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Deductive solution strategies are required in prediction scenarios that are under determined, when

contradictory information is available, or more generally wherever one-to-many non-functional

mappings occur. In contrast, most contemporary machine learning (ML) in the chemical sciences is

inductive learning from example, with a fixed set of features. Chemical workflows are replete with

situations requiring deduction, including many aspects of lab automation and spectral interpretation.

Here, a general strategy is described for designing and training machine learning models capable of

deduction that consists of combining individual inductive models into a larger deductive network. The

training and testing of these models is demonstrated on the task of deducing reaction products from

a mixture of spectral sources. The resulting models can distinguish between intended and unintended

reaction outcomes and identify starting material based on a mixture of spectral sources. The models also

perform well on tasks that they were not directly trained on, like performing structural inference using

real rather than simulated spectral inputs, predicting minor products from named organic chemistry

reactions, identifying reagents and isomers as plausible impurities, and handling missing or conflicting

information. A new dataset of 1 124 043 simulated spectra that were generated to train these models is

also distributed with this work. These findings demonstrate that deductive bottlenecks for chemical

problems are not fundamentally insuperable for ML models.
Product identication is a central task in every reaction devel-
opment workow.1–5 There is no standardized solution to this
problem, with practices ranging from separation and crystalli-
zation for unequivocal identication, to using a mixture of
analytical information sources (e.g., mass spectrometry (MS),
nuclear magnetic resonance (NMR), infrared spectroscopy (IR),
etc.) and general reactivity knowledge to distinguish between
plausible products. The lack of standardization reects that
product identication is typically underdetermined by simple
knowledge of the reactants and conditions. For example, a new
reaction may yield a complex product mixture that requires
several iterations of characterization and interpretation to fully
identify, and even putatively established reactions can yield
unexpected products if a hot-plate fails or a starting material
has an impurity. Underdetermination also occurs because most
analytical characterizations only provide partial or indirect
structural information, and a particular analytical method may
yield decisive information for identifying one product but not
another.6–9 For these reasons, the state-of-the-art for general
product identication remains manual expert interpretation of
multiple information sources.
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Product identication is a member of a larger group of
deduction problems that are common in the chemical sciences
(Fig. 1A). In deductive scenarios, external information is used to
restrict the potential solution space when making a prediction.
Deduction is required for underdetermined problems or when
there is a mixture of competing information sources. In
contrast, most machine learning (ML) in chemistry is inductive,
learning from example, with a xed set of input features.10–13 In
the case of product identication, deduction takes the form of
using established reactivity relationships to narrow the solution
space to a small number of potential products that can then be
inductively distinguished using one or more analytical spectra.
More generally, deduction is needed whenever a non-functional
one-to-many relationship exists between input features and
prediction targets. In the context of ML, this distinction is
critical, because regardless of their complexity, neural networks
are incapable of circumventing the information limitations
posed by non-functional mappings.

The motivation for the current study was to develop a ML-
framework capable of emulating expert deduction to perform
product identication based on a exible mixture of spectral
input sources. We hypothesized that deduction would be an
emergent property of a super-network composed of individual
task-specic inductive neural networks and a method of
decomposing the prediction task into subproblems that allows
each subnetwork to exercise its competence (Fig. 1B). This idea
Chem. Sci., 2024, 15, 11995–12005 | 11995
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Fig. 1 Overview of deductive architecture and bottleneck for product identification. (A) Illustration of the general non-functional one-to-many
relationship between reactant information and some potential species that can be found as intended and unintended products. (B) Deductive
super-network consisting of a reactant to product (RtP) transformer and one or more spectrum to structure (StS) transformers combined by
a terminal linear layer. The model predicts product SMILES in probabilistic token-by-token fashion. (C) Top-1 accuracy of StS models in pre-
dicting structures from the testing set with an increasing number of heavy atoms. The dotted lines indicate the overall top-1 accuracy of each
model on the whole testing set.
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was directly motivated by the manual analog of interpreting
individual spectra to obtain derived information (e.g., identi-
fying the presence of certain functional groups from IR or
a probable chemical formula from MS) then forming structural
hypotheses from comparisons of this derived information.

Here, we experimented with combining up to four task-
specic transformers for ingesting reactant/reagent informa-
tion and IR, 1H-NMR, and electron-ionization (EI) MS spectra,
respectively. The overall architecture inputs consist of reactant/
reagent graph(s) supplied as simplied molecular-input line-
entry system (SMILES)14 strings and one or more analytical
spectra associated with an unidentied target. These inputs are
used to probabilistically decode the product SMILES (i.e., its
graph) as an output in recursive token-by-token fashion. This
recursion is achieved by supplying the partially decoded
product SMILES as an additional input to all transformers until
encountering an end token. Each task-specic transformer
provides a probabilistic prediction of the next token in the
product that informs a nal linear deduction layer (see
Methods).

This architecture provides two sources of deductive coupling
between the transformers. The rst is the straightforward
probability reweighting that happens in the nal linear deduc-
tion layer, which provides the opportunity for one ormore of the
transformers to form a consensus over the other transformer(s).
The second is through the recursive token-by-token decoding by
which the product prediction is made. Because the partially
11996 | Chem. Sci., 2024, 15, 11995–12005
decoded product string is used as an input to each transformer
during inference, it is possible for control to shi between
transformers for different portions of the decoding (e.g., one
may dominate the scaffold, while another dominates predic-
tions of certain functional groups). In this way, the transformers
can dynamically provide deductive constraints on each other
during different portions of the decoding. The differing inputs
for each transformer and their coupling through the recursive
decoding distinguishes this architecture from a simpler
ensemble. Recently, similar architectures based on the idea of
“Mixture of Experts” have become popular in the large language
model community,15 but the multi-modal (spectra + graph)
input to product graph architecture demonstrated here remains
the rst of its kind.

