞ
�

(2)

When looking at the VAEs from the perspective of a genera-
tive model, the KL divergence term simply acts like a regularizer
in the training process. The expectation term measures the
reconstruction error of GVAE

q and it is approximated by using the
following L-number of Monte-Carlo sampling:

�QVAE
f ðzjXiÞÞ

�
log GVAE

q ðXijzÞ
�
z � 1

L

XL
zj¼1

log
�
GVAE

q

�
Xijzj

��
(3)

Here, the approximated reconstruction error term is a form of
negative log-likelihood over training data X. Hence, it is equiv-
alent to minimizing the cross-entropy H($, $) of hypothesis X̂q,z

from training data X:

H
�
X ; X̂ q;z

�
¼ �

XN
i¼1

XT 0

t¼1

PðXÞ log P
�
X̂ q;z

�

¼ HðXÞ þDKL

�
PðX Þ k P

�
X̂ q;z

��
(4)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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As mentioned above, this is also equivalent to minimizing the
KL divergence term in eqn (4), since H(X) is not a function of
trainable parameter q. Hence, the optimal GVAE

q* is obtained by
approximating the probability distribution of hypothesis P(X̂q,z)
to the Pdata. This means that GVAE

q (Xjz) with z ∼ QVAE
f (zjX)

approximates Pdata.
Third, GAN is also a model to obtain a generator GGAN

q that
approximates Pdata. Here, GGAN

q learns the Pdata in the learning
process to generate data that sufficiently resembles training
data X to deceive the discriminator DGAN

f . Note that it has been
proved that the global minimum of the virtual training criterion
of the generator is achieved if (and only if) Pdata= GGAN

q (z).29 This
means that the optimal GGAN

q* is obtained by approximating
Fig. 2 Overview of RL-guided combinatorial chemistry with BRICS. (a) Tr
the RDKit44 version 2020.09.1.0 of the modified BRICS rules is adopted. T
1503–1507,39 with permission of Wiley-VCH GmbH. (c) Type of tasks. Ta
target properties and Task type B is to discover molecules that maximi
defined as action space.

© 2024 The Author(s). Published by the Royal Society of Chemistry
the hypothesis probability P(X̂z) to the probability of training
data Pdata.

Therefore, it can be concluded that models based on NMT,
VAE, and GAN used for inverse molecular design are models to
derive an approximator of Pdata. Unfortunately, since Pdata
derived from the observed empirical data is not equal to the true
probability P of chemical system, it cannot guarantee that the
probability-distribution learning models will work well for
problems involving materials extrapolation.
2.2 RL-guided combinatorial chemistry with BRICS

The RL-CC illustrated in Fig. 2 is applicable to various tasks of
materials discovery, by designing a target molecule with the
aining process. (b) Modified BRICS39 fragment combination rules. Here,
his figure is modified from Degen et al., 2008, ChemMedChem, 10(3),
sk type A is to discover molecules that hit the specific values of given
ze the given target properties. (d) Fragment set B. Here, B W {end} is

Chem. Sci., 2024, 15, 7908–7925 | 7911
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Fig. 3 Inference process for molecular generation. (a) An example of a molecular generation process. (b) Property changes for generated
molecules.
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selected molecular fragments. A trained RL-guided policy iter-
atively selects the subsequent fragment to be combined. Here,
the RL-guided policy serves as a guide to generate a target-
hitting molecule. This approach has three main phases:
conguration settings (Fig. 2b–d), training (Fig. 2a), and infer-
ence (Fig. 3).

In the conguration settings phase, all settings necessary for
reinforcement learning are customized. Accordingly, the task
for materials discovery must be specied. There are two types of
tasks for this (Fig. 2c): the discovery of molecules to hit specic
values of the multiple target properties (Task type A), and the
discovery of molecules to maximize a specic property (Task
type B). Depending on the type of given task, the user designs
the reward function r, target error function 3, termination
conditions cterm, and target conditions ctrg. The reward function
r is designed to give a higher reward the better a given task is
performed. For Task type A, the target error function 3 and
reward function r are designed as sum errors for the multiple
target properties and the reciprocal of the target error function
3, respectively. In the case of Task type B, the property itself is
used as the reward function r; hence, maximizing r is equivalent
to maximizing the property. For the minimization case of Task
type B, the negative property is used as the reward function r.
We can also consider the constraints p, which are reected in
the reward function r by giving penalties if one of the
constraints p is not satised. Here, the minimum molecular
weight (MWmin) and the minimum number of fragments (nmin)
that make up a molecule can be used as constraints p. These
enable the model to generate various molecules by preventing
premature termination, which would cause the generation of
molecules that were too small and uniform.

The termination conditions (cterm) and target conditions (ctrg)
pertain to deciding when to terminate the process of selecting
and combining additional molecular fragments, which deter-
mines the characters of the nal output molecule. Hence, the
termination conditions cterm and target conditions ctrg are
designed considering the given task. The molecular generation
process is terminated early if one of the termination conditions
7912 | Chem. Sci., 2024, 15, 7908–7925
cterm is satised. Accordingly, maximum molecular weight
(MWmax) and maximum number of fragments (nmax) are used to
design the termination conditions cterm. It should be noted that
the process is also terminated if there are no more sites for
binding fragments to the combined molecule at step t (st+1) or if
the policy selects end-action at step t. These are included in the
termination conditions cterm. The target conditions ctrg are the
target bounds to hit, which are applied only to Task type A.

To evaluate the previously mentioned functions and condi-
tions, the evaluators (stage 6 in Fig. 2a) for the interesting
properties are utilized selectively to calculate the properties of
potential output molecule at step tðs0tþ1Þ. In order to calculate
the properties of the molecule, the molecule must not have any
unlled binding site. Hence, s0tþ1 is derived by attaching
hydrogen to the unlled binding sites of the combined mole-
cule at step t (st+1) if st+1 has any unlled binding site (stage 5 in
Fig. 2a). RDKit44 was selectively used to evaluate the calculated
octanol–water partition coefficient (log P),45 topological polar
surface area (TPSA),46 quantitative estimates of drug-likeness
(QED),47 number of hydrogen bond acceptors (HBA), number
of hydrogen bond donors (HBD), and molecular weight (MW). A
quantitative structure–activity relationship (QSAR) model24 and
QVina2,48 which is a tool for discovering the minimum-energy
docking conformation of a tested molecule and calculating its
docking score, are also selectively used to evaluate drug activity
for dopamine receptor D2 (DRD2) and the binding affinity to the
5-HT1B receptor, respectively.

