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ulation to develop molecular
dynamics force fields for disordered proteins†

Joe G. Greener

Implicit solvent force fields are computationally efficient but can be unsuitable for running molecular

dynamics on disordered proteins. Here I improve the a99SB-disp force field and the GBNeck2 implicit

solvent model to better describe disordered proteins. Differentiable molecular simulations with 5 ns

trajectories are used to jointly optimise 108 parameters to better match explicit solvent trajectories.

Simulations with the improved force field better reproduce the radius of gyration and secondary

structure content seen in experiments, whilst showing slightly degraded performance on folded proteins

and protein complexes. The force field, called GB99dms, reproduces the results of a small molecule

binding study and improves agreement with experiment for the aggregation of amyloid peptides.

GB99dms, which can be used in OpenMM, is available at https://github.com/greener-group/GB99dms.

This work is the first to show that gradients can be obtained directly from nanosecond-length

differentiable simulations of biomolecules and highlights the effectiveness of this approach to training

whole force fields to match desired properties.
Introduction

Molecular dynamics (MD) simulations have helped us to
understand how molecules move,1,2 and will only become more
important as computers get faster and innovative machine
learning approaches are developed.3,4 There are two main issues
with MD: the force elds used to describe atomic interactions
lack accuracy, and sampling beyond the microsecond scale is
computationally prohibitive. When simulating a biomolecular
system it is usually the solute that is of interest, so implicit
solvent models can be used to replace solvent molecules with
a continuous medium.5,6 This speeds up simulations by
reducing the number of atoms and by giving faster exploration
of conformational space due to the lack of friction with solvent,
with speedups of up to 100× over explicit solvent.7 Despite the
lack of interactions between the solute and individual solvent
molecules being a fundamental limitation of implicit solvent
models, they are regularly used across a range of biomolecular
simulations8 and have been the target of machine learning
approaches.9,10 Small proteins can be folded in GPU-days with
implicit solvent models and enhanced sampling.11

Major inaccuracies of implicit solvent models include the
tendency to overcompact disordered proteins into rigid, oen a-
helical structures, the tendency to cause any pair of proteins to
bind strongly, and the poor secondary structure match to
ecular Biology, Cambridge CB2 0QH, UK.
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experiments for peptides.12–15 There has been considerable
recent effort to alleviate similar, and less severe, problems for
explicit solvent force elds,16–18 resulting in a better match to
experimental data for both folded and disordered proteins.19–22

This forms part of a wider attempt to use data to improve force
elds.23–27 However there has been less attention on improving
implicit solvent models in this area,28 with notable exceptions
being the ABSINTH model29 and coarse-grained approaches
that combine multiple atoms into one site.30,31 This is a missed
opportunity: despite their fundamental limitations, implicit
solvent models need not perform as poorly as they do on
disordered systems. In fact they are especially well-suited to
studying these systems, as they are not slowed by the large
solvent boxes required for explicit solvent simulations and can
be used to probe slow events such as protein aggregation32,33

with the increased conformational sampling resulting from low
viscosity. Whereas explicit solvent force elds have been
improved in tandem with associated water models,34–37 this is
rarely the case for implicit solvent models,12,38 suggesting that
adjusting both at the same time could lead to improvements.
Whilst it is possible and even desirable to train force elds
using only quantum mechanical data,39–43 matching to struc-
tural properties as well can give useful models now, and in
future can estimate parts of the Hamiltonian that are difficult to
obtain from quantummechanics such as dispersion in complex
media.

In this study I modify the parameters of an existing force
eld and implicit solvent model to better describe disordered
proteins and protein aggregation, whilst retaining acceptable
performance on folded proteins. The technique of
Chem. Sci., 2024, 15, 4897–4909 | 4897
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differentiable molecular simulation (DMS) is used to modify
many force eld parameters at the same time. This emerging
technique allows structural and dynamic properties to be tar-
geted to parameterise whole force elds using automatic
differentiation (AD).44 This is part of the paradigm of differen-
tiable programming45 in which AD, more commonly associated
with training neural networks, is used to obtain gradients from
arbitrary algorithms. DMS has previously been used to train
a coarse-grained force eld for proteins from scratch,46 to learn
pairwise potentials,47,48 for enhanced sampling,49 to predict
protein structure50 and to explore statistical physics models.51

Dedicated soware packages such as Jax MD,52 TorchMD53 and
DMFF54 have been developed specically for differentiable
simulations. The Molly.jl soware developed as part of this
work provides a exible and fast option for DMS and for MD
more broadly. The combined force eld and implicit solvent
model presented here, called GB99dms, is available to the
community and is easy to run from OpenMM. Here it is shown
for the rst time that DMS can be used to train force elds over
nanosecond-length simulations.