The deduction models were trained and tested on 299 658
reactions taken from the Lowe patent dataset aer ltering (see
Methods).16,17 Articial EI-MS, 1H-NMR, and IR spectra were
generated for all products, reactants, and reagents due to the
unavailability of suitable experimental training data for this
task. To turn this into a deductive product identication task,
the dataset was augmented with null reactions that corre-
sponded to obtaining starting material from the reaction
instead of the expected product. The nal dataset consisted of
299 658 real reactions and 146 672 null reactions, that were split
using a 80 : 10 : 10 training, validation, testing distribution
while ensuring that there were no prediction targets shared
between the splits. All accuracies are reported for the testing set.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Results
Baseline models suffer from deductive limitations

Prediction baselines for this task were set by training analogous
transformer models on the reactant-to-product (RtP) and
spectrum-to-structure (StS) prediction tasks (Fig. 1C). The RtP
model exhibits an obvious deductive bottleneck in this task, since
a given reactant canmap to either the expected product or starting
material(s). The RtPmodel was trained only to predict the expected
products, because attempts to train with null reactions in the
training data led to confusion due to the one-to-many relationship
between inputs and targets. Thus, the RtP model serves as
a baseline for a model that always predicts the expected product.
The RtP model's top-1 accuracy of∼55% reects a combined top-1
accuracy of∼0.6% on null reactions and∼84.5% on real reactions
in the testing set. The latter result is comparable to the state-of-the-
art RtP models, which can reach top-1 accuracies of 88.8% when
only tested on major product prediction.18,19 Several StS models
were trained with different combinations of spectral transformers
(IR, IR + NMR, and IR + NMR + MS models in Fig. 1B). The StS
models exhibit lower overall performance than the RtP model,
with a top-1 accuracy of∼35% for the bestmodel (IR + NMR +MS).
The accuraciesmonotonically increase with the number of spectral
sources used in the prediction and monotonically decrease with
the molecular size of the prediction target. Although the deductive
bottleneck is less obvious, it is qualitatively expected that spectral
uniqueness decreases with molecular size (e.g., the structural
isomers of large molecules oen cannot be distinguished by these
spectra). These accuracies favorably compare with recently pub-
lished StS models that also exhibit relatively low performance for
large molecules. For instance, Alberts et al.20 reported 17% top-1
and 33.6% top-5 accuracy for predicting molecular structure
from IR only. Another case study focused on using MS to predict
molecular ngerprints, rather than the molecular structure, and
reported poor results on an out-of-distribution testing set with
27.8% top-1 and 42.5% top-5 accuracies.21 Notably, groups have
reported StS accuracies that signicantly improve when the
molecular formula is supplied to the model in addition to the
spectra. For example, Huang et al. reported an 1H-NMR + formula
to structure model with 47.4% top-1 and 85.3% top-10 accuracies.7

Although it has not been identied as such, supplying the formula
is an elementary deductive constraint.

To test the hypothesis that combining a RtP transformer with
one or more StS transformers circumvents the deductive bottle-
neck in the product identication task, the top-1 and top-5
testing accuracies of the deduction models were compared with
the RtP and StS results (Fig. 2A). All the deduction models (even
those with fewer spectral inputs) outperform the RtP and StS
models by ∼20%, showing a qualitative difference between the
inductive and deductive architectures. To clearly illustrate the
non-linear impact of combining general reaction knowledge and
the spectral information within a single model, we also calcu-
lated the top-1 accuracy of a hypothetical RtP + StS model that
combines the correct predictions of the two separatemodels (line
in Fig. 2A). Despite this generous accuracy calculation, the best
deduction model still outperforms the RtP + StS model by 29%,
© 2024 The Author(s). Published by the Royal Society of Chemistry
illustrating the non-additive coupling between the reactant and
spectral transformers. The deductive models also show no
signicant accuracy difference between predicting starting
material versus expected products. This conrms that the reac-
tant knowledge provided by the RtP transformer also assists with
identifying starting material when incorporated within the larger
deductive network.
Evidence for deductive inference

The deductive architecture was motivated by the hypothesis that
predictive control might switch between transformers during the
token-by-token product decoding. To directly test this, the
probability vectors produced by the transformers were individu-
ally zeroed out during inference to test whether the most prob-
able overall token predicted by themodel changed. If such a swap
occurred for at least one token in a product, then the transformer
was considered decisive in that decoding (Fig. 2B). The reactant
transformer was found to be decisive for at least one token in over
95% of products, followed by the IR transformer at ∼30%. The
lower decisiveness of the spectral transformers at least partially
reects their tendency to form a consensus and therefore not be
individually decisive. For example, the decisiveness of the IR rises
in the R + IR model to 58% and 78% on real and null testing
reactions, respectively. Approximately half of the products in the
testing set had two or more decisive transformers from the R + IR
+ NMR + MS model involved in their decoding (Fig. S3†). The
mode decoding behavior is to switch between a consensus for the
majority of the tokens (60–80%) and one or more decisive
predictions for a minority of the tokens (20–40%) (Fig. S4†). This
is strong support for the mechanism of dynamic deductive
constraints being supplied by the different transformers during
the token-by-token inference cycle.