For combinatorial chemistry, fragment set B and its combi-
nation rules should be set. Accordingly, a modied version44 of
the BRICS39 system was adopted (Fig. 2b,d). Since the best
performance was achieved for approximately 2k action spaces
in the preliminary experiments (ESI Note 2†), approximately 2k
fragments were sampled from BRICS 40k for fragment set B.
The BRICS fragment combination rules are rules to bind 16
molecular templates, where each template has a unique
binding site (red digit in Fig. 2b).

In the training phase, our model was trained using the
proximal policy optimization (PPO) algorithm,49 which is known
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc05281h


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
A

pr
il 

20
24

. D
ow

nl
oa

de
d 

on
 1

1/
30

/2
02

5 
8:

49
:0

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
to perform well in RL problems with discrete actions. This is
because it has the advantages of stable training, sample effi-
ciency, scalability, and exibility. In the preliminary experi-
ments, PPO performed optimally for our problem among
several state-of-the-art RL algorithms (ESI Note 3†). An episode
iteratively proceeds the process of selecting and combining
molecular fragments from steps 0 to T (Fig. 2a). If one of the
termination conditions cterm or target conditions ctrg are satis-
ed, the episode is prematurely terminated at the step. At step 0,
an episode is started with a randomly selected fragment s0
(stage 1 in Fig. 2a), and the randomness of the initial fragment
s0 creates more diverse output molecules s0tþ1. Subsequently,
action masking (stage 2 in Fig. 2a) is performed, which masks
the actions that are not applicable to s0. Thereby, the fragment
selection policy is enforced not to select the masked actions.
This action masking helps to generate molecules that do not
violate the chemical valence rule and enables efficient learning
by reducing the action space. In this way, the fragment selection
policy selects an action at step 0 (a0) from the unmasked
actions.

If the selected action at step t(at) is the end-action, the
process is terminated. However, if at is a fragment, at is
combined with st to make a combined molecule at step t (st+1).
To evaluate the properties of a molecule, the molecule should
not have any unlled binding sites. Hence, the potential output
molecule at step tðs0tþ1Þ is derived by attaching hydrogen to the
remaining binding site of st+1. Then, the interesting properties
of s0tþ1 are evaluated to obtain the target error 3t+1 and reward
rt+1 at step t. Now, to check whether one of the termination
conditions cterm or target conditions ctrg is satised, at, 3t+1, and
rt+1 are considered. If one of the termination conditions cterm or
target conditions ctrg is satised, the reward rt+1 is used to
update the policy. If any of the termination conditions cterm and
target conditions ctrg is not satised, the environment outputs
the combined molecule st+1. Then, the model iteratively
proceeds to the next step of the process until either one of the
termination conditions cterm or target conditions ctrg is satised.
This process is repeated for a preset number of iterations to
train the model.

Aer the training is completed, the trained policy is used to
generate a target molecule in the inference phase. Fig. 3a
displays an example of molecular generation, in which new
molecular fragments are selected and combined to complete
a target molecule from steps 0 to 3. In the process, the prop-
erties of the generated potential output molecules (s01 to s04),
which are derived from hydrogen attachment of the combined
molecules (s1 to s4), change from the properties of hydrogen
attached initial fragment (s0 + Hs) to the target properties (log P:
−0.488, TPSA: 220.83, QED: 0.207, HBA: 9, HBD: 8). In step 3,
the properties of the potential output molecule s04 (log P:
−0.488, TPSA: 211.09, QED: 0.205, HBA: 10, HBD: 8) are close to
the target properties (Fig. 3b). Since the target error 34 is lower
than the maximum target error 3max, the process is early
terminated at step 3. Hence, the potential output molecule at
step 3 ðs04Þ becomes the nal output molecule.
© 2024 The Author(s). Published by the Royal Society of Chemistry
2.3 Materials extrapolation to hit multiple extreme target
properties

In this section, we empirically demonstrate that RL-guided
combinatorial chemistry enables the discovery of extrapolated
compounds, which is not possible with probability distribution-
learning models. To achieve this, we adopt two different types of
probability distribution-learning models and compare their
performance with our model in terms of materials extrapolation.
One of the adopted models is a conditional recurrent neural
network (cRNN).24 It serves as anNMT-based translator, translating
input target properties into the corresponding molecular chemical
language. As it operates as a translator, the input target properties
and the corresponding molecular chemical language are one-to-
one matched. The other model is the generative chemical trans-
former (GCT),23 a cVAE-based generative model. It utilizes the
transformer's architecture as the backbone and incorporates
a conditional latent space between its encoder and decoder. GCT
generates chemical language corresponding to input target prop-
erties and sampled noise. As it functions as a generator using
randomly sampled noise, it generates various molecular chemical
languages with a single set of target properties.

For the demonstration, we conducted experiments on
generating molecules to hit multiple target properties. The
experimental setup was borrowed from ref. 24. In the experi-
ments, the following seven drug-related target properties were
given to the models to generate target-hitting molecules: log P,
TPSA, QED, HBA, HBD, MW, and DRD2. This experiment falls
under Task type A as specied in Fig. 2c. Since 3 has multiple
terms to minimize and multiple constraints, this toy problem
covers complex optimization problems. By even changing the
signs of some terms of 3, it is possible to cover complex opti-
mization problems that involve a mix of minimization and
maximization. Detailed information about the properties is
summarized in Methods. Here, RDKit and a QSAR model for
DRD2 (ref. 24) were adopted as evaluators.

First, the original performances of cRNN24 and GCT23 in
interpolation points were evaluated (Table 2). The two models
were trained and tested with datasets24 curated from the
ChEMBL database.20 Here, how well target-hitting molecules
were generated for the given target properties—which were
gathered from 149 679 molecules in the curated ChEMBL test
data24—was evaluated. In contrast to the two methodologies,
the proposed RL-CC approach in this paper requires retraining
for each set of target properties. This makes it impractical for
a realistic performance comparison in terms of interpolation, as
training needs to be conducted individually for 149 679 prop-
erties. Additionally, RL-CC focuses on generating molecules
with extreme properties, and thus, model performance in
interpolation was not assessed for RL-CC.