Results

There are a number of recent soware packages designed for
DMS.52–54 However all were either lacking features for simu-
lating proteins or did not have the performance required to do
AD on simulations of millions of steps. Hence the capabilities of
the Julia55,56 package Molly.jl were expanded to carry out
training simulations for this work. This package is a pure Julia
implementation of MD compatible with biomolecules and DMS
which implements various integrators and allows easy deni-
tion of custom interactions. Code is run on the GPU using
kernels written in Julia with CUDA.jl.57,58 Gradients are
computed using Zygote.jl59 and Enzyme.jl.60,61 Together these
allow gradients to be computed through arbitrary code on the
GPU, including complicated algorithms such as the force
calculation of GBNeck2. Reverse-mode AD is used as it has
constant compute time with respect to the number of parame-
ters. However, broadcasted functions do use an efficient
combined forward and reverse approach.62

I choose to start from the a99SB-disp force eld21 since it has
been developed for both folded and disordered proteins, and
the GBNeck2 implicit solvent model63 since it shows good
performance on folded proteins.11 These have been developed
over many years using both quantum mechanical and experi-
mental data, and here we seek to improve the combination of
the models for disordered proteins. GBNeck2 is a Generalized
Born approach that approximates the exact Poisson–Boltzmann
equation describing the electrostatic environment of a solute in
a solvent. Generalized Bornmethodsmodel the solute as a set of
spheres with a different dielectric constant to the external
solvent. The “neck” correction improves the prediction of the
molecular surface, which is used when determining the Born
radii.64 The a99SB-disp modied backbone O–H interaction
term is not used, as it was later found to not impact the ability to
t quantum mechanical data.22 Since some atom types in the
force eld appear rarely in the training data, parameters are
4898 | Chem. Sci., 2024, 15, 4897–4909
modied for 16 common atom types: CA, CT, C, C8, C9, N, N3,
O, O2, OH, H, H1, HA, HC, HO and HP. This gives 108 param-
eters to change: partial charge scaling, Lennard-Jones (LJ) s and
LJ 3 for the 16 atom types (46 non-zero parameters); torsion k
values for 13 common proper torsions (33); LJ and Coulomb 1–4
interaction scalings (2); GBNeck2 atom radii (6); GBNeck2 atom
parameters (12); GBNeck2 screening parameters (4); and the
GBNeck2 parameters neck cutoff, neck scale, offset, probe
radius and surface area factor (5). To maintain the overall
charge of residues the partial charges are not changed directly,
instead a charge scaling is learned – see the methods. Torsion
phases, which in a99SB-disp are all symmetrical around 0° apart
from backbone 4 and j, are not modied as this has ques-
tionable physical validity.

8 small proteins ranging in size from 19 to 39 residues, 4
folded and 4 disordered, are used for training. These are shown
in Fig. 1B. The folded proteins are Trp-cage (PDB ID 2JOF), BBA
(1FME), GTT (2F21) and NTL9 (2HBA) and contain both a-
helices and b-sheets. The disordered proteins are Htt-1-19,
a slightly helical intrinsically disordered protein (IDP) derived
from huntingtin's N-terminus; histatin-5; and the N-terminal
and C-terminal halves of ACTR, split up to avoid excessive
computational demands during training. At each epoch of
training, each protein is simulated using a Langevin integrator
with the current force eld parameters for 5 ns (5 million steps).
Residue–residue distances are periodically recorded and used at
the end of the simulation to calculate the mean and standard
deviation for each residue–residue distance over the simulation.
Since explicit solvent simulations with the a99SB-disp force eld
and its corresponding water model seem to accurately describe
the properties of both folded and disordered proteins,21 I train
to match the residue–residue distances in 2 ms simulations of
the training proteins with this force eld. Previous approaches
to developing implicit solvent force elds have also matched to
explicit solvent data.65

The Kullback–Leibler (KL) divergence is calculated in both
directions between the training and reference simulations, and
averaged over residues. This gives a loss value; since the simu-
lation is implemented in AD-compatible soware, the gradients
of the loss with respect to the force eld parameters can be
calculated. These are combined across the training proteins and
used to change the force eld parameters, before the next epoch
is started. Simulations of the folded proteins start from the PDB
coordinates and a single repeat is run. For the disordered
proteins two repeats are run, starting from different snapshots
of the reference explicit solvent simulations. Each 5 ns simu-
lation takes 15–24 hours on a GeForce RTX 2080 Ti GPU
depending on the size of the protein. The parameters aer 5
epochs of training are used, meaning training takes 5 days on 12
GPUs (the repeats for disordered proteins give 12 simulations
per epoch). This overall training process is shown in Fig. 1A.