To investigate the overall importance of the different input
sources, the accuracy loss upon zeroing out each feature was
averaged across the testing data (Fig. 2C). Given the stochastic
nature of the decoding, a given input can inuence a prediction
even if it is not decisive for any particular token. Conversely,
even if a transformer is decisive for a particular token, the
exibility of SMILES in decoding the same structure multiple
ways means that a correct prediction may still be possible
absent that transformer. The accuracy contributions roughly
mirror the decisiveness of each transformer (Fig. 2B). In the
case of IR, the inuence on accuracy is ∼20% larger than the
decisiveness measure, whereas for R, NMR, and MS it is
marginally smaller. We interpret the relative contributions of
the different spectra to reect the simulation accuracy rather
than the intrinsic information content of each spectral source.
Nevertheless, there are many cases where even EI-MS makes
decisive contributions to top predictions. An extended discus-
sion of decisive behaviors is included in Section 2 of the ESI,†
with an additional example showing how different information
sources can be decisive for various molecular features (Fig. S5†).

Several additional tests were performed to interrogate the
ability of the deductive models to operate in scenarios of
incomplete information and even contradictory information
(Fig. 2D). For these trials, a version of the R + IR + NMR + MS
Chem. Sci., 2024, 15, 11995–12005 | 11997
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Fig. 2 Overview of deductive performance in product identification tasks. (A) Comparison of several reactant + spectrum deductivemodels with
RtP and StS models. The RtP + StS result corresponds to the accuracy obtained by combining the correct predictions from both models. Top-n
accuracy metrics based on ensembles of independently trained models were within 0.5% in all cases. (B) The fraction of products for which each
transformer provides decisive input on at least one token. Multiple transformers can provide decisive contributions to a given product and
a consensus results in no transformer being decisive, so the sum does not equal unity. (C) The reduction in top-n accuracy on the testing set
upon zeroing out the input to the indicated transformer. (D) Comparison of a R + IR + NMR + MS model trained with missing spectra (blue) with
the corresponding fixed inputmodels (green). The cases on the right correspond to the performancewith randomdropping of one spectral input
and supplying a contradictory spectrum (i.e., of startingmaterial or a real product) to one of the spectral transformers. The red bars correspond to
the fraction of cases where the contradictory species corresponding to the supplied spectrum was predicted in the top-n structures. (E) Three
illustrative comparisons of the inferences of differentmodels. (F) The convergence of the accuracywith respect to the number of training data on
each of the deduction models.
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model was trained from scratch using a ten percent random
chance of dropping each spectral input based on the hypothesis
that this would reduce the model reliance on consensus
formation (see Methods). First, we tested the performance of
this model in situations where one or more spectral inputs were
unavailable. The performance of the model monotonically
decreases on the testing set as spectral information is removed,
but the top-1 and top-5 performance remain comparable to the
models with xed inputs (e.g., comparing R + IR + NMR + MS
when deprived of IR and NMR data against the R + MS model).
The performance remains comparably high in the case where
the spectrum being removed is randomized, and for which
there is no analog among the xed input models. These trials
show that the deductive architecture is capable of basing
predictions on a exible number of input sources, analogous to
the situation in product identication when spectra arrive
asynchronously or may be unavailable for a given analyte (e.g.,
EI-MS may not be available for large molecules).

The R + IR + NMR + MS model trained with missing spectra
was also tested in situations with contradictory information by
11998 | Chem. Sci., 2024, 15, 11995–12005
supplying one of the spectral transformers at random with
a contradictory spectrum (either starting material or real
product) from the others (Fig. 2D, right). The performance in
this case is lower than the situation where the model is simply
deprived of a spectrum; nevertheless, the model shows the
capacity to form a consensus that overrules the predictions of
the misinformed transformer. Remarkably, the model still
predicts the contradictory species in the top-5 in nearly 40%
cases. Although unanticipated, this behavior is more consistent
with the supplied evidence than if the model never predicted
the contradictory species. This also provides encouraging
evidence that this architecture might be extended to predicting
product mixtures. For example, a binary mixture of species with
large differences in ionization efficiency or oscillator strengths
could present similarly to the contradictory use case.

Illustrative examples and prediction limits

Inspection of some specic testing set examples illustrates the
various ways that information is being used by the model
(Fig. 2E). The rst example shows a case where the IR + NMR +
© 2024 The Author(s). Published by the Royal Society of Chemistry
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MS StS model fails for a relatively large product molecule,
whereas the R + IR + NMR + MS model correctly predicts the
product. This improvement reects the transferable knowledge
about organic reactions imparted by the reactant transformer.
The second example shows a case where the deduction model
fails to predict a product as top-1, but includes it as a top-5
prediction. This example is typical of many of the inaccurate
predictions, where the model predicts structural isomers or
molecules with similar scaffolds that are difficult to distinguish
spectrally.∼18% of the R + IR + NMR +MS top-1 mispredictions
are structural isomers of the target. The third example shows
a case where the R + IR + NMR model fails to predict a product
as top-5 but the R + IR + NMR + MS model predicts it as a top
choice. This case illustrates the complementary information
supplied by MS, despite it exhibiting the lowest overall deci-
siveness and accuracy contribution among the investigated
spectra. We judge the low marginal utility of MS to be caused by
the relatively poor accuracy of the simulated spectra rather than
the intrinsic information content of this spectral source.