To conduct the experiments on materials extrapolation, we
adopted another molecular dataset with properties that were
more widely distributed than the trained data:24 PubChem SARS-
CoV-2 clinical trials50 (Fig. 4). Among the molecules in this
dataset, 10 molecules were sampled whose properties were
outside the trained data, which were then set as the extrapolated
targets (C1 to C10). Since these 10 molecules were real molecules
Chem. Sci., 2024, 15, 7908–7925 | 7913
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Fig. 4 Targets for materials extrapolation. The PubChem SARS-CoV-2 clinical trials dataset50 is more widely distributed than the ChEBML
training dataset.20 The properties of five molecules in PubChem SARS-CoV clinical trials that deviated from the log P–TPSA distribution of the
ChEMBL training dataset were set as extrapolation targets C1 to C5, and the properties of five molecules that deviated from the TPSA–QED
distribution were set as extrapolation targets C6 to C10.
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that exist in the real world, their properties would be physically
feasible targets to generate. For each extrapolated target, 10 000
molecular generations were tried with cRNN24 and GCT.23

To evaluate the performance of generating molecules that hit
multiple target properties, the criteria for determining whether
each target property was hit should be dened. Accordingly, in
the experiment of materials interpolation with cRNN24 and
GCT,23 the root mean squared error of each target property i
(RMSEi) was analyzed (Table 1). Since all RMSEi for cRNN and
GCT were not signicantly different from each other, we deter-
mined that the magnitude of the average RMSEi ðRMSEiÞ
represents the difficulty of generating molecules that hit the
7914 | Chem. Sci., 2024, 15, 7908–7925
target property i. Therefore, by setting target i� RMSEi as the
target bound of i, a wide bound was assigned to targets that were
difficult to hit and a narrow bound was assigned to any targets
that were easy to hit. In this context, the term ‘target-hitting
molecule’ refers to molecules with properties that fall within
the range of �RMSEi from the target values for each property.

Table 2 shows the results for materials interpolation. In
Table 2, the results of interpolation for a total of 149 679 target
properties were rescaled to 10 000 for comparison with the
extrapolation results. Since the number of attempted molecular
generations for materials interpolation and extrapolation were
different, the rescaled results based on 10 000 trials are
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The target-hitting errors for materials interpolation

RMSEi RMSEi
a

cRNN24 GCT23 Average

log P 0.379 0.368 0.373
TPSA 5.476 5.109 5.292
QED 0.081 0.075 0.078
HBA 0.932 1.204 1.068
HBD 0.223 0.247 0.235
MW 5.954 8.272 7.113
DRD2 0.113 0.098 0.105

a RMSEi refers average RMSE of target property i ˛ {log P, TPSA, QED,
HBA, HBD, MW, DRD2} for cRNN24 and GCT.23
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summarized in Table 2 for comparison. For materials interpo-
lation, the cRNN24 generated 2948 molecules that hit all of the
seven targets (log P, TPSA, QED, HBA, HBD, MW, and DRD2)
simultaneously and 3774 molecules hit the ve targets (log P,
TPSA, QED, HBA, and HBD) simultaneously. With the same
criteria, the GCT23 generated 2321 molecules that hit all seven
targets and 3480 molecules hit the ve targets simultaneously.
These results conrmed that both models are able to generate
target-hitting molecules in the trained region.

Results for materials extrapolation are shown in Table 3 and
Fig. 5. According to the results, both probability distribution-
learning models achieved poor results in terms of molecular
extrapolation. For each target from C1 to C10 outside the
trained data, we conducted 10 000 trials to generate the mole-
cules per target. As shown in the results for the targets C1 to C10
of Table 3 and Fig. 5, both probability distribution-learning
models failed to generate molecules that hit all of the targets
and did not generate molecules that hit the ve targets. GCT23

only succeeded in generating seven valid and unique molecules
that satised the chemical valence rule out of 100 000 trials,
with four and three molecules being generated for targets C1
and C3, respectively. cRNN24 generated a total of 15 068 chem-
ically valid molecules, although only 21 were unique. In
particular, 15 054 out of the 15 068 valid molecules were
nonsensical outcomes that were overlapped and too small, such
as CH4, CH4S, H2O, H2S, SO, H2OS, and H2S2. The MWs of these
small molecules range from 16 and 66 Da. Considering that the
target MWs of C1 to C10 ranged from 1026 to 3124 Da, it was
difficult to conclude whether it operated correctly. Moreover,
other generated molecules exhibited considerable deviations
from the intended targets. Detailed information on the gener-
ated molecules is summarized in Tables S1–S4.†
Table 2 Performance benchmark for materials interpolation

Model
# Of valid mols
(# of unique mols)

# Of all target-hitting mols w/o
MW & DRD2 (# of unique mols.)

# Of all
(# of un

cRNN24 8475 (8475) 3774 (3774) 2948 (2
GCT23 8715 (8715) 3480 (3436) 2321 (2

© 2024 The Author(s). Published by the Royal Society of Chemistry
For the targets C1, C2, C3, C4, and C6, our RL-guided
combinatorial chemistry generated a total of 1315 target-
hitting molecules that hit all seven targets simultaneously.
Here, 355, 366, 233, 50, and 311 molecules that hit all targets
were generated for targets C1, C2, C3, C4, and C6, respectively.
For targets C5, C7, C8, C9, and C10, RL-guided combinatorial
chemistry could not generate molecules that hit all seven target
properties. However, it successfully generated a total of 828
molecules that hit ve target properties that failed with the
probability distribution-learning models. Here, 14, 321, 181,
289, and 23 molecules that hit ve targets were generated for
targets C5, C7, C8, C9, and C10, respectively.