The parameters of the trained force eld, named GB99dms,
are similar to the starting parameters, with only 19 out of 108
parameters changing by more than 3% in absolute value.
Staying close to the starting values was a deliberate attempt to
nd a point in the high-dimensional parameter space that
works across a variety of protein systems but remains similar to
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Differentiable molecular simulation to improve an implicit solvent force field. (A) For each protein a simulation is run with Langevin
dynamics and the mean (m) and standard deviation (s) of the Ca residue–residue distances are calculated. These are compared using the KL
divergence to corresponding values from reference explicit solvent simulations to obtain a loss value. AD is then used to obtain gradients of the
loss with respect to the force field parameters, which can be used to improve the force field. (B) The 8 proteins used for training, consisting of 4
folded proteins (top) and 4 disordered proteins (bottom). (C) The 7 parameters that change by at least 4.5% in absolute value from the starting
values in a99SB-disp + GBNeck2. (D) Summary of numerical results from the paper. Rg error is the sum of squared total residuals between the
experimental and simulation radius of gyration for each protein as shown in Fig. 2A, lower is better. SS error is the a-helical fraction error as
shown in Fig. 3B, lower is better. Binding corr is the correlation between simulation contact probabilities and NMR chemical shift perturbation
data for a-synuclein and fasudil as described in the results, higher is better.
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the well-studied parameters available currently.66 The direction
of parameter changes are generally consistent across epochs of
training, as shown in Figure S1. The parameters that change the
most are shown in Fig. 1C and all parameters are listed in Table
S1. The Born radius parameters for carbonyl O and backbone
amide H decrease, indicating less screening from solvent,
though the Born radius parameters for C and H increase. The LJ
s parameters for N and C increase, indicating a larger interac-
tion distance for these atoms. The LJ 3 parameters increase
for N and C but decrease for HC and CT, indicating a shi in
strength of LJ interactions between atom types. Small changes
are made to torsion parameters; as expected due to the required
changes in secondary structure preferences, backbone 4 and j

change the most. Partial charges do not change much, except C
which becomes more positive (0.597 to 0.625 for backbone
carbonyl C in alanine). The Coulomb and LJ 1–4 interaction
weightings for atoms separated by 3 bonds both increase,
indicating less shielding from non-bonded forces for nearby
atoms. Whilst the bonded/non-bonded parameters and implicit
solvent parameters of this force eld could be used separately in
future, this was not tested and it is recommended that they are
used together as they were trained.
© 2024 The Author(s). Published by the Royal Society of Chemistry
GB99dms was compared to existing force elds on a set of
proteins not homologous to those used for training. I compare
to the combination of Amber ff14SBonlysc11,68 and GBNeck2
(ref. 63) used successfully to fold proteins,11 the combination of
a99SB-disp21 and GBNeck2 used at the start of training in this
work, and available explicit solvent a99SB-disp data.21 First,
performance is assessed on 8 IDPs ranging in size from 40 to
140 residues. This is the set used in Robustelli et al. 2018,21

excluding ACTR which is used here for training. For each
protein 3 simulations of 2 ms were run for each force eld, with
an initial burn-in period of 0.5 ms starting from an extended
conformation being discarded. All validation simulations were
run with a Langevin collision frequency g of 1 ps−1 to increase
conformational sampling.11 As shown in Fig. 2 and Fig. 1D the
radius of gyration (Rg) using GB99dms matches experimental
data21 and observed scaling laws67 considerably better than the
existing implicit solvent force elds across a range of protein
sizes. Explicit solvent a99SB-disp still matches better, indicating
that the accuracy of the reference data used during training is
not the factor limiting improvement. Fig. 3 and 2C indicate that
this is partly due to existing force elds giving structures that
are too a-helical and inexible, and Fig. 2C shows that the
Chem. Sci., 2024, 15, 4897–4909 | 4899
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Fig. 2 Radius of gyration of IDPs with different force fields. Experimental values for Rg and simulation Rg values for explicit solvent a99SB-disp
with its corresponding water model are taken from Robustelli et al. 2018.21. (A) Comparison of simulation and experimental Rg. Each point
(excepting a99SB-disp explicit) is the mean Rg over 3 simulations of 2 ms, with an initial burn-in period of 0.5 ms starting from an extended
conformation being discarded for each simulation. The error bars in the x direction represent uncertainty in the experimental value and error bars
in the y direction represent 95% confidence intervals of the mean calculated from the standard error of the mean across the 3 simulations. The
dotted line represents equal experimental and simulation values. Summary data is shown in Fig. 1D. (B) Comparison of simulation Rg to sequence
length for the same data. The dotted grey line represents the experimentally observed power law relationship RG = R0N

v with v = 0.598 ± 0.028
and R0 = 1.927 Å.67 The shaded grey area represents the 95% confidence interval of v. This power law relationship is for chemically denatured
proteins and was mainly fit on proteins longer than 50 residues. The best fit v values from the simulation data for GB99dms, ff14SBon-
lysc+GBNeck2, a99SB-disp+GBNeck2 and a99SB-disp explicit are 0.793, 0.380, 0.327 and 0.656 respectively. (C) Distributions of simulation Rg