A major data curation effort was required to train these
models; nevertheless the accuracy versus training data size
curves for the various models make it clear that there is addi-
tional scope for improvement (Fig. 2F). All of the models show
clear evidence of saturation that we attribute to two factors. The
rst is that the performance of the models in identifying real
products is already approaching the probable irreducible error
of the underlying patent-sourced reaction data (i.e., many of the
expected product labels are likely incorrect and cannot be
accurately predicted regardless of having more data). The
second potential source of saturation is the use of simulated
spectra for these models. It is possible that real spectra would
exhibit more information and saturate later.
External case studies

Because these models were only trained on predicting starting
material and major products using simulated spectra, it was
unclear how their performance would translate to predicting
the products of side-reactions or other off-target species, or how
their performance would translate when using real spectral
sources. We curated three external testing datasets, REAL,
REAGENT, and MULTI (see Methods) to test the transferability
of the model in these scenarios (Fig. 3).

The REAL dataset is made of 5705 reactions from USPTO
whose target molecules have both experimental EI-MS and IR
spectra (collected from the NIST Chemistry WebBook). As EI-MS
and IR are the only provided spectral sources, performance on
the REAL dataset was evaluated using a R + IR + MS model
trained only using simulated IR and MS spectra. The perfor-
mance of the R + IR + MS model on the REAL dataset shows
a top-1 performance reduction of ∼10% in all scenarios
compared with its testing set accuracy when using simulated
data (Fig. 3A). No ne-tuning was done to the model, the
weights were determined solely from training on simulated
spectra. Because all of these predictions use real rather than
simulated spectra, they can all be considered an external testing
set; however, for clarity we separately present the performance
© 2024 The Author(s). Published by the Royal Society of Chemistry
on species that were present in the original training, validation,
and testing sets, respectively. With additional ne-tuning the
accuracy reduction between the simulated and real predictions
could be further reduced. However, we consider this excellent
out-of-the-box transferability sufficient to establish that closing
this gap is a data challenge rather than an architectural
challenge.

A secondary test of transferability to experimental spectra
was performed that consisted of adding different noise levels to
the simulated spectra. This was done in response to a reviewer
suggestion that experimental noise levels might signicantly
reduce model performance. To test this, we applied noise to the
R + IR + NMR + MS model under four scenarios, corresponding
to noise applied individually to the spectral inputs or all at once.
The noising procedure was as follows: For each non-zero posi-
tion in the spectra (IR and NMR are discretized in advance),
a random choice was selected between increasing/decreasing
the peak intensity by a xed percentage, or keeping the inten-
sity unchanged. Noise levels of 10% and 20% were separately
tested, both of which were intended to be relatively high noise
levels compared with experimental intensity variability for these
analytical techniques. Nevertheless, the top-1 performance of
the R + IR + NMR + MS model using the noised inputs are
almost identical to original un-noised accuracy in all scenarios
(Fig. 3B). This behavior is consistent with the earlier decisive-
ness testing (Fig. 2B, S3 and S4†) that showed the inference of
the mixed-mode models to be based across information sources
with the major contribution from the reactant transformer, and
thus they are expected to be less sensitive to individual peak
intensities of the spectra.

The REAGENT dataset is made of 4952 reactions where the
prediction target was a reagent rather than the starting material
or expected product, as in the training data (see Methods).
Reagent identication was an untrained task for these models
and all reagents were unseen as prediction targets during
training. The performance trend for reagent prediction is
similar to the main testing cases, with a monotonic decrease in
accuracy as spectral sources are removed and a baseline accu-
racy that is above the best StS model (Fig. 3C). The accuracy is
still reduced overall, as is expected given the difference between
the training task and this task, but nevertheless the trans-
ferability to an unseen task is excellent. The RtP model is not
compared here because it has∼0% accuracy on this task, which
is a reminder of the qualitative difference between the deductive
and inductive architectures despite the high decisiveness of the
reactant transformer in the deductive architecture.

The capacity of the models to predict minor products was
tested on the MULTI dataset of 18 organic reactants, each with
two or more possible products producing a total of 40 distinct
reactions, curated from published and textbook sources (see
Methods).22,23 None of these reactions existed in the training
data, and predicting side-products (as opposed to starting
material) was not a task that was directly trained for. The R + IR
+ NMR + MS model can identify the major and minor products
in the top-1 for 21/40 of the reactions for 13/18 of the distinct
reactants (Fig. 3D, Table S1† has all reactions). Several of the
failure cases are also illuminating. For example, the structural
Chem. Sci., 2024, 15, 11995–12005 | 11999
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Fig. 3 Performance of the deductionmodels on external testing sets. (A) Performance of the R +MS + IR model in predicting products based on
experimental spectra. Experimental IR and EI-MS were sourced from the NIST WebBook for 5705 of the USPTO targets to test model perfor-
mance on real spectra. The number of samples in each set are shown in parentheses below the label. (B) Performance of the R + MS + IR + NMR
model in predicting products based on noised spectra. Inference on the full testing set was reperformed under scenarios with noise on each and
all spectral inputs. (C) Comparison of top-n performance in identifying reagents that were unseen as prediction targets during training. (D)
Performance of the R + IR + NMR + MS model in predicting major and minor products of unseen reactions involving 18 sets of reactants. The
products for the 2 sets of reactants that are not shown were not predicted in the top-5 by the model.
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isomers of anisidine are largely indistinguishable using the
limited analytical sources provided to the model. Nevertheless,
the transferability to this unseen task suggests that when
provided with additional spectral sources and task-specic
training, this architecture is also capable of side-product
identication.
Conclusions