Also, in fact, it is hard to assert that it completely failed to hit
the seven target properties simultaneously for the targets C5, C7,
C8, C9, and C10. For these targets, the generated molecules
exhibited low target-hitting errors. This means that if the target
bounds were more broadly set, there would be more molecules
that were counted as molecules that hit all targets. It should be
noted that the employed MW target bound ±7.113 Da and DRD2
target bound ±0.105 were fairly narrow (see Table 1). The target
bound of MW 7.113 Da was so small that it was less than the
weight of a single atom. Furthermore, the target bound of DRD2
0.105 was considerably smaller than the commonly known drug
activity prediction accuracy of QSAR models. In ref. 24, the QSAR
model for DRD2 was used as a binary classier to evaluate as either
active (when the predicted value was >rbin 0.5) or inactive (#0.5).
For this reason, we believe that the number of molecules hitting
the targets MW and DRD2 was less counted than the number of
molecules hitting the other targets (see MW-column and DRD2-
column of RL-CC in Table 3). Hence, we conducted a supplemen-
tary experiment on another dataset to generate ve target-hitting
molecules, excluding MW and DRD2 (ESI Note 1†). As a result,
we conrmed that our model successfully generated molecules
with extreme properties outside the known domain, which is not
possible with probability distribution-learning models.

Moreover, RL-CC uses a selective binding approach within
combinable molecular fragments based on the BRICS fragment
combination rules. As a result, all generated molecules adhered
to the chemical valence constraints, ensuring a 100% chemi-
cally valid. Furthermore, even when extreme target properties
were specied, the diversity of chemically valid generated
molecules remained remarkably high as seen in Fig. 5.

When choosing the molecular candidates, it is also impor-
tant to consider the synthesizability of the generated molecules.
Thus, we have analyzed the synthetic accessibility (SA) score of
the generatedmolecules using RDKit, which represents the ease
of chemical compounds to be synthesized or produced. SA score
is evaluated by considering how common the fragments
target-hitting mols
ique mols)

# Of each target-hitting mols

log P TPSA QED HBA HBD MW DRD2

948) 6263 6459 6653 7627 8077 6897 7796
290) 6289 6916 6693 7013 8200 5890 8114

Chem. Sci., 2024, 15, 7908–7925 | 7915
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Fig. 5 Quality benchmarks of generated molecules in materials extrapolation. Number of chemically valid molecules, 5 target-hitting molecules
(log P, TPSA, QED, HBA, and HBD), and 7 target-hitting molecules (log P, TPSA, QED, HBA, HBD, MW, and DRD2) out of 10 000 molecules
produced for target C1 to C10. A solid line indicates the total number of valid molecules meeting each condition, and a short-dashed line shows
the number of unique valid molecules (excluding overlaps).
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composing the molecule are and the complexity of intricate ring
structures such as fused rings. The SA scores for the generated
molecules are presented in Fig. S6.† The calculated results
indicate that the generated molecules consistently exhibit low
SA scores, excluding cases with extremely high molecular
weights as seen in the experiment for generatingmolecules with
extreme target properties. This suggests a reasonable level of
synthesizability for the generated molecules.

2.4 Application to the discovery of protein docking
molecules

The discovery of small molecules that dock to a target protein is
a practical problem in drug discovery. Moreover, binding
affinity to a target receptor is an important indicator for
measuring drug–target interactions.3 Since molecules with
higher binding affinity to the target protein (compared to other
proteins) can be considered as having high selectivity and
docking ability, the discovery of molecules that maximize target
binding affinity is a key objective in protein docking drug
discovery.51 Therefore, to generate molecules with a low docking
score, which means to generate molecules that can bind
strongly with 5-HT1B in this case, the trained policy attaches
fragments that can maximize the reward.

In this section, we demonstrate that RL-guided combinato-
rial chemistry can discover molecules that maximize the
© 2024 The Author(s). Published by the Royal Society of Chemistry
binding affinity towards the 5-hydroxytryptamine receptor 1B
(5-HT1B receptor), which is related to mental diseases. A
detailed description of the 5-HT1B receptor is summarized in
Methods. We adopted QVina2 (ref. 48) (a data-free molecular
docking simulator) to discover the minimum-energy docking
conformation. This simulator evaluates the docking score
quickly and reliably. Since the docking score is an indicator that
is inversely proportional to the binding affinity, the reward
function was set as the negative docking score.

To evaluate the performance of RL-guided combinatorial
chemistry, the docking scores of 10 000 generated molecules
from our model were compared with the docking scores of two
other molecular sets. One was a set of 1871 molecules that were
generated to maximize the negative docking score towards the
5-HT1B receptor using fragment-based generative RL with
explorative experience replay for drug design (FREED),2 which is
reported in the paper. The other set was 10 000 molecules that
were randomly sampled from ChEMBL20 drug-like molecules.
The docking scores of the three sets are summarized in Fig. 6a,
which were calculated with QVina2. The calculation congura-
tion is described in ESI Note 4.† The best molecule with the
lowest docking score was discovered from our model and the
median docking score for the sets was also the lowest. The top
10 generated molecular structures with the highest pIC50 for
CCR5, INT, and RT are illustrated in Fig. S8–S10.†
Chem. Sci., 2024, 15, 7908–7925 | 7917
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Fig. 6 Generated 5-HT1B receptor docking materials. (a) Comparison of docking scores for the three molecular sets. Pink indicates the docking
scores of 10 000 generated molecules from RL-guided combinatorial chemistry. Green indicates the docking scores of 10 000 drug-like
molecules that were randomly sampled from ChEMBL20 database. Blue indicates the docking scores of 1871 molecules generated by FREED.2

The 1871 molecules have been reported as de novo cases with 4-step in the paper. It should be noted that the maximum number of fragments
constituting a compound was the same as ours. The docking scores of the 1871 molecules were re-evaluated using QVina2 (ref. 48) under the
same calculation configuration as ours. The mean and minimum docking score for each outcome are represented numerically, while the box is
set with percentiles 25 and 75, and the whiskers extend to the 5th and 95th percentiles. (b) Threemolecular examples that were generated by RL-
guided combinatorial chemistry, which exactly matched with active drug molecules reported in the PubChem Bioassay database.52
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To check if potential drug molecules were found among the
10 000 generated molecules, we investigated whether any
generated molecules were an exact match with the drug-like
molecules in the ChEMBL20 database. There were 23 mole-
cules whose molecular structures exactly matched with real
drug-like molecules in the ChEMBL database, of which 13 out of
the 23 molecules had labels on drug activity (active or inactive).
It should be noted that ref. 40 roughly estimated the number of
small organic molecules as 1060, of which only 2.2 × 106 were
included in the ChEMBL database.20 Hence, it was difficult to
nd molecules with an exact match. An interesting nding is
that ve (CHEMBL1583499, CHEMBL1726441,
CHEMBL412355, CHEMBL2261013, and CHEMBL99068) of the
13 molecules had been reported as active for some targets.
Among these, three (CHEMBL1583499, CHEMBL1726441, and
CHEMBL412355) were active in the related roles in which the 5-
HT1B docking molecules have been reported to have an effect.
For example, CHEMBL1726441 is reported to be active for
various targets such as corticotropin-releasing factor receptor 2,
Rap guanine nucleotide exchange factor 4, Nuclear factor
erythroid 2-related factor 2, and Geminin. These targets have
been reported to act in the human brain and peripheral tissues,
playing a psychopathological role53 and controlling brain
function.54 These investigations were conducted with the Pub-
Chem Bioassay database.52 The other investigated results for the
two remaining molecules (CHEMBL2261013 and
CHEMBL99068) are summarized in Table S7.†
2.5 Application to discovery of HIV inhibitors

