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ting activation barriers through
a chemically-interpretable, equivariant and
physically constrained graph neural network†

Sudarshan Vijay, ab Maxwell C. Venetos,ab Evan Walter Clark Spotte-Smith, ab

Aaron D. Kaplan,b Mingjian Wenc and Kristin A. Persson*ad

Activation barriers of elementary reactions are essential to predict molecular reaction mechanisms and

kinetics. However, computing these energy barriers by identifying transition states with electronic

structure methods (e.g., density functional theory) can be time-consuming and computationally

expensive. In this work, we introduce CoeffNet, an equivariant graph neural network that predicts

activation barriers using coefficients of any frontier molecular orbital (such as the highest occupied

molecular orbital) of reactant and product complexes as graph node features. We show that using

coefficients as features offer several advantages, such as chemical interpretability and physical

constraints on the network's behaviour and numerical range. Model outputs are either activation barriers

or coefficients of the chosen molecular orbital of the transition state; the latter quantity allows us to

interpret the results of the neural network through chemical intuition. We test CoeffNet on a dataset of

SN2 reactions as a proof-of-concept and show that the activation barriers are predicted with a mean

absolute error of less than 0.025 eV. The highest occupied molecular orbital of the transition state is

visualized and the distribution of the orbital densities of the transition states is described for a few

prototype SN2 reactions.
I. Introduction

Activation barriers computed using ab initio methods have
greatly facilitated mechanistic understanding of reactions
occurring in battery electrolytes,1–4 catalysis,5–8 organic
synthesis9 andmany other elds of chemistry.10,11 The activation
barrier is determined as the energy difference between a rst-
order saddle point (a transition state) and a local minimum of
the potential energy surface (a reactant or product), which
provides insight into the likelihood of a reactant converting into
a product. A large activation barrier implies that the reaction is
sluggish, while fast chemical reactions have small activation
barriers.

Activation barriers are oen computed using electronic
structure methods like density functional theory (DFT). In
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practice, these computations are usually not straightforward to
perform. They can be time-consuming, requiring multiple
gradient evaluations for an optimizer to identify a rst-order
saddle point. They are also difficult to automate, as transition
state optimizations are very sensitive to the choice of the initial
guessed structure. Even when an optimization successfully
converges, it frequently produces an unwanted transition
state.12

Several models have been proposed to approximate the
activation barrier to circumvent the need for explicitly per-
forming transition-state nding calculations. A fundamental
assumption of these models is that the activation barrier can be
expressed as a function of a handful of variables determined
from the electronic structure of the reactants and products
alone. The simplest such model is the Brønsted–Evans–Polanyi
(BEP) relation,13–16 which assumes a linear relationship between
the activation barrier and energy difference between reactants
and products. More complex models consider other potential
energy surface (PES) complexities, such as solvent reorganiza-
tion in Marcus theory.17–21 While these models work well for
a narrow chemical space and are chemically interpretable, they
need to be re-parameterized for even the slightest change to the
chemistry and conditions, such as for example, different
ligands around a xed reaction centre.

Machine learning models offer an alternative to determining
activation barriers without relying on assumptions about the
Chem. Sci., 2024, 15, 2923–2936 | 2923
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PES, such as in BEP andMarcus-theory-based models.22 Current
machine-learning models used to determine activation barriers
range from methods using active-learning routines,23 to one-
shot kernel-methods24 or neural network25–27 predictions.
Active learning routines require iteratively performed DFT
calculations, and one-shot predictions require a signicant
number (between 2000 and 12 000) of DFT calculations as a part
of their training data sets. In general, these approaches lack
chemical interpretability in their outputs.