The deductive super-networks studied here were designed to
weight evidence from inductive sub-models responsible for
digesting individual information sources. This concept was
loosely inspired by human deduction, whereby training occurs
on specic inductive tasks (e.g., certain types of math, physics,
or organic synthesis problems) that are consulted to construct
and weight hypotheses and reject solutions in practical
scenarios. This idea is also consistent with deductive behavior
being an emergent capability of sufficiently expansive inductive
subsystems or training datasets. For example, large language
models show emergent deductive behavior as evidenced by
their ability to respond to non sequiturs, questions that assume
certain knowledge, and questions with false premises that
contradict established knowledge.24 Similarly, the surprising
versatility of language models in generative chemical applica-
tions and general chemical problem solving has been
12000 | Chem. Sci., 2024, 15, 11995–12005
documented by several groups.18,25,26 The initial version of this
architecture demonstrated surprising transferability to off-
target tasks and in prediction scenarios with partial and even
contradictory information. Additional variations on this archi-
tecture for product prediction and other deductive problems are
immediately possible. Among the most obvious that were le
unexplored are nding the optimal manner of combining the
inductive sub-models (e.g., more sophisticated couplings
beyond the linear reweighting used here) and training the
super-network (e.g., training on multiple tasks or contrasting
examples).

There are many opportunities for further improving these
models and for applications beyond product identication. For
example, the current work has not addressed the problem of
product identication when the spectra contain product
mixtures. Knowledge about the number of species is a powerful
deductive constraint that was provided here implicitly through
the training data curation; however, this too could be treated as
a learnable deduction using an additional classier or spectral
segmentation model to deconvolute spectra for the spectral
transformers. This is beyond the current scope, other than to
acknowledge the opportunity. Deductive architectures should
nd application more generally in any prediction scenario
where a non-functional one-to-many mapping occurs. These
include predictions of materials aging, predictive maintenance,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Dataset split used for deduction model training

Training set
Validation
set Test set

Real reactions 249 006 25 711 24 941
Null reactions 104 660 12 054 14 810
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reaction planning, and inverse materials design, among others
where missing variables, stochastic factors, or extra degrees of
freedom make the prediction problem underdetermined. Such
scenarios require deductive reasoning, for which the state-of-
the-art is oen manual expert analysis of disparate informa-
tion sources. Deductive ML models of the kind demonstrated
here should nd use in a multitude of similar applications.

Methods
Dataset curation

Dataset summary. The product identication dataset
curated here consists of 446 330 samples, split between 299 658
samples (249 006 in training, 25 711 in validation and 24 941 in
test) corresponding to real product prediction and 146 672
samples corresponding to starting material prediction. Each
sample in the dataset is composed of the reactant and reagent
SMILES, the simulated EI-MS, IR, and 1H-NMR of the prediction
target as available features, and the product SMILES as the
prediction target. Two versions of the dataset were used, one
with reagents distinguished from other reactants using
a special token, “>”, and one without. A 80 : 10 : 10 training :
validation : testing split was used for all model development.
The curation details of this dataset and the data splits are
summarized in the remaining sections.

Dataset curation. The USPTO reaction dataset originally
curated by Daniel Lowe then ltered and split by Jin et al. served
as the starting point for data curation.16,17 This dataset provided
reactant : product pairs in the form of SMILES strings that
needed to be augmented with spectral data (i.e., EI-MS, IR, and
1H-NMR) for each species for use in the product identication
learning task. Filtering the reactions for compatibility with the
spectral generation workow (described next) resulted in 299
658 distinct reactions involving 374 681 distinct molecules
(counting distinct reactants, reagents, and products).

Simulated spectra. Spectra were simulated for all 374 681
distinct molecules in the dataset, because open-source spectral
databases are insufficiently large and have limited overlap with
the Lowe species to be useful for training a practical product
identication model. IR spectra with 4 cm−1 resolution from
400–4000 cm−1 were generated from the SMILES string of each
molecule using the message-passing neural network model
published by McGill et al.27 EI-MS spectra with 1 m/z resolution
from 1 to 999 m/z were generated using bidirectional neural
network model (NEIMS) and rapid approximate subset-based
spectra prediction (rassp) model published by Wei et al. and
Zhu et al. respectively.28,29 In general, the rassp spectra are more
accurate but have size limitations, so NEIMS spectra were used
as substitutions wherever rassp spectra were unavailable (about
half of the spectra). 1H-NMR spectra with 0.0121 ppm resolution
from −2 ppm to 10 ppm were generated using Mestrenova
v14.3.0.30 Spectral generation for both EI-MS and 1H-NMR
required optimized geometries of each species that were
generated using Auto3D.31 Reactions from the Jin et al. USPTO
dataset involving species with more than 30 heavy atoms or
elements besides H, B, C, Si, N, P, O, S, Se, F, Cl, Br, and I were
discarded to conform to the current constraints of Auto3D.17
© 2024 The Author(s). Published by the Royal Society of Chemistry
These exclusions resulted in the nal set of 299 658 reactions
with real products as prediction targets. Stereochemical tokens
were omitted from all training strings to defer a detailed
investigation of these prediction behaviors to a future study.
There are otherwise no technical obstacles to training these
architectures to make stereochemically specic predictions.