for the same data.
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experimental Rg may be sampled with GB99dms even when the
mean simulation Rg is different. The overall a-helical content of
IDPs also matches experiment better with GB99dms than with
existing implicit solvent force elds, as shown in Fig. 3B and C.
4900 | Chem. Sci., 2024, 15, 4897–4909
The error is 0.022 for GB99dms compared to 0.050 for
ff14SBonlysc and 0.155 for a99SB-disp. There is still some
discrepancy between GB99dms and experiment, for example in
the location of a-helices in Ntail and PaaA2, in line with the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Secondary structure content of IDPs with different force fields. Experimental values for a-helical fraction and simulation values for explicit
solvent a99SB-disp with its corresponding water model are taken from Robustelli et al. 2018.21. (A) The a-helical fraction for each residue of 4
IDPs with different force fields. The simulations are the same as in Fig. 2. (B) A table showing the mean a-helical fraction across residues for each
protein and force field. An overall error value is also calculated per force field as the sum of squared total residuals between the experimental and
simulationmean a-helical fractions for each protein. (C) A plot of the simulationmean a-helical fractions against experimental values. The dotted
line represents equal experimental and simulation values.
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variety of secondary structure propensities shown previously by
explicit solvent force elds for these IDPs.21

Having established improved performance on IDPs, it is
important to test whether performance has degraded for folded
proteins. 3 Simulations of 2 ms for each force eld were run on
the 4 folded proteins in Robustelli et al. 2018,21 ranging in size
from 56 to 129 residues: GB3 (PDB ID 1P7E), ubiquitin (1D3Z),
hen egg white lysozyme (HEWL, 6LYZ) and bovine pancreatic
trypsin inhibitor (BPTI, 5PTI). Fig. 4A shows the root-mean-
square deviation (RMSD) to the native structure across the
trajectory for each simulation. GB3 and ubiquitin show similar
stability over the simulations with all 3 force elds. HEWL and
BPTI show less stability with GB99dms. For HEWL 3 of the a-
helices and the b-sheet lose their secondary structure, though
the overall tertiary structure remains the same. For BPTI the b-
sheet remains intact but the a-helices lose their secondary
structure and the loops show signicant exibility. The diffi-
culty of balancing secondary structure preferences in implicit
solvent force elds has been established previously.13

Performance is also assessed on 4 medium-sized protein
dimers from Piana et al. 202022 ranging in size from 197 to 235
© 2024 The Author(s). Published by the Royal Society of Chemistry
total residues: barnase/barstar (PDB ID 1X1X), colE7/Im7
(7CEI), SGPB/OMTKY3 (3SGB) and CD2/CD58 (1QA9). The
dimers were simulated with no periodic boundaries since the
intention was to explore initial unbinding events, which should
not occur on the time scales used here. There has been less work
on developing and assessing implicit solvent force elds for
protein complexes, but here it is found that the 4 dimers are
generally stable under the two existing force elds. Fig. 4B
indicates that with GB99dms barnase/barstar and colE7/Im7
seem stable, though SGPB/OMTKY3 and CD2/CD58 dissociate
quickly. The dissociating complexes have less favourable
experimental association free energy than those that remain
bound.22 With a collision frequency g of 91 ps−1 more repre-
sentative of the viscous drag of water,69 SGPB/OMTKY3 remains
bound at 5 Å aer 2 ms RMSD but CD2/CD58 still dissociates.
The difficulty of improving performance on IDPs whilst not
allowing protein complexes to dissociate has also been
encountered with explicit solvent force elds.21,22 Overall
GB99dms has slightly degraded performance on folded
proteins, though could still be useful for studying systems
containing a mix of folded and disordered proteins if the
Chem. Sci., 2024, 15, 4897–4909 | 4901
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Fig. 4 The behaviour of folded proteins and protein complexes with implicit solvent force fields. RMSD to the PDB starting structure is shown
over 3 × 2 ms simulations. Snapshots are recorded every 0.5 ns and the mean RMSD of a window extending 10 snapshots either side of the given
snapshot is shown. (A) Behaviour of 4 folded proteins. (B) Behaviour of 4 protein dimers. Dissociation occurs within 1 ns for CD2/CD58.
Dissociation is not expected for any of the dimers on this time scale.
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stability and structural properties of the folded proteins with
GB99dms are veried initially.