In this work, we introduce CoeffNet, a graph-neural network
(GNN) that is capable of predicting both the activation energies
and the frontier orbitals, such as the highest-occupied molec-
ular orbital (HOMO) of the transition state. Inputs to the model
are the coefficients of any frontier molecular orbitals of reactant
and product complexes which are outputs of any localized-basis
electronic structure code. Our approach of using coefficients of
molecular orbitals offers three advantages: (1) inductive bias in
the form of an idealized description of the variation of the
electronic structure from reactant to transition state, which is
a common feature of theoretical models enabling accurate
activation barrier predictions (2) physical constraints imposed
on the features used to parameterize the GNN allowing the
model to learn within a xed numerical range, and (3) chemical
interpretability of the predicted output, which is any molecular
orbital of the transition state. A key use-case of CoeffNet is to
accurately predict activation barriers and offer chemical inter-
pretability when applied to a xed class of reactions. When
applied to a diverse database of reactions, it acts as a pre-sieving
tool to provide a coarse estimate of the activation barrier such
that only those reactions with chemically interesting activation
barriers may be computed using computationally intensive
transition state search DFT calculations. This manuscript is
organized as follows: in Section II, we discuss the features of the
coefficients of frontier orbitals and how they incorporate
inductive bias when used as features in CoeffNet. In Section III,
we describe the architecture of CoeffNet. As a proof-of-concept,
we apply it to predict activation barriers and the HOMO for
selected SN2 reactions. Finally, in Section IV, we show that the
model outputs align with chemical intuition.
II. Coefficients of frontier orbitals
serve as a gauge of reactivity

In this section, we motivate our choice of coefficients of
a molecular orbital as features for CoeffNet. We briey describe
how these coefficients are dened in the context of DFT and
how they change for different molecular orbitals as a function of
the rotation of a molecule and along a reaction path from
reactant to transition state to product. We note that the example
of analysing the orbitals of water is a simple one, where we
illustrate the interpretive role that coefficients provide. We defer
more chemically relevant examples to Section S3† and Section
IV of this manuscript.

Localized-basis DFT codes compute a chosen molecular
orbital, ji, through a linear combination of all multiple atom-
centred atomic orbitals, fj consisting of s, p, d, and higher
2924 | Chem. Sci., 2024, 15, 2923–2936
basis functions. Cij contains the relative weights of atomic
orbital j in a molecular orbital with index i,

jiðrÞ ¼
XNbasis

j

CijfjðrÞ; (1)

where Nbasis are the total number of atomic orbitals used in
a DFT calculation, and r are positions in Cartesian space. Cij is
determined iteratively by a self-consistent eld (SCF) procedure
through the generalized eigenvalue problem, FC = 3SC where F
is the matrix representation of the Kohn–Sham Hamiltonian, C
is the matrix of coefficients for all molecular orbitals, 3 are the
eigenvalues of the molecular orbitals and S is the overlap matrix
(i.e. the overlap between any two atomic orbitals j and j0 in
matrix form).28 From C, one can immediately determine
reduced density matrices, the local density, and their
gradients.

For a given ji, we think of Cij as informing us as to what fj,
and hence what atoms are reactive. Consider Cij for selected
molecular orbitals of water shown in Fig. 1a. For the HOMO
(column corresponding to an x-axis value of −7.93 eV, i.e. the
least negative x-axis value), we nd that the largest value of jCijj
(in red) appears for oxygen p-orbitals and hydrogen p-orbitals
(polarization functions). This result matches our expectations
on the reactivity of water; the oxygen lone-pairs (composed of p-
orbitals), as well as additional hydrogen-bond-forming orbitals
of hydrogen, are likely to be the most reactive. All j's that are
lower in energy, such as those corresponding to an eigenvalue of
−9.96 eV, include deeply buried fj, such as the s-functions of
oxygen and hydrogen, which are less reactive. Unoccupied
molecular orbitals (where the x-axis is positive) are largely made
up of polarization functions. Passing this information to Coef-
fNet will inform it of orbital-level, environment-specic reac-
tivity. In Section S3† we discuss the case where multiple
molecular orbitals might be needed to correctly represent
reactivity through the example of coefficients of the molecular
orbital of pyridine, where a combination of HOMO and the
eigenstate below the HOMO are needed to properly represent
the reactive centers of the molecule.29
A. Numerical properties of C

A useful property of Cij is that it can take values strictly between
−1 to 1 when determined in orthonormal basis and for real-
valued functions (see Section S1† for converting from non-
orthonormal to orthonormal basis). Furthermore,

XNbasis

j

��Cij

��2 ¼ 1; (2)

i.e. the sum of squares of Cij for a single molecular orbital in
orthonormal basis is 1. In a practical context, these constraints
mean that the relative weights of f that make j are normalized,
and any prediction of Cij will only need to operate within
a narrow range of numerical values.