This section describes experiments in which RL-guided
combinatorial chemistry was applied to discover HIV inhibi-
tors. Here, we selected three HIV inhibition targets: C–C che-
mokine receptor type 5 (CCR5), HIV integrase (INT), and HIV
7918 | Chem. Sci., 2024, 15, 7908–7925
reverse transcriptase (RT). Detailed information about the
targets is summarized in Methods. To evaluate the HIV inhi-
bition potency of molecules, pIC50 predictors4 for the three HIV
inhibition targets were adopted. It should be noted that pIC50 is
equal to −log IC50, where IC50 is an indicator that measures the
amount of a particular inhibitory substance required to inhibit
a given biological process or biological component by 50%. In
other words, the lower the value of IC50, the higher the HIV
inhibition potency. Moreover, the higher the value of pIC50, the
higher the HIV inhibition potency. Therefore, we set pIC50 as
the reward function to make our model discover HIV inhibitors
with high potency.

In total, 10 000 generated molecules from our model were
compared with the same number of molecules randomly
combined by no-policy combinatorial chemistry (Fig. 7a). For all
the HIV inhibition targets, molecules generated by our model
exhibited signicantly higher pIC50 values compared to those of
random combination without a policy (original combinatorial
chemistry). This result indicated that our model learned the
fragment-selection policy to discover the intended substances.
The benchmark results compared to the other four generators
for HIV inhibitors are summarized in Table S9,† in which our
model achieved the highest pIC50 values for targets CCR5 and
RT. The top 10 generated molecular structures with the lowest
docking score are illustrated in Fig. S7.†

To analyze the policy change of molecular fragment selection
in the training phase, we generated 10 000 molecules at the end
of every training iteration. The derived frequencies (how many
molecules had the fragment) for 25 fragments with the biggest
change are plotted on the le of Fig. 7b. In the initial state
(where no policy was learned), the frequency of all fragments
was similar. As the training progressed, the frequency of each
fragment became varied. Although the selected frequency of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Results for HIV inhibitors discovery with high pIC50 for three HIV inhibition targets: CCR5, INT, and RT. (a) Comparison of pIC50 for two
molecular sets. Pink indicates pIC50 for a set of 10 000molecules generated by RL-guided combinatorial chemistry. Blue indicates pIC50 for a set
of 10 000 drug-like molecules that were randomly sampled from the ChEMBL database.20 The mean and maximum pIC50 values for each
outcome are represented numerically, while the box is set with percentiles 25 and 75, and the whiskers extend to the 5th and 95th percentiles. (b)
Policy changes in BRICS molecular fragment selection according to the training steps. The left-hand side of the figure shows the number of
appearances for 25 molecular fragments with the biggest change. The vertical and horizontal axes of the left-hand side blue–red plot represent
the type of fragment and the training iteration, respectively. Blue–red indicates the number of generated molecules that have the fragment
among the 10 000 generated molecules.
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some fragments increased as training proceeded, some of them
decreased at certain points. This is because the agent found the
combinations of molecular fragments that provided a high
reward. Hence, the selection of other fragments that did not
have any merit in the pIC50 score rapidly decreased. The most
selected fragments differed according to the type of HIV inhi-
bition targets. Since the fragments were most oen used to
maximize the pIC50 for each target, we hypothesize that they
may be key structures for HIV inhibitors on each target.

2.6 Expansion potential for discovery of organic materials

Fig. 8a and b illustrate the results of fragmenting TADF emitters
for single-layer OLED by leveraging the BRICS fragment
combination rules in reverse. Examination of the fragments
depicted in Fig. 8a reveals that by inversely applying the BRICS
fragment combination rules, it is possible to fragment the
emitter into acceptor, donor, and bridge components, aligning
© 2024 The Author(s). Published by the Royal Society of Chemistry
with the knowledge of designing photoactive materials.
However, the emitter shown in Fig. 8b displays a chunk where
the combination of acceptor and bridge remains undivided.
This occurrence is due to the BRICS rules covering only the
bonds between C, N, O, and S elements, lacking rules for bonds
at the B–X binding sites marked in blue in Fig. 8b. Conse-
quently, this highlights a limitation that for the BRICS rules to
encompass a wider range of organic materials beyond drugs,
there is a need to incorporate additional rules for various
elemental bonds. Fig. 8c and d show the fragmentation results
of organic ame retardant materials using the BRICS fragment
combination rules in reverse. These results indicate that if the
BRICS fragment combination rules are well-expanded and
inversely applied to construct the fragment set of targeted
materials, RL-CC has the potential to be sufficiently extended to
the discovery of organic materials.
Chem. Sci., 2024, 15, 7908–7925 | 7919
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Fig. 8 BRICS fragmentation of organic materials. (a and b) Thermally-activated delayed fluorescence (TADF) emitters for single-layer OLED
reported in ref. 55. (c and d) Flame retardant materials reported in ref. 56.
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3 Conclusion

From a data science perspective, the discovery of better than
previously known is to nd new substances with properties
outside outliers. In particular, research on inverse molecular
design models with extrapolated target properties can be
considered as fundamental groundwork for materials extrapo-
lation. Most of the reported inverse molecular design models
are based on data probability distribution-learning models,
such as machine translators and generative models (including
Seq2Seq,25 Transformer,26 GAN,29 and VAE30). However, these
models are too limited for use in materials extrapolation, which
requires discovering substances in the untrained area. To solve
this problem, we adopted combinatorial chemistry,38 which
generates molecules from combinations of randomly selected
molecular fragments. Fundamentally, it is a rule-based molec-
ular designer for generating all chemically possible molecular
structures that can be obtained from the combination of
molecular fragments. However, since the lack of a molecular
fragment selection policy can cause a combinatorial explo-
sion,41 RL is applied to train its fragment-selection policy to
provide a direction toward target substances.