MD simulations can be used to study the interactions of
small molecules with IDPs, assisting in the difficult process of
nding drugs to target the many IDPs implicated in disease. For
example, a recent study70 used a99SB-disp to carry out 1.5 ms of
explicit solvent simulation of a-synuclein with the small mole-
cule fasudil. a-Synuclein is associated with Parkinson's disease
and fasudil has been shown to delay a-synuclein aggregation.71

The contact probability over the simulation of each residue with
fasudil was shown to correlate with NMR chemical shi
perturbation (CSP) data, allowing an interpretation to be made
of how the drug affects the protein. CSPs are sensitive to
changes in the local environment of each backbone amide bond
and a higher CSP indicates protein–ligand interaction near that
residue. I carried out similar simulations, using the faster
sampling of implicit solvent to compare 5 simulations of 2 ms
with the NMR data and signicantly longer explicit solvent
simulations from Robustelli et al. 2022.70 Fig. 5A shows that
GB99dms reproduces a similar prole to the NMR data. There is
elevated contact probability in the residue 121–140 C-terminal
region, peaks around residues 5–9/39–44/59–72/121–127/136–
138, and Y136 has the highest contact probability. In contrast,
ff14SBonlysc shows blocks of interacting residues consistent
4902 | Chem. Sci., 2024, 15, 4897–4909
with fasudil interacting with the surface of a compact, inexible
structure and a99SB-disp shows consistent and lower interac-
tion throughout the protein. The Pearson correlation coeffi-
cients between the contact probabilities and the NMR chemical
shi perturbation data are 0.44, 0.11 and 0.08 for GB99dms,
ff14SBonlysc and a99SB-disp respectively, compared to 0.67 for
the explicit solvent simulations.70 This indicates that GB99dms
could be useful for assessing small molecule binding to IDPs
during drug discovery. Though it is unusual to use periodic
boundary conditions with implicit solvent – one advantage of
implicit solvent is not having to deal with boundaries – it is
possible since the solvent behaviour is unrelated to the
boundary.

Finally, I investigate the behaviour of aggregating peptides
with GB99dms. It has previously been shown that the oligo-
merisation behaviour under simulation of the 7-residue aggre-
gating core of amyloid beta (Ab), Ab16–22, depends on the force
eld and does not always reproduce the effect of mutations.72,73

Here I study the oligomerisation of 6 capped Ab16–22 peptides in
a periodic box. I simulate 3 × 2 ms with each force eld for 3
peptide sequences: the wild-type KLVFFAE, the F19L mutant
which aggregates faster than wild-type, and the F19V/F20V
double mutant which does not aggregate.73 All force elds
show oligomerisation of all 6 peptides within 2 ms. As shown in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Ligand binding and amyloid aggregation with implicit solvent force fields. Grey and black spheres on structures represent the N- and C-
termini respectively. (A) The interaction of a-synuclein and the small molecule fasudil. The NMR CSP data from Robustelli et al. 202270 is shown.
The fraction of the time each residue is in contact with fasudil over 5× 2 ms simulations is shown for each force field, alongwith a snapshot where
fasudil is in contact with a-synuclein. The error bars for each residue represent 95% confidence intervals of the mean calculated from the
standard error of themean across the 5 simulations. The Pearson correlation coefficient between the contact probabilities and the NMRCSP data
is also shown. (B) Oligomerisation of 6 × Ab16–22. Three capped peptides are studied: KLVFFAE (wild-type), F19L (faster aggregation) and F19V/
F20V (no aggregation). The oligomer size over 3 × 2 ms simulations is shown for each sequence and force field. Repeats are shown separately,
with the plots truncated at 1.2 ms as there is little change beyond this time. Snapshots are recorded every 0.5 ns and the mean oligomer size of
a window extending 10 snapshots either side of the given snapshot is shown. The final oligomer from the first wild-type repeat is also shown.
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Fig. 5B, GB99dms reproduces best the observed behaviour of
the sequences: on average F19L forms oligomers fastest and
F19V/F20V slowest. The wild-type forms oligomers faster than
F19L for ff14SBonlysc and F19V/F20V forms oligomers at
a similar speed to wild-type for ff14SBonlysc and a99SB-disp.
The nal oligomers adopt extended monomer conformations
for GB99dms reminiscent of Ab brils, whereas for ff14SBonlysc
and particularly a99SB-disp the conformations are more a-
helical. These results show that GB99dms could be used to
study amyloid aggregation at scale. One advantage of implicit
solvent is that the periodic box size, and hence the effective
concentration of Ab, can be changed without adding more
© 2024 The Author(s). Published by the Royal Society of Chemistry
atoms. Currently, high concentration is a limitation of many
MD studies of aggregation.32
Discussion

