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Ambiphilicity of ring-expanded N-heterocyclic
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N-heterocyclic carbenes, such as imidazole-2-ylidenes and imidazolin-2-ylidenes, the popular class of
singlet carbenes introduced by Arduengo in 1991 have not been shown to be ambiphilic owing to the
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two o-withdrawing, m-donating amino groups flanking the carbene centre. However, our experimental

data suggest that ring-expanded N-heterocyclic carbenes (RE-NHCs), especially the seven and eight
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Introduction

Thanks to growing efforts in main group chemistry, the acti-
vation of enthalpically strong bonds and industrially relevant
small molecules is no longer restricted to transition-metals."
More than a decade ago, our group discovered that cyclic
(alkyl)(amino)carbenes (CAAC-5),>* a class of highly ambiphilic
carbenes, could react with carbon monoxide,* H,,” NH; (ref. 5)
and P,.® More recently, it has been shown that CAAC-5s not only
activate a variety of bonds (C-H, Si-H, B-H...)” but also promote
catalytic reactions.® In comparison, imidazole-2-ylidenes® and
imidazolin-2-ylidenes,10 the classical N-heterocyclic carbenes
(NHC-5s), are much less ambiphilic due to their two t-donating
amino substituents. Consequently, they are reluctant to activate
small molecules, as illustrated by their lack of reactivity with
CO."™*> Much less studied than NHC-5s are the so-called ring-
expanded N-heterocyclic carbenes (RE-NHCs)."* Herein we
compare the ambiphilic nature of NHC-5 with RE-NHCs (—6,"*
—7 (ref. 14) and —8 (ref. 13c)) and CAAC-5 through DFT calcu-
lations and their reactivity with small molecules.

Results and discussion

Compared to NHC-5s, RE-NHCs display a larger N-C-N bond
angle (£ carp) which imposes greater steric constraint when used
as a ligand for transition metals, a feature used to enhance
catalytic activity."® Arguably less emphasized, is the larger car-
bene bond angle, which increases the p-character of the lone

UCSD-CNRS Joint Research Chemistry Laboratory (IRL 3555), Department of
Chemistry and Biochemistry, University of California, La Jolla, San Diego,
California 92093-0358, USA. E-mail: rjazzar@ucsd.edu; ghertrand@ucsd.edu

T Electronic supplementary information (ESI) available. CCDC 2291449, 2291450~
2291455. For ESI and crystallographic data in CIF or other electronic format see
DOIL: https://doi.org/10.1039/d3sc04543a

i These authors contributed equally to this work.

© 2024 The Author(s). Published by the Royal Society of Chemistry

membered rings, are significantly ambiphilic. Our results also show that the steric environment in RE-
NHCs can become a determining factor for controlling the E-H bond activation.

pair, and thus the energy level of the HOMO.' Comparatively,
the LUMO is less affected since ring expansion does not
significantly disrupt the planarization of the o-amino frag-
ments, which leaves the mesomeric stabilization of the p.
orbital by the nitrogen lone pairs nearly identical.

The ambiphilicity of a carbene can be estimated computa-
tionally by considering the singlet-triplet gap (AEs_t)
(Scheme 1). As expected, our calculations indicate a correlation
between the ring size and ambiphilicity of a carbene. Interest-
ingly, the data also suggests that the ambiphilicity of NHC-7
and NHC-8 approaches that of CAAC-5.

To compare experimentally the ambiphilicity of NHCs with
that of CAAC-5, we first considered the activation of sp-
hybridized CH bonds which has been reported with
CAACs," but seldomly described with NHCs (one example has
been reported using acetylene gas).'® We first investigated the
reaction of p-tolylacetylene [pK, (DMSO) = 28.8 vs. 25 for
acetylene] with NHC-5 at room temperature in benzene solu-
tion (Scheme 2). In this case, no reaction was observed within
1 hour. In marked contrast, using CAAC-5 the oxidative
addition product la was quantitatively obtained within
minutes. Under the same conditions a rapid and clean reac-
tion was also observed with NHC-6"** NHC-7"* and NHC-8"*¢
giving adducts 1b-d as shown by characteristic "H NMR
signals at 6.04, 5.87 and 5.64 ppm, and '*C NMR signals at
72.3,73.9 and 77.1 ppm, respectively. The structure of adduct
1c (from NHC-7) was confirmed by X-ray crystallography.
Because of the significant difference in reactivity observed
between NHC-5 and the RE-NHCs, we re-evaluated the reac-
tion of NHC-5 with p-tolylacetylene and observed very slow
conversion to adduct 1e upon performing the reaction at 80 °©
C for 4 hours.

These initial results prompted us to search for more chal-
lenging molecules to activate. Examples of stable carbenes
reacting with isonitriles to afford ketenimines are scarce.
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Scheme1l CAAC-5is more ambiphilic than NHC-5. NHC ambiphilicity
is improved in ring-expanded NHC (ReNHCs) as shown by their
decreasing singlet—triplet gap (AEs_7).
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Scheme 2 Reactivity of NHC-5-8 and CAAC-5 with p-tolylacetylene.