This paper contains three major contributions. First, we
theoretically demonstrated that most inverse molecular design
models based on probability distribution-learning of data are
too limited for use in materials extrapolation. Second, we
7920 | Chem. Sci., 2024, 15, 7908–7925
empirically demonstrated that our proposed RL-guided
combinatorial chemistry works well on various discovery prob-
lems with extreme/extrapolated properties, such as the
discovery of multiple target-hitting molecules, protein docking
molecules, and HIV inhibitors. Since the BRICS39 system is
designed based on drug-like molecules, our applications were
limited to the discovery of drug molecules. For these reasons,
we have shown the feasibility of applying the proposed meth-
odology to the discovery of organic materials by using the BRICS
fragment bonding rules in reverse to decompose molecules of
organic materials. This also highlights the limitations of the
BRICS fragment combination rules that need to be addressed in
order to further extend the scope of materials discovery. The
problems addressed in this study exhibit signicant overlap
with practical materials discovery issues. For instance, photo-
active materials used in applications such as organic light-
emitting displays, solar cells, optical sensors, bioelectronic
devices, and liquid crystal displays are compounds designed
through combinations of molecular fragments. The common
goals of these photoactive materials discovery are nding new
and better materials that satisfy target properties, such as the
energies of the S0, S1, T1 states, and their gaps. Additionally,
considerations for band gaps in semiconductors and transport
properties in battery electrolytes fall within these kinds of
problems. Third, the limitations of our model were also
analyzed inMethods. One of these was that re-training would be
© 2024 The Author(s). Published by the Royal Society of Chemistry
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required to discover multiple target-hitting molecules if the
targets were changed. The other limitation was a sparse reward
problem that interrupted the discovery of materials with
extreme properties. However, ongoing research efforts aimed at
addressing these limitations suggest that they can be resolved
through future studies.

4 Methods
4.1 Molecular descriptors

For the experiment in materials extrapolation, where the aim
was to hit multiple extreme target properties, seven properties
were set: logarithm of the calculated octanol–water partition
coefficient (log P);45 topological polar surface area (TPSA);46

quantitative estimate of drug-likeness (QED);47 number of
hydrogen bond acceptors (HBA); number of hydrogen bond
donors (HBD); molecular weight (MW); and drug activity for
dopamine receptor D2 (DRD2). Each property is considered
important in the eld of drug discovery. The term log P is
a descriptor for the lipophilicity of a molecule, which refers to
a molecule's capacity to dissolve in fats or oils. This is an
important property in drug design since it has an impact on the
molecule's capacity for penetrating cell membranes and
reaching its intended target. The term TPSA is a calculated
descriptor of the polar surface area (PSA) of a molecule, which
refers to the area of a molecule having polar functional groups
that could form hydrogen bonds with water molecules. A
molecule is less polar andmore likely to be able to penetrate cell
membranes if it has a lower PSA value. The terms HBA and HBD
are also important properties in drug design because they can
affect a molecule's capacity to interact with other molecules
through hydrogen bonding. Hydrogen bonding is frequently used
in drug design to facilitate the binding of a molecule to the target
receptor. Moreover, hydrogen bonding can affect a drug mole-
cule's solubility and permeability, which inuence its pharmaco-
logical properties. TermMW is a descriptor used in drug discovery,
as it can affect a drug's pharmacokinetics, efficacy, and safety. This
is because the size of the molecules can inuence a drug's
absorption, distribution, metabolism, or degree of penetration
into the cell membrane. The correct molecular weight of a drug
depends on its application. However, most drugs generally
comprise small molecules with a molecular weight of less than
500 Da. This is because drugmolecules have a higher likelihood of
passing through a cell's membrane and have a lower likelihood of
being affected by biometabolic reactions. The termQED is ametric
used to evaluate a molecule's overall drug-likeness, which is
a geometric mean of log P, HBA, HBD, PSA, number of rotatable
bonds (ROTB), number of aromatic rings (AROM), and number of
structural alerts (ALERTS). A molecule with a high QED value is
more likely to be a promising drug candidate. Finally, DRD2 refers
to a drug's activity toward dopamine receptor D2. The dopami-
nergic neurotransmission is regulated by the G protein-coupled
receptor dopamine receptor D2, which is mainly expressed in
the brain.

In the experiment aimed at discovering protein docking
molecules, QVina2 (ref. 48)—a tool to discover the minimum-
energy docking conformation and calculate its docking
© 2024 The Author(s). Published by the Royal Society of Chemistry
score—was employed to compute a docking score. This score is
proportional to the binding strength between a drug molecule
and its target. QVina2 calculates the docking score by simu-
lating how a drugmolecule interacts with a given target receptor
in a three-dimensional simulation box. We targeted the protein
receptor 5-HT1B. Many studies have reported that activating 5-
HT1B receptors outside the brain has vascular effects (such as
pulmonary vasoconstriction, which can help treat angina57).
Moreover, reduced 5-HT1B heteroreceptor activity can increase
impulsive behavior, whereas reduced 5-HT1B autoreceptor
activity can have an antidepressant-like effect.58,59

In the experiment aimed at discovering HIV inhibitors, we
selected three HIV-related targets: C–C chemokine receptor 5
(CCR5), HIV integrase (INT), and HIV reverse transcriptase (RT).
Here, CCR5 is the immune system-related protein, which is
found on the surface of white blood cells. Along with C–X–C
chemokine receptor 4, it is a key co-receptor for HIV entry.60 The
second target was INT, which is involved in viral replication and
facilitates the viral cDNA's insertion into the infected cells.1 The
nal target was RT, which triggers the reverse transcription
process. Here, the process can cause mutation and recombi-
nation that form the genetic diversity of HIV, enabling the
formation of viral variants that could evade host immune
responses, rendering the virus resistant to medication treat-
ments.61 For each target in the experiment, we tried to maximize
its pIC50 value, which is a descriptor for the potency of a drug in
inhibiting a biological activity. It is calculated as the negative
logarithm of the IC50 value, which is the amount of a drug that
inhibits 50% of the biological activity. In other words, the drug's
potency increases as the IC50 value decreases. In drug discovery,
IC50 is commonly utilized to compare the effectiveness of
potential drug candidates.