Null reactions. To test the model's deductive capability, a set
of “null reactions” was generated that share the same reactants
and reagents as real reactions but with products and input
spectra corresponding to one of the reactants. Predicting the
product of such reactions corresponds to identifying starting
material as an unintended product using the information
provided by the spectra. The introduction of null reactions also
creates an underdetermined scenario for a RtP model, since
a given reactant can yield multiple potential products. Null
reactions were generated for each of the 299 658 real reactions.
All possible null reactions were generated for reactions with
multiple reactants. The USPTO dataset is large enough that
some reactants are products of other reactions. In recognition
of this, null reactions were discarded if their prediction target
matched a real product of any reaction in the dataset. This
exclusion was done to avoid accidental information leakage
between null reactions and real reactions and also because it
yielded a useful 2 : 1 data balance between real and null reac-
tions without further ltering. A total of 146 672 null reactions
satised this criteria, resulting in a combined dataset of 446 330
reactions (i.e., 146 672 null and 299 658 real) for the product
identication task.

Dataset splitting. An 80 : 10 : 10 training : validation : testing
split was used for model development. The splitting was per-
formed so that all reactions that shared a prediction target were
partitioned to the same split. This was done to ensure that the
testing and validation sets correspond to unseen prediction
targets. For example, if ibuprofen was a product of ve different
real reactions and two null reactions in the dataset, then all
seven would be partitioned to the same split (at random) since
they all share the same prediction target (i.e., ibuprofen). This
avoids information exchange between tasks, where the model
would potentially see the same prediction spectra during
training and testing. The total number of real and null reac-
tions, together with their training–validation–test split is
summarized in Table 1.

External testing datasets. Three additional datasets, REAL,
MULTI, and REAGENT, were curated to test the performance of
the deduction models when predicting reactions with experi-
mental spectra, side products, and for identifying reagents as
potential products, respectively. The REAL dataset was curated
by replacing simulated spectra with experimental spectra
collected from NIST Chemistry WebBook. A total 5705 targets
Chem. Sci., 2024, 15, 11995–12005 | 12001
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(including both null and real targets from USPTO) had spectra
available from the WebBook. These targets were split into three
groups, based on whether the target species was originally
present in the training (4361 reactions), validation (370 reac-
tions), or testing split (974 reactions), respectively. This splitting
was done only for the purpose of reporting the results, no ne-
tuning was actually done on the R + IR + MS model used for
inference in this case study. The MULTI dataset consists of a set
of organic reactions with known side-products curated from
Grossman's textbook and the dataset compiled by Hartenfeller
et al.22,23 These reactions were combined to produce a total 18
reactants involved in 40 distinct reactions. The REAGENT
dataset was curated by identifying all unique reagent species
from the main dataset and excluding any that overlapped with
targets in the training set or that were incompatible with the
spectral generation workow. This resulted in 3549 distinct
reagents. Up to three reactions, if available, from the main
dataset involving each reagent was selected at random and the
prediction target and input spectra were swapped for the
reagent to yield a total 4952 reactions. This dataset tests
whether the models are able to identify reagents as a potential
isolated product. The spectra of all species in the MULTI and
REAGENT datasets were simulated using the same protocol as
the main training dataset.
Neural network architecture

Architecture summary. All product identication models
used an architecture composed of a reaction transformer, one
or more spectral transformers, and a single linear deduction
layer. The transformers were adapted from those now typical of
neural machine translation (NMT) tasks,32 using hyper-
parameter tuning based on the validation set accuracy. Both
reactant and spectral data were pre-processed beforehand and
then fed into the attention score calculation module of each
transformer through a trainable embedding network. Inference
was performed by these models in recursive token-by-token
fashion until encountering an end token. An illustration of
the R + IR + NMR + MS model architecture is shown in Fig. S1.†
The largest model trained here, R + IR + NMR + MS, has ∼30 M
weights.

Input embedding. The raw reactant input data were repre-
sented as SMILES strings, because this is currently the most
reliable representation in reaction prediction tasks.33 The
SMILES strings were tokenized using a standard SMILES
vocabulary of 284 possible tokens in addition to a special >
symbol used (when present) to separate the reactants and
reagents (e.g., solvents or catalysts), a padding token, and
special start and end tokens (only present in the decoded
product strings). Reactant inputs were converted to xed 276-
length (dseq) input vectors using padding tokens before being
passed to a linear token embedding layer that converted each
token to a 256-length vector (demb). The dimensions of the
reactant input aer embedding were [276, 256] (i.e., dseq by
demb). The batch dimension is omitted for clarity from all re-
ported sizes.
12002 | Chem. Sci., 2024, 15, 11995–12005
The raw simulated 1H-NMR, EI-MS, and IR spectra were
represented as intensity versus ppm, m/z, and cm−1 vectors,
respectively. To prepare the 1H-NMR and EI-MS spectra for
embedding, the intensity values were normalized to a range
between 0 and 1, binned by percentile (lower range exclusive,
upper range inclusive), then tokenized based on the 100
possible percentile ranges and a special bin for zero (i.e., the
percentiles served as a vocabulary for tokenization). The
embedding of the IR spectra was identical except that intensi-
ties less than 1% were zeroed out to eliminate potential back-
ground noise, resulting in 100 total possible tokens rather than
101 (i.e., the zero token for IR includes the rst bin in the 1H-
NMR and EI-MS cases, so there is one less token). The pre-
processed input vectors for the IR, 1H-NMR, and EI-MS spectra
were of length 900 (representing 400–4000 cm−1 with a 4 cm−1