While C provides intuitive molecular-orbital level informa-
tion, as well as constraints on attainable numerical values, it is
sensitive to both rotation and sign change. Fig. 1b shows C for
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 (a) Coefficient matrix for selected eigenvalues (x-axis) and all atomic orbital basis functions (y-axis) used in a DFT calculation of H2O at
a certain Euler angle (a0, b0, g0) about the origin of a cartesian coordinate system with the def2-SVP basis set; colors indicate the weight of
a particular atomic orbital in that molecular orbital. (b) Same representation as (a), except at a different Euler angle (a, b, g); note that both the sign
and magnitude for each type of basis function (s, p, d) differ from (a). (c) The coefficient matrix rotates reliably from a0 / a, b0 / b and g0 / g

through the D-matrix of rotation; legend shows Euler angles (a, b, g) in radians.
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water at a different orientation than shown in Fig. 1a (denoted
by an Euler angle change a0 / a, b0 / b and g0 / g with
a rotation matrix dened through an extrinsic rotation about
the origin of cartesian coordinates). Note that both absolute
values and signs are altered by this rotation. C is an eigenvector
and hence accurate only up to a sign change (multiplying the
eigenvalue problem ±1 has no effect on the solution) and
rotation changes the relative weights of px, py, pz, dxy, dyz, dzx,
d3z2−r2 and dx2−y2 contributions to j. However, it is known that C
rotates predictably, i.e.

C(a, b, g) = C(a0, b0, g0)$D
T(a, b, g), (3)

where D is the Wigner-D matrix.30 Fig. 1c shows that there is
a clear agreement between DFT computed absolute values of
C(a, b, g) and those obtained from eqn (3) starting from (a0, b0,
g0) (see Section S2† for a discussion on practical implementa-
tion). We utilize this property of reliable rotation while con-
structing the equivariant components of CoeffNet. In the rest of
this manuscript, we drop the subscripts on Cij for clarity,
instead referring to C as the coefficients of a single molecular
orbital for a given spin channel.
B. Variation of C from reactant to transition state to product

A nal useful property of C is that it changes expectedly with
chemical intuition along a reaction path. Fig. 2a shows selected
© 2024 The Author(s). Published by the Royal Society of Chemistry
basis functions of atomic orbitals (y-axis) for the HOMO of
reactant, transition state and product species for a prototype
SN2 reaction taken from ref. 31. The reaction follows the
template

A + X− / B + Y− (4)

where A and B are species with a carbon backbone (R3C–CR3,
where R is any substituent) and X− and Y− are attacking and
leaving groups respectively.

In this particular SN2 reaction, the chlorine atom (X−) moves
towards the carbon atom, while the uorine atom (Y−) leaves
with a charge of −1. Nitrogen and hydrogen atoms are close to
the reaction centre. Matching chemical intuition, the p-orbitals
of chlorine have a higher weight in the product state (i.e. these
orbitals contribute signicantly to the HOMO and hence are
involved in the bonding state of the species), while the p-
orbitals of uorine have a higher weight in the reactant state;
the transition state has an intermediate weight between chlo-
rine and uorine p-orbitals. As expected through chemical
intuition, bystander atoms nitrogen (p-orbitals) and hydrogen
(s-orbital) have intermediate weight throughout the reaction.
C. Constructing a smaller representation of C

Most modern basis sets contain several polarization and diffuse
functions (extra basis functions with higher angular quantum
Chem. Sci., 2024, 15, 2923–2936 | 2925
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Fig. 2 Variation of the absolute value of the coefficients of the HOMO
(visualized only for selected basis functions, i.e. the y-axis) from
reactant/ transition state/ product for (a) full-basis representation,
(i.e. as computed) and (b) minimal basis representation (see text).
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numbers, l, such as d, f, g and h functions for small organic
molecules, where only s and p functions are needed to ll all
electrons). These extra basis functions are likely to render an
intuitive understanding of C less straightforward. While they
may provide more information to CoeffNet, they will also lead to
a model that is more expensive to train. To explore the effect of
reduction in the number of atomic orbitals a posteriori of a DFT
calculation, we construct a smaller, minimal basis set from the
full basis by the direct-projection method.32 As an illustration of
this idea, we select all s and p functions to constitute a minimal
basis representation, fm