4.2 Fragment set conguration

Two types of fragment sets were used in this study. One set con-
tained 2207 BRICS fragments that appeared more than 150 times
in the training set24 curated from the ChEMBL database20 (release
version 25). This fragment set was used for three major experi-
ments: the discovery of seven target-hitting molecules, protein
docking materials, and HIV inhibitors. For the supplementary
experiment aimed at discovering ve target-hitting molecules (ESI
Note 1†), another fragment set containing 2547 BRICS fragments
that appeared more than 100 times in the training set of the
MOSES database19 was used. The detailed reasoning for using
these fragment sets is described in ESI Note 2.†

4.3 Action masking

For efficient learning, we applied action masking to our model
(stage 2 in Fig. 2a). Based on the molecule in the current state,
the list of actions that the agent can choose is limited by action
masking. Since our model combines fragments according to
BRICS fragment combination rules, the fragments that could
not be connected to the molecule in the current state were
masked. Thereby, more efficient learning was possible since the
number of selectable actions in the current state was reduced,
which improved the performance of our model (ESI Note 3†).
Chem. Sci., 2024, 15, 7908–7925 | 7921
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4.4 Target properties and calculation of molecular
descriptors

In this study, three major experiments were conducted to
generate molecules with extreme properties. In the rst experi-
ment, discovering molecules that could hit the multiple target
properties was attempted. In the other experiments, discoveries
of molecules that maximize interesting properties were attemp-
ted. Accordingly, the interesting properties could be calculated by
the evaluators in the environment of the RL model. The detailed
information on model accuracy can be found in ESI Note 7.†

For the rst experiment on materials extrapolation to hit
multiple extreme target properties, seven molecular descriptors
were set as the targets: log P,45 TPSA,46QED,47HBA,HBD,MW, and
DRD2.24 Here, the DRD2 was calculated using a QSAR model for
DRD2,24while the other descriptors were calculated using RDKit.44

We selected 10 target sets of molecular properties out of known
molecular data and attempted to generate the target-hitting
molecules to demonstrate that our model would work well in
terms of materials extrapolation. These 10 target sets of extreme
properties were taken from an untrained dataset—PubChem
SARS-CoV-2 clinical trials50—whosemolecular properties aremore
widely distributed than the training data set24 (Fig. 4). Since the 10
target sets of extreme properties were taken from real molecules,
they could be considered chemically feasible targets to discover.

For the experiment to discover protein docking materials, the
calculated docking score between a dockingmolecule and 5-HT1B
protein receptor was set as the target. The docking score was
calculated using QVina2,48 which calculates the docking score of
a dockingmolecule by searching for its minimum-energy docking
conformation. This program employs an empirical scoring func-
tion to predict the docking score, which includes several terms
that incorporate various physical and chemical interactions
between the ligand and protein. These interactions include van
der Waals interactions, electrostatic interactions, hydrogen
bonds, and solvation effects. Moreover, QVina2 makes use of
nely tuned scoring function parameters that are derived using
many experimentally-identied ligand–protein complexes. It
calculates a docking score for each docking posture it produces,
with the lowest value being the most energetically favorable
binding conformation. The detailed calculation conguration for
QVina2 is illustrated in ESI Note 4.†

For the experiment to discover HIV inhibitors, the target
property was set to maximize the pIC50 score to three HIV-
related targets: CCR5, INT, and RT. Each pIC50 score was
calculated by the light gradient boosting machine (LGBM)62-
based QSAR models2 for the three HIV-related targets.4 In
addition, the QSARmodel was trained to predict the pIC50 value
for each target using the ChEMBL dataset.20
4.5 Training loop

To maximize the cumulative reward for sequential actions, RL
trains its agent to learn which action to choose at each step. In
this study, the action is a selection of a molecular fragment. The
reward is the value calculated with the evaluator(s) by the
experiment-specic reward function. By repeating this process,
the policy that selects an action that can maximize the
7922 | Chem. Sci., 2024, 15, 7908–7925
cumulative reward is gradually updated. Aer sufficient
learning, the policy could then select sequential actions to
generate a desired molecule that ts the given task.

The episode proceeds from steps 0 to T, where T is the desig-
nated maximum fragment number of the molecule. To generate
diverse molecules, the rst fragment is randomly selected. When
selecting the next molecular fragment to be combined with the
current molecule, action masking is conducted. In the process of
action masking, the molecular fragments that cannot be
combined with the current molecule are masked according to the
BRICS fragmentation combination rules. Subsequently, the policy
selects a molecular fragment from the unmasked fragments and
binds it to an unlled binding site. If the combined molecule still
has any unlled binding sites, hydrogen atoms are attached to
derive a complete molecule and evaluate its properties of the
current state. When a molecule that meets the set of criteria is
generated, the fragment attachment is stopped and the episode
ends early before reaching step T. Otherwise, the process is
repeated during step T. Aer the nal output molecule is gener-
ated, a reward for the episode is calculated depending on how
closely the targets are hit. Since the reward is given only at the end
of an episode, the policy undergoes updates aimed at achieving
a global solution rather than a local one. By iteratively conducting
the training episodes, the agent of RL learns a policy that maxi-
mizes the given reward function. The episode training is repeated
until a preset number of training iterations is reached. For each
experiment, the training iterationwas set to 750, 80, and 250 times.