resolution), 993 (representing −2 ppm to 10 ppm with
∼0.0121 ppm resolution), and 999 (representing 1–999 m/z with
1 m/z resolution). The input vectors were then embedded using
a linear layer (specic to each transformer but with demb = 256
in all cases) in the same manner as the reactants, resulting in
embedded inputs of size [900, 256], [993, 256], and [999, 256] for
the IR, 1H-NMR, and EI-MS transformers, respectively.

To retain the spatial information of the inputs for use by the
models (i.e., token position for the reactants and peak location
for the spectra), standard trigonometric positional embedding
(P) was added to the token-based embeddings according to

Pðk; 2iÞ ¼ sin

�
k

n2i=d

�

Pðk; 2i þ 1Þ ¼ cos

�
k

n2i=d

� (1)

where k is the position of the input token, i is the position in the
embedding dimension, d is the hidden dimension (demb), and n
is a convenient constant for determining the relative frequency
shi between the sequentially sampled periodic functions
(taken to be 104, here).

Attention cells. Each transformer is composed of a task-
specic encoder and decoder that use two to four attention
cells. Each encoder attention cell consists of a sequence of layer
norm,multi-head self-attention layer, residual connection, layer
norm, feed-forward layer, and residual connection (Fig. S2†).
The layer norm is performed before other attention and feed-
forward operations with an 3 value of 10−6. Eight attention
heads were used, using linear projections of the input embed-
ding dimension to form key and query vectors of length 256 (dk
= dq= 256) and value vectors of length dv= demb/8= 32, and the
dot-product attention mechanism calculated according to

ScoreðQ;K;VÞ ¼ softmax

�
QKTffiffiffiffiffi
dk

p
�
V (2)

where Q, K, and V are matrices containing the queries, keys, and
values for each embedded token (for the rst cell, aerwards the
derived feature of the previous cell) in the sequence with sizes of
[dseq, dk], [dseq, dk], and [dseq, dv], respectively, and

ffiffiffiffiffi
dk

p
is

a normalization factor. The outputs of each head are catenated
along the value dimension to recover a matrix of the same size
© 2024 The Author(s). Published by the Royal Society of Chemistry
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as the input to the attention layer. The catenated output from
the multi-head attention layer is added to the input of the
attention cell via a residual connection, then passed to a second
layer norm and fed to a feed-forward block that consists of
a linear layer to project the demb-dimension into a 2048-length
vector, followed by a ReLU activation layer, and a second linear
layer to project the hidden dimension from 2048 back to demb.
Two drop-out layers with drop-out rate of 0.1 were applied aer
each linear transformation during training. Finally, the input to
the attention cell is mixed with the output via another residual
connection.

The decoder attention cells used in these models are iden-
tical to the encoder attention cells, with the exceptions that the
target SMILES embedding is used as an input to the rst cell,
the multi-head self-attention layer uses masking to restrict non-
zero attention calculations to later tokens, and a multi-head
cross-attention layer is inserted aer the masked multi-head
self-attention layer (Fig. S2†). The embedding layer used for
the predicted product SMILES is shared across transformers
and determined by training. The self-attention masking is
identical to that used by Vaswani et al.32 The multi-head cross-
attention layer is identical to the unmasked multi-head self-
attention layer in the encoder attention cells, except that the
key and value inputs are obtained as linear projections of the
embedding dimension of the encoder output and the queries
are obtained as linear projections of the embedding dimension
of the output of the masked self-attention layer. Layer norms are
used before each attention layer and residual connections are
used aer each attention layer (the same as for the encoder,
there is just an extra one of each); all other details (sizes,
sequence, number of heads, the nal feed-forward layer, etc.)
are identical to the encoder attention cells.

Transformers. All models were constructed from one or
more transformers, with each consisting of an encoder,
decoder, and terminal linear somax classier to predict the
next token in the sequence. The encoder and decoder of each
transformer were composed of a series of the attention cells
described in the previous section. In the case of the reactant
transformer, four attention cells were used in the encoder and
decoder; whereas, for all spectral transformers only two atten-
tion cells were used in the encoder and decoder. A minimal loss
in validation accuracy was observed upon reducing the number
of attention cells in the spectral transformers and this expedited
model training. More transformers might be useful when
training on different data sources or other spectral inputs.

The RtP model consists of a single reactant transformer; the
various StS models consist of one or more spectral transformers
and no reactant transformer; and the various deduction models
consist of a reactant transformer and one or more spectral
transformers. For each case, the [dseq, demb] output of each
transformer is linearly projected along the embedding-dimension
to a 288-length vector (i.e., the number of SMILES plus special
tokens) with a somax to predict the probability of the next token.