Recently much effort has gone into developing machine
learning interatomic potentials (MLIPs), which show quantum
mechanical-level accuracy at faster speeds. Whilst these are
promising, I believe that the techniques of machine learning
such as AD can also be used to improve molecular mechanics
force elds by effective optimisation of their large parameter
spaces.66,74 This retains the advantages of interpretability,
robustness and speed given by molecular mechanics force elds
Chem. Sci., 2024, 15, 4897–4909 | 4903
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over MLIPs. The smooth nature of these force elds – at least
compared to the hard potentials used in domains such as
robotics simulations – makes them well-suited to differentiable
simulation. An advantage of DMS over force-matching
approaches is that targeting global structural properties allevi-
ates issues when simulations reach states not seen in their
training data, a problem that can lead to a lack of stability for
MLIPs as errors accumulate during simulation.75 Another
advantage is that existing experimental data can potentially be
used,46,47 reducing the large amount of quantum mechanical
data required to train accurate and transferable MLIPs. Most
biomolecular force elds in wide use today have been developed
using a combination of quantum mechanical and condensed
phase experimental data, and DMS provides a route to t all
force eld parameters to experimental data. In the long run it
may be possible to forgo experimental data and train fast and
accurate molecular mechanics force elds solely on quantum
mechanical data,39,40,42 but until then approaches that improve
force elds using various observed properties will be valuable.
The popular ForceBalance method23 is also able to target both
quantum mechanical and experimental data, and DMS could
enhance this approach by replacing the costly nite difference
step used to obtaining gradients. Differentiable trajectory
reweighting76 has explored this direction as well.

The simulations of 5 million steps carried out in this work
are the longest differentiable molecular simulations to date and
indicate that even longer simulations are possible. The next step
is to train an all-atom explicit solvent force eld using DMS to
match experimental data such as NMR constraints alongside
existing training approaches to match quantum mechanical
data. This will require improvements in computational speed,
as well as differentiable implementations of algorithms such as
bond constraints and Ewald summation that could run into the
limitations of AD.77 The exibility of the approach allows it to be
combined with other recent advances such as continuous atom
typing with graph neural networks78 and exploration of different
functional forms for non-bonded interactions.79 One promising
approach, Time Machine (https://github.com/proteneer/
timemachine), aims to use DMS for drug discovery.

A question surrounding DMS is whether accurate gradients
can be obtained through long MD simulations. Gradients could
explode or vanish, and there are also concerns about error
propagation over long, chaotic simulations.49,50,80,81 Here, I nd
that the Langevin integrator is effective at propagating gradi-
ents using reverse-mode AD. By contrast, simulations in the
NVE ensemble were not found to produce stable gradients. The
friction and stochastic noise applied to every atom at every step
in Langevin dynamics likely provides a regularisation effect that
helps prevent gradient explosion but does not lead to vanishing
gradients.82 This stochasticity, along with the random starting
velocities, means that the gradients are a sample over a distri-
bution. When repeating runs, around 80% of the paired
parameter gradients have the same sign and the Pearson
correlation coefficient of paired parameter gradients is over
0.85. This is shown in Table S2. Good correlation is also found
when comparing simulations run with a 1 fs and a 0.5 fs time
step and when adding noise to the starting parameters. Adjoint
4904 | Chem. Sci., 2024, 15, 4897–4909
sensitivity methods provide another way to obtain gradients
through simulations,48,83,84 but are oen unstable and have had
less development than reverse-mode AD. Here I nd that the
“simple” approach of using AD on the integrator works well. It
may be possible to nd speedups due to the iterative and
reversible nature of molecular simulation.83

Another question is whether the computational overhead of
calculating the gradients via AD makes it worthwhile compared
to using a black box approach such as nite differencing. The
Julia code used here is currently 100–1000× slower on the GPU
when gradients are required than heavily optimised non-
differentiable codes such as OpenMM85 and Gromacs.86

However the gradients for all parameters are calculated to
numerical accuracy in one go, whereas a number of runs would
be required per gradient when using nite differencing. It
seems that the current case of optimising 108 parameters is
around the crossover point, and optimising any fewer parame-
ters would have been easier with nite differencing. As DMS
code becomes faster and more parameters are included for
training, for example more atom types or torsion CMAP
potentials, the advantage of DMS will become clearer. One
direction of future work is to improve the performance of the
Julia code signicantly using more advanced GPU kernels57 and
further use of the Enzyme AD framework.60,61 It remains an open
question how close in performance a differentiable imple-
mentation can get to a non-differentiable one. Molly.jl will be
useful for exploring these questions, and for training the next
generation of force elds that are transferable, reproducible
and fast.

Methods

The a99SB-disp force eld was manually converted from
Desmond/Gromacs les to the OpenMM XML force eld format
with the modied backbone O–H interaction term omitted.
Training simulations were carried out with Molly.jl, which is
available along with documentation at https://github.com/
JuliaMolSim/Molly.jl and will be described fully in a future
publication. Training simulations were carried out for 5 ns
using a Langevin integrator with a g of 0.1 ps−1, a 1 fs time
step, a temperature of 300 K and no distance cutoff for non-
bonded interactions. A Debye–Hückel screening parameter k