j , which constitutes of a subset of basis
functions present in fj. This choice of minimal-basis set is
consistent with the classes of molecules tested in this work
(small organics with halogens) and can be tuned to include or
exclude any atomic orbitals. If the number of basis functions in
the minimal set is Mbasis(<Nbasis), then we dene a rectangular
matrix projection, P = hfm

j jjii with dimensions Mbasis × Nbasis.
This projection is used to determine a minimal-basis Hamil-
tonian matrix, Fm = P3PT which is diagonalized to get the
coefficients and eigenvalues in the minimal-basis representa-
tion. Fig. 2b shows C in a minimal-basis representation for the
same SN2 reaction shown in Fig. 2a. Both Fig. 2a and b convey
2926 | Chem. Sci., 2024, 15, 2923–2936
the same information for the relevant atoms, with only minor
changes in numerical values for the minimal basis representa-
tion compared to the full basis representation. Thus, choosing
a smaller basis set leads to a minimal loss of information (apart
from the atomic orbitals that have purposefully been removed)
for the examples we consider in this manuscript, allowing us to
work with a smaller representation.

In summary, molecular orbitals represented through C
present a chemically intuitive representation of reactivity,
which we use as features in a graph neural network to learn
quantities such as the activation barrier. C can also be con-
verted to a smaller, minimal-basis representation without much
information loss, allowing for a simpler learning process. In the
next section, we discuss how CoeffNet uses C as a feature to
learn activation barriers and molecular orbitals.
III. Equivariant graph-neural network
to predict activation barriers

In this section, we describe the architecture of CoeffNet, and, as
a proof-of-concept, we test its performance on the SN2 reaction
dataset.31 We discuss how inputs are pre-processed to be
amenable to use with commonly available graphs neural
network architectures. We illustrate how learnt weights of the
model allow it to predict both the activation barrier and C for
a particular molecular orbital of the transition state.

Fig. 3a shows a schematic of the required inputs to CoeffNet,
which are the geometry optimized positions (r), atomic
numbers (n), C for reactant and product complexes and the free
energy difference, DG, of the reaction going from reactant to
product. Note that all inputs are readily obtained from DFT
calculations on reactant and product complexes.
A. Pre-processing of inputs to node and edge attributes and
features

We begin by generating graphs for both reactant and product
complexes. The nodes of each graph represent atoms in
a complex, and the edges represent the connectivity between
these atoms. We choose to express this connectivity through
a xed cutoff, i.e. an atom in a complex is connected to all other
atoms in its neighbourhood up to a xed cutoff distance (which
is le as a hyperparameter). We determine the distance between
any two nodes, A and B, as the norm of the vector of their
relative positions, jrA − rBj (see schematic in Fig. 3a).

Aer creating the graphs for the reactant and product, we
parameterize it with attributes using inputs illustrated in
Fig. 3a. These attributes are fundamental properties of the node
and edges they describe and are not altered by learnt weights.
Each node is represented by a one-hot encoding of its atomic
number. Each edge is parameterized by a normalized so one-
hot encoding33 of the edge length. In practice, the edge length is
expanded on a grid based on a xed number of Gaussian basis
functions.

We use C to generate node features which are to be modied
by learnt weights. Since each atom has a different number of
atomic orbitals, we need to pre-process C before it can be used
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (a) Inputs to CoeffNet are reactant and product atom positions, r, atomic numbers for each atom n, and coefficients of a chosen
eigenvalue C. (b) Schematic of the linear interpolation (p ˛ [0, 1]) used to determine the interpolated transition state graph.
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as node features. This pre-processing is required as we use
a graph with the same dimension of node features for all nodes
and edge features for all edges. We split C into different atom-
wise chunks based on which atom the atomic-orbital is centred
on. These chunks are then normalized to be of the same
dimension for all atoms by padding smaller chunks with zeros
in an orbital-wise fashion. For example, in the case of a minimal
basis representation of H2O, the oxygen node will have the
largest number of orbitals (two s functions with l = 0 and three
p functions, with l = 1 for a total dimension of ve). The
Fig. 4 (a) The mean-absolute error of the interpolated structure as co
Absolute error between the interpolated and DFT C for the HOMO of th
three different DG = −3, 0, 3 eV; m = 0.5, s = 0.25, a = DG; (points) ten

© 2024 The Author(s). Published by the Royal Society of Chemistry
hydrogen node features would have exactly one s orbital; the
other four dimensions (remaining one s and three p functions)
are padded with zeros to make a total dimension of ve.
B. Interpolation scheme to generate approximate transition
state graphs and features

Having generated reactant and product graphs and parame-
terized them with node features, we now discuss how we
generate transition state graphs and their associated node
mpared with the real transition state structure for SN2 reactions. (b)
e transition state (c) (lines) truncated skew-normal distribution h(x) for
randomly sampled points from h for each DG.