They only include the anti-Bredt NHC'" and dia-
midocarbenes (DAC) 20 thanks to their enhanced electrophi-
licity resulting from reduced donation of the nitrogen lone-pair
into the empty p-type orbital of the carbene carbon. Curious to
probe the reactivity of RE-NHCs, we considered their reactivity
and that of NHC-5 or CAAC-5 with adamantyl isocyanide
(Scheme 3). CAAC-5 cleanly afforded the ketenimine 2a within
minutes, while no reaction occurred with NHC-5 after 12 hours
at room temperature in benzene solution.*® This result
contrasts with CAAC-5 which cleanly afforded the ketenimine 2a
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Scheme 3 Reactivity of NHC-5-8 and CAAC-5 with adamantyl
isocyanide.

within minutes. With NHC-6, no reaction was observed even
after 12 hours. However, with NHC-7 and NHC-8, the quanti-
tative formation of compound 2b and 2c¢, was observed after 10
minutes, as evidenced by the diagnostic '*C NMR signal for the
central carbon of ketenimines at 216.9 ppm and 211.5 ppm,
respectively. We confirmed the structure of compound 2b by X-
ray crystallography. Interestingly, the solid-state structure of 2b
revealed a pronounced bent geometry (Cnyc—C-N angle: 158.5°)
compared to that of diamido cyclohexylketenimine (Cppc—C-N
angle: 173.8°)**" with a longer Cnpc—Crer bond (133.8 pm vs.
129.7 pm for DAC). This observation indicates that NHC-7 is
less electrophilic than DAC.

Collectively, the reactions with terminal alkynes and iso-
cyanides suggest that the ambiphilicity of the carbenes is in the
order NHC-5 < NHC-6 < NHC-7 < NHC-8 < CAAC-5, which is in
agreement with their singlet-triplet gap. To deconvolute these
results further, we wondered if RE-NHCs, notwithstanding their
lower electrophilicity could compare with CAAC-5 in the acti-
vation of ammonia.® Under 2 atmospheres of NH;, no reaction
occurred with NHC-5, which was expected since several dia-
minocarbenes have even been generated in liquid ammonia.*
(Scheme 4). In agreement with literature precedent,® under the
same conditions, CAAC-5 rapidly led to the ammonia adduct 3a.
Switching to RE-NHCs, no reaction was observed with NHC-6
despite prolonged reaction time, while NHC-7 led to the clean
formation of product 3b with distinctive "H and *C NMR
signals at 6 = 5.25 ppm and 85.8 ppm, respectively. This result
was confirmed by single crystal X-ray diffraction. However, to
our surprise, no reaction was observed with NHC-8.

We previously reported that the steric environment of CAAC-
5 is a determining factor in controlling the reversibility of E-H
bond activation (E = N-H, P-H).® Compared to CAAC-5 (£ carp =
106°), NHC-8 is more sterically constrained around the carbene
carbon due to its large N-Cnpc—N bond angle (£ carp = 122°).1%¢
We hypothesized this could explain its lack of reactivity
with ammonia despite favourable electronics. To probe
this hypothesis, we prepared the N-Mesityl (-Mes) substituted
NHC-8 (M**NHC-8) since its steric profile is significantly smaller

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Reactivity of NHC-5-8 and CAAC-5 with ammonia.

than that of the Dipp-substituted NHC-8. This is apparent from
the solid state structures, when considering the steric maps (see
ESI for detailst) and percent buried volumes (%Vjy,>*) around
the carbene carbon. NHC-8 (80.1%) compared to M*NHC-8
(77.2%) which is closer to that of NHC-7 (78.4.%). The larger
steric hindrance is also apparent in solution when considering
the unusual "’Se NMR downfield shift of the NHC-8-Se adduct
4a (571.1 ppm) compared to M*NHC-8-Se adduct 4b (437.9
ppm) (Scheme 5). Indeed, ”’Se NMR is a spectroscopic marker
for highlighting non-classical bonding (NCB) interactions
between pendant N-Dipp substituents and the selenium atom.>*
Note that when comparing the reactivity of N-tolyl and N-Dipp 8-
membered NHCs with silver chloride, Cavell and co-workers
discovered that in very large ring NHCs the steric environ-
ment provided by N-Dipp substituents can become so over-
whelming that it prevents coordination.*

Having confirmed that M*NHC-8 is less sterically hindered
than NHC-8 and even NHC-7, we evaluated its reactivity towards
ammonia. Gratifyingly, rapid formation of the corresponding
ammonia adduct was observed when performing the reaction in
CeDg under 2 atmospheres of NH; (Scheme 6). To confirm these
results, we also investigated the reactivity of the corresponding
imidazolium salts with sodium amide which provided the ex-
pected adducts via nucleophilic addition of NH,~ (Scheme 7).

(Y . (O

Ar/N\.C./N\Ar rt, THF Ar/N\E.:/N\Ar
NHC-8 12 hours 4a (ArS=eDipp)
4b (Ar = Mes)
NMR* 4a 4b
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13¢ 186.6 186.5 * (ppm, C6De)

Scheme 5 Selenium adducts of Dipp- and Mes-substituted NHC-8.
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Scheme 6 Reactivity of M**NHC-8 with ammonia.
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Scheme 7 Reactivity of NHC-7, M®*NHC-8 and NHC-8 conjugate acid
salts with NaNH,.

Note that under these conditions, reaction of NHC-8"®" with

NaNH, afforded the free NHC-8 and ammonia. Overall, these
results suggest that for 8-membered ring NHCs, the activation of
ammonia is controlled by steric parameters and possibly
reversible.

Conclusions

Imidazole-2-ylidenes® and imidazolin-2-ylidenes,' the popular class
of singlet carbenes introduced by Arduengo, have not proven to be
ambiphilic owing to the two oc-withdrawing, m-donating amino
groups stabilizing the carbene centre. However, our experimental
data demonstrate that ring-expanded N-heterocyclic carbenes, NHC-
7s and NHC-8s, belong to the class of ambiphilic carbenes. Our
results also show that the steric environment in RE-NHCs can
become a determining factor for controlling the E-H bond activa-
tion. We anticipate these results will have far reaching implications
in the design and applications of large ring singlet carbene
skeletons.
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