of 0.7 nm−1 was used.87 This is roughly equivalent at 300 K to
a salt concentration of 100 mM, which is similar to that used
when simulating biomolecules under physiological conditions.
Energy minimisation but not equilibration was carried out. The
low time step was used because bonds were not constrained.
The low g was used during training only to maximise confor-
mational exploration during the 5 ns simulations. During
development gradients were found to be similar when using a g
of 1 ps−1. Single precision was used for all oating point values,
which gave a signicant speedup without a noticeable change in
gradient accuracy. Reverse-mode AD has a memory cost
proportional to the number of steps in the simulation, which
quickly becomes prohibitive. This is alleviated with gradient
checkpointing. The simulation is run and the state and random
seed are saved every 100 steps; during the reverse pass to get
© 2024 The Author(s). Published by the Royal Society of Chemistry
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gradients, each block of 100 steps is re-run using the corre-
sponding random seed. Gradient clipping was necessary to
prevent gradient explosion. Every 100 steps the norm of the
gradients on the coordinates and velocities are calculated, and
the gradients are rescaled to have a norm of 0.1 if either norm is
greater than 0.1. This is similar to common strategies used to
prevent exploding gradients in recurrent neural networks.88

During development I found that changing the clipping
threshold from 0.1 did not have a large effect on the gradients.

Every 5 ps (5000 steps), the Ca residue–residue distances X
and square distances X2 are recorded. At the end of the simu-
lation, the mean ms = E[X] and standard deviation

ss ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E½X2� � ðE½X �Þ2

q
of the Ca residue–residue distances are

calculated. For each residue pair, the KL divergence DPQ to the
reference explicit solvent distances (see below) is calculated as

DPQ ¼ log

�
sr

ss

�
þ ss

2 þ ðms � mrÞ2
2sr

2
� 1

2

where mr and sr are the mean and standard deviation of the
reference residue pair distances respectively. The KL divergence
in the other direction DQP is also calculated. The loss for each
residue pair Lij is then calculated as

Lij = ln(DPQ + 1) + ln(DQP + 1)

In order to reduce the impact of large losses from residue
pairs close in sequence with sharp residue–residue distance
distributions, the loss of close residue pairs is downweighted.
This meant multiplying Lij by a weighting factor which is 0 for
residue separation ji − jj = 0, 1 for ji − jj $ 10 and linearly
spaced between. The overall loss is then calculated as the mean
of these weighted values over all residue pairs. AD is used to
calculate the gradient of this loss with respect to each of the 108
parameters.

At each epoch of training, gradients are combined from
simulations of the 8 training proteins to update the force eld.
For the IDPs, gradients are averaged over the two repeats. For
each protein the gradients are then divided by the median of the
absolute values of the gradients, meaning that all proteins
contribute similarly to the parameter updates each epoch even
if the gradient sizes differ. The median was chosen to avoid
outliers having too much inuence on the value. The gradients
for LJ s parameters and hydrogen parameters were found to be
large compared to other parameters and large changes in these
parameters can quickly lead to instabilities, so the gradients
were weighted by a factor of 0.02. The absolute change for each
parameter per protein per epoch was limited to 0.5% and the
combined absolute change for each parameter per epoch was
limited to 3%. Parameters were updated by gradient descent
using a learning rate of 4 × 10−4. Training was repeated 3 times
and the run with the best performance on the training set was
used.

Instead of modifying a partial charge value for each atom
type directly, which is complicated by the need to maintain
overall charge and by the different partial charges of the same
© 2024 The Author(s). Published by the Royal Society of Chemistry
atom type in different residue types, a charge scaling value is
learned instead. This starts at one for each atom type. Aer it is
updated during training, partial charges are computed for each
atom in a residue type by scaling the starting partial charge by
the scaling value and subtracting an offset. This offset is the
difference between the starting and scaled overall charge of the
residue multiplied by the fraction of the sum of absolute
charges present on the atom aer scaling. In effect the change
in a partial charge of an atom is compensated for by the partial
charges of the other atoms in the residue. This allows one
charge scaling value to be learned per atom type but the overall
charge of each residue type to remain constant during training.

Explicit solvent trajectories used to get reference residue–
residue distances for training were generated with Gromacs
v2021.4.86 For folded proteins the starting structure was the PDB
structure and the box size was chosen to give 1 nm padding
between the protein and the edge. For disordered proteins the
starting structure was the collapsed conformation at the end of
a short implicit solvent simulation with a99SB-disp+GBNeck2
starting from an extended conformation. The box size was 6 nm
for Htt-1-19 and histatin-5 and 7 nm for the two halves of ACTR.
These simulations use the a99SB-disp force eld and its corre-
sponding water model,21 a Verlet leap frog integrator, a 2 fs time
step, constrained bonds to hydrogen, a temperature of 300 K,
50 mM NaCl salt, a 1.2 nm cutoff for non-bonded interactions
and particle mesh Ewald treatment of long range electrostatics.
Energy minimisation, a 100 ps NVT equilibration and a 100 ps
NPT equilibration with position restraints to protein heavy
atoms preceded a 2 ms production run in the NPT ensemble,
with snapshots saved every 50 ps. Mean and standard deviation
residue–residue distances were calculated for the last 1 ms of
simulation.