Deductive layer. The models that combine more than one
transformer (i.e., the various StS and R + spectra models) are
linked together by a single linear layer that projects the 288 × N
token-probabilities outputted by the N individual transformers
© 2024 The Author(s). Published by the Royal Society of Chemistry
to predict the next token. Specically, the outputs of the
transformers are catenated to a 288 × N-length vector that is
linearly projected to a 288-length vector with a somax to
predict the probability of the next token. Because the weights of
this linear projection layer are static aer training and inde-
pendent of the input, this layer represents a simple weighting of
the evidence from the different transformers that potentially
also accounts for any average linear correlations in the token-
predictions observed during training.

The linear linkage of the transformers provides two mech-
anisms by which the task-specic transformers can act as
deductive constraints on each other. The rst is through the
formation of a consensus prediction of the next token. This
simple mechanism allows the more condent transformers to
potentially overrule one or more less condent transformers in
predicting a particular token. The second is through the
recursive token-by-token manner in which the product
prediction is made. At each step of this process, the prediction
string, updated with the token from the last inference, is
passed to all transformers to make their individual next-token
predictions. This creates a mechanism by which the trans-
formers can perform inference on prediction strings that they
never would have encountered via a greedy decoding. For
example, a particular transformer may be overruled by the
others for several tokens, such that it is now performing
inference on a partially decoded product scaffold that it would
not have predicted on its own. In such a case, the other
transformers have acted as a deductive constraint on the
transformer.

Other deductive connections are likely useful but have not
been signicantly explored due to the immediate success of the
current architecture for these prediction tasks. The only alter-
native that was signicantly tested was an architecture that
terminated in an additive layer rather than a linear projection,
which resulted in amarginal reduction in validation set accuracy.
Training

All models were trained using the Adam optimizer and a batch
size of 20. The learning rate, h, was linearly increased each
update step followed by an exponential decay according to

h ¼ 1ffiffiffiffiffiffiffiffiffi
demb

p �min

�
1ffiffi
s

p ;
s

swarm3=2

�
(3)

where, s, is the step, swarm is the number of steps within the
warmup phase, and demb is the embedding dimension length.
swarm was set to 37 500 steps, roughly 4% of the overall training
steps, which is consistent with Vaswani et al.32 No label
smoothing was used during training. Early stopping was
applied to terminate training if the validation loss did not
decrease in the consecutive 30 epochs.

One R + IR + NMR + MS model was trained with random
dropping of the spectral sources for use in Fig. 2D of the main
text. All other results are formodels trained without dropping. For
the model trained with dropping, a 10% probability of dropping
was separately applied to each input spectrum during training
(i.e., on average 1/1000 training samples had no input spectra).
Chem. Sci., 2024, 15, 11995–12005 | 12003
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Inference

During the inference cycle, all models' top-k outputs are deter-
mined by a beam search with beam size set to ve. The beam
search algorithm is consistent with the previous implementa-
tion published by Schwaller et al.18 The inference cycle is initi-
ated by feeding the target input with a dummy string only
containing the start token “<”. This replaces the target product's
SMILES that is used in the training cycle. The model then
selects the ve most probable tokens decoded from the start
string to form ve new beams. At each decoding step, each of
the beams produces another ve candidate strings, and the ve
candidates with the highest overall probability are selected from
the pool of 25 strings, which are then assigned to the new
beams for the next decoding step. The decoding of each beam
terminates if the end token “$” is predicted as the top-1 or the
string length reaches the upper limit of 67.

Transformer decisiveness and input accuracy reduction

The decisiveness measure was implemented by zeroing out the
nal probability prediction of each transformer before it was
passed to the linear deduction layer. If this caused a change in
the top-1 predicted token compared with the unmodied
inference, then the transformer was classied as being decisive
for that token. According to this denition, one or more trans-
formers can be decisive for a token, and also no transformer can
be decisive if a sufficiently strong consensus exists. If a trans-
former was decisive for at least one token in a given product
decoding, then it was classied as being decisive for that
product.

The overall accuracy reduction is an alternative measure of
input importance that simply reports the reduction in overall
top-n accuracy when each of the input sources are individually
zeroed out. This was implemented by supplying a single
padding token to the reactant transformer, and three zero
intensity tokens as inputs to the spectral transformers, respec-
tively. The overall accuracy reduction is not necessarily equiv-
alent to the decisiveness of each transformer, because of the
exibility of the SMILES language, which allows the same
molecule to be decoded in multiple ways, and the important
role of consensus formation in the decoding.

Ensemble uncertainty estimate

All top-n accuracies reported in the main text are from indi-
vidual models, not ensembles. To provide an estimate of
performance uncertainty, ve R + IR + NMR + MS models were
trained and tested using identical training : validation : testing
splits, but with independent weight initializations. Top-n
accuracy metrics for these models were within 0.5% in all cases.

Data availability

Figshare repositories have been created for the training, testing,
and validation sets (https://gshare.com/articles/dataset/
Training_Validation_Test_set_split/25511056), for the model
checkpoints (https://gshare.com/articles/dataset
/Model_checkpoints/25513519), and for the spectral database
12004 | Chem. Sci., 2024, 15, 11995–12005
(https://gshare.com/articles/dataset/MS_IR_H-NMR_Spectra_
Database/25513513). The training scripts and code associated
with the multimodal graph + spectrum to graph architecture
is maintained on the Savoie group github (https://github.com/
Savoie-Research-Group/MultiModalTransformer.git).
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