Training for a predened number of iterations was con-
ducted using an Intel Xeon Gold 6226R. For each experiment, it
took 12, 140, and 30 hours, respectively. The variation in
training times arises from differences in the time required for
property prediction and the batch size used at each training
iteration. For each experiment, it takes an average of 0.35, 0.7,
and 15 seconds, respectively, to predict the properties at each
step. Additionally, the models' accuracy can be found in ESI
Note 7 and Table S10.† For our model, retraining is required
from scratch each time the target changes. Although transfer
learning and other techniques for high efficiency may be
considered in the future, they have not been applied as of now.
In materials discovery, a xed target is typically provided once
the problem is given, enabling the training of the policy only
once, and subsequent inference can be repeated at a low cost.
4.6 Rewards and terminations

In RL, it is important to have an appropriate set of termination
conditions and target conditions to learn a decent policy. In all
three experiments conducted in this study, there were two
common termination conditions. First, molecular generation
was terminated when the number of fragments that make up
a compound in the current state neval exceeded the maximum
number of fragments nmax, which was set to 50, 4, and 6 for each
experiment. Second, the process was terminated when the
number of unlled binding sites nL was equal to zero.

For the experiment on materials extrapolation to hit multiple
extreme target properties, the process was terminated if theMW in
the current state MWeval exceeded the maximum MW (MWmax =
© 2024 The Author(s). Published by the Royal Society of Chemistry
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3500 Da). Furthermore, it was also terminated if the error (3) was
less than the error threshold 3th = 0.05. Here, 3 was calculated as

3 ¼
X

y˛prop

�
ytrg � yeval

sy

	2

(5)

where ytrg, yeval, and sy denote the target y, evaluated y, and
standard deviation of y for the curated ChEMBL training set,24

respectively. Here, prop is a set of properties that includes log P,
TPSA, QED, HBA, HBD, MW, and DRD2.

The design of the reward function is also important since RL is
performed based on the reward obtained by taking an action.
Moreover, a penalty can be given to avoid any undesired actions.
For the experiment on materials extrapolation to hit multiple
extreme target properties, the reward function r was designed as
follows:

r ¼

8>>>>>>>>><
>>>>>>>>>:

0; iff½MWeval\MWmin�n½neval\nmin�g^½nLs0�;
�50; iff½MWeval\MWmin�n½neval\nmin�g^½nL ¼ 0�;
100

3þ 1
; elseif 3\3th;

30

3þ 1
; otherwise:

(6)

Here, MWmin and nmin were set to generate various compounds
by avoiding premature termination, which would generate
uniform molecules that were too small. For this purpose, when
the number of unlled binding sites nL was not equal to zero,
a zero reward was given if MWeval was less than MWmin or neval
was less than nmin. When nL was equal to zero, a reward of −50
was given if MWeval was less than MWmin or neval was less than
nmin. However, if a generated molecule did not correspond to
the above two cases, a reward proportional to the degree of
proximity to the target was awarded.

For the other two experiments (discovery of protein docking
materials and HIV inhibitors), the reward function r was
designed as follows:

r ¼

8>><
>>:

0; iff½MWeval\MWmin�n½neval\nmin�g^½nLs0�;
�50; iff½MWeval\MWmin�n½neval\nmin�g^½nL ¼ 0�;
pIC50; otherwise:

(7)

Here, the predicted score refers to the calculated docking and
pIC50 scores of the HIV-related target, respectively.
4.7 RL algorithm

We performed benchmark testing against the following state-of-
the-art RL algorithms: IMPALA,63 APPO,64 A2C & A3C,65 and
PPO.49 The detailed results of the benchmarking are summa-
rized in ESI Note 3.† From the benchmark results, we conrmed
that PPO—which is a model-free, on-policy, actor-critic, and
policy-gradient algorithm—was the most suitable for our
problems, with a very large discrete action space of over 2000.
Moreover, PPO is known for its good performance, stability, and
good sample efficiency, which makes the training process more
© 2024 The Author(s). Published by the Royal Society of Chemistry
stable by avoiding large policy updates with importance
sampling and reusing learning data on the trust region. Hence,
we applied PPO for all experiments conducted in this study. The
objective function of PPO is dened as follows:

LCLIPðqÞ ¼ Ê
h
min

�
rtðqÞÂt; clipðrtÞðqÞ; 1� 3; 1þ 3

�
Ât

i
;

where rtðqÞ ¼ pqðatjstÞ
pqoldðatjstÞ

(8)

where Êt represents the expected value at time step t. Term rt
denotes the ratio between the new policy pq and the old policy
pqold

. The policy is expressed as pq(atjst), where at and st are the
action and state at timestep t, respectively. In eqn (8), Ât denotes
the advantage function at time step t, which estimates the result
of the step action more effectively than the behavior of the
default policy.
4.8 Further ndings

We empirically demonstrated that our methodology can discover
novel molecules with extreme properties, which is impossible to
accomplish with existing models that learn the probability distri-
bution of data. However, there were two limitations with our
model, which could be solved through further studies. First, the
model should be re-trained if the target changes because the
reward function depends on the given target. Therefore, themodel
must learn the policy from the start each time a new target is set.
To solve this problem, a methodology such as meta-learning may
be applied in future studies. With meta-learning, it is possible to
predict the results of a new task or recommend hyperparameters
based on the learning results from another task. Therefore, when
a new task is assigned, it will be possible to learn through the
experiences that have been taught in the past, requiring less
additional training. For example, using methods such as Meta-
GenRL,66 which applies meta-learning to reinforcement learning,
the model outperformed the existing reinforcement learning
algorithm while exhibiting similar performance for completely
different tasks. Second, there was a sparse reward problem, which
occurred because the agent received little feedback or reward for
the action from the environment, rendering it difficult to learn
efficient policies and satisfy the desired goal. Sincemolecules with
extreme properties are rarer than common molecules, the proba-
bility of experiencing an episode in which a rare molecule is ob-
tained through a random combination of molecular fragments is
relatively low. To solve this problem, we could adopt methods that
encourage more exploration with curiosity. This would allow
experiencing more episodes that could provide higher rewards. In
addition, hierarchical reinforcement learning67 could be applied,
which is a methodology that utilizes prior knowledge of the given
problem to set sub-goals that are easier to achieve than the orig-
inal goal. Accordingly, it learns a policy that can achieve the
original goal through policies learned from sub-goals.
Code availability

The full code used to perform the analysis is available at https://
github.com/Haeyeon-Choi/RL-CC.
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Data availability

The curated ChEMBL datasets and MOSES data sets for training
and testing cRNN24 and GCT23 are publicly available at https://
github.com/MolecularAI/Deep-Drug-Coder and https://
github.com/molecularsets/moses, respectively. All generated
molecules in this study are available at https://github.com/
Haeyeon-Choi/RL-CC/tree/main/result.
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