Once the force eld parameters have been improved via
training, simulations can be run with any MD package that
supports the GBNeck2 implicit solvent model. Here OpenMM
v8.0.0 (ref. 85) is used to run the validation simulations as it has
high GPU performance and modifying force eld parameters is
easy. All validation simulations used a Langevin integrator with
a g of 1 ps−1, a 4 fs time step, constrained bonds to hydrogen,
hydrogen mass repartitioning with a factor of 2, a temperature
of 300 K, a 2 nm cutoff for non-bonded interactions and a k

value of 0.7 nm−1. Energy minimisation and a 500 ps temper-
ature equilibration with position restraints to heavy atoms
preceded production runs, with snapshots saved every 500 ps.
Dimers were simulated with no periodic boundaries. Trajectory
data was analysed with MDAnalysis89 and secondary structure
was calculated with MDTraj.90 BioStructures.jl was also used for
processing protein structural data.91

For the simulations of a-synuclein with fasudil, GAFF92 was
used to obtain the force eld parameters for fasudil. For each
force eld, 5 repeats were run starting from different snapshots
from a-synuclein monomer simulations. Packmol93 was used to
pack one molecule each of a-synuclein and fasudil in a periodic
cubic box with 25 nm sides. A contact is assigned to MD frames
where the minimum distance between any fasudil atom and any
heavy atom of a residue side chain (CA for glycine) is less than 6
Å.70 For the Ab16–22 simulations a periodic cubic box with
Chem. Sci., 2024, 15, 4897–4909 | 4905
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21.5 nm sides and 6 peptides were used, corresponding to
a concentration of 1 mM. The N- and C-termini of the peptides
were capped with acetyl (ACE) and N-methlyamide (NME)
groups respectively to match experimental conditions. Starting
conformations for each peptide were taken from snapshots of
a short monomer simulation. For each force eld and sequence,
3 repeats were run starting from different packings of 6 peptides
generated with Packmol. Oligomer size was determined based
on groups of contacting peptides, where any pair of atoms being
within 4 Å indicates a contact between peptides.73

Data availability

The trained GB99dms force eld in OpenMM XML format,
training scripts, simulation scripts and data are available under
a permissive license at https://github.com/greener-group/
GB99dms. The Molly.jl soware used for training is available
at https://github.com/JuliaMolSim/Molly.jl. Simulation
trajectories are available at https://zenodo.org/record/8298226.
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B. Hess, et al., GROMACS: High performance molecular
simulations through multi-level parallelism from laptops
to supercomputers, SowareX, 2015, 1–2, 19–25.

87 J. Srinivasan, M. W. Trevathan, P. Beroza and D. A. Case,
Application of a pairwise generalized Born model to
© 2024 The Author(s). Published by the Royal Society of Chemistry
proteins and nucleic acids: inclusion of salt effects, Theor.
Chem. Acc., 1999, 101, 426–434.

88 R. Pascanu, T. Mikolov and Y. Bengio, On the difficulty of
training Recurrent Neural Networks, Proceedings of the 30th
International Conference on Machine Learning, 2013, p. 28.

89 R. J. Gowers, M. Linke, J. Barnoud, T. J. E. Reddy, M. N. Melo,
S. L. Seyler, et al., MDAnalysis: A Python Package for the
Rapid Analysis of Molecular Dynamics Simulations,
Proceedings of the 15th Python in Science Conference, 2016,
pp. 98–105.

90 R. T. McGibbon, K. A. Beauchamp, M. P. Harrigan, C. Klein,
J. M. Swails, C. X. Hernández, et al., MDTraj: A Modern Open
Library for the Analysis of Molecular Dynamics Trajectories,
Biophys. J., 2015, 109(8), 1528–1532.

91 J. G. Greener, J. Selvaraj and B. J. Ward, BioStructures.jl:
read, write and manipulate macromolecular structures in
Julia, Bioinformatics, 2020, 36(14), 4206–4207.

92 J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman and
D. A. Case, Development and testing of a general amber
force eld, J. Comput. Chem., 2004, 25(9), 1157–1174.

93 L. Mart́ınez, R. Andrade, E. G. Birgin and J. M. Mart́ınez,
PACKMOL: a package for building initial congurations
for molecular dynamics simulations, J. Comput. Chem.,
2009, 30(13), 2157–2164.
Chem. Sci., 2024, 15, 4897–4909 | 4909

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc05230c

	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c
	Differentiable simulation to develop molecular dynamics force fields for disordered proteinsElectronic supplementary information (ESI) available. See DOI: https://doi.org/10.1039/d3sc05230c