Chem. Sci., 2024, 15, 2923–2936 | 2927
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Fig. 5 (a) Schematic of a constrained network block with inputs of C, n and R (see text for description). (b) Schematic of the architecture of
CoeffNet; C, n and R for both reactants and products are passed through a constrained network block shown in (a). C0, which is the output of the
network, and R are linearly interpolated through p and are used as node features of the interpolated transition state graph. Outputs of the last
network are interpreted either as coefficients of the molecular orbital or are averaged after subtraction with the outputs of the constrained
network block of the reactants to get the activation barrier.
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features. Generating this information is a necessary interme-
diate step to CoeffNet. Note that we cannot use the samemethod
of graph generation as described in the previous section for
reactant and product states, as we do not have access to the
structure of the transition state as an input.

We use linear interpolation to generate an approximate
representation of the transition state quantities from reactant
and product quantities (see Fig. 3b for a schematic of this
interpolation). For any quantity X,

Xtransition-state = (1 − p)Xreactant + pXproduct. (5)

where subscripts to X indicate the quantity at that state (for
example, Xtransition-state represents X at the transition state) and p
is a single scalar used as a sliding scale between reactant
structure (p = 0) and product structure (p = 1). In this work, we
linearly interpolate two quantities (1) R, which is the N × 3
(where N is the number of atoms) matrix of atom positions in
a given structure and (2) C, represented through the node
features in the same dimensions as the reactant and product
2928 | Chem. Sci., 2024, 15, 2923–2936
graphs. In general, any scalar p ˛ [0, 1] can be used to perform
this interpolation.

We note that our objective through this interpolation
scheme is not to predict accurate transition state structures or C
(the latter is an output of CoeffNet) but to incorporate as much
useful information as possible into an approximate transition
state graph.

We start by assessing the feasibility of using a constant value
of p. To test this method, we compare the mean absolute error
(MAE) between Rtransition-state obtained through eqn (5) and from
DFT. Fig. 4a shows the MEA for different values of p for the
training dataset for p = 0.1 (green), p = 0.5 (yellow) and p = 0.9
(red). We report the performance on the training dataset as the
choice of p is made before training and kept xed throughout
training and inference. For our chosen proof-of-concept data-
set, all values of p perform suitably well, with only minor
differences in MAE of positions (less than 0.15 Å). Fig. 4b
compares the absolute error between the interpolated and DFT
computed C for the same values of p as in Fig. 4a. Several
elements already have negligibly small errors prior to any
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Comparison of predicted activation barriers and DFT computed barriers on the test set for (a) minimal-basis representation (i.e. only s and
p basis functions), and (b) full-basis (i.e. as computed with DFT) for the def2-SVP basis set. See Fig. S7† for a corresponding plot for barriers
computed with the def2-TZVP basis set.

Table 1 Model performance on predicting activation barriers of SN2 in
both full and minimal basis representations for def2-SVP and def2-
TZVP basis sets

Basis set Basis set type Error

def2-SVP Full 0.022 eV
def2-SVP Minimal 0.021 eV
def2-TZVP Full 0.023 eV
def2-TZVP Minimal 0.021 eV
Baseline — 0.152 eV
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learning, implying that this linear interpolation strategy to
determine transition state C from reactant and product C's is
a sufficient pre-processing step to the model.

While a constant value of p performs well for this dataset, it
might be advantageous to incorporate further inductive bias
into an approximated transition state structure. We propose an
alternative interpolation scheme, which considers the reac-
tion's DG to generate interpolated R and C at the transition
state. The motivation for this interpolation scheme is Ham-
mond's postulate34 for organic reactions, which states that
endergonic reactions have transition states that are product-
like, while exergonic reactions have transition states that are
reactant-like.

To encode Hammond's postulate into a model to generate p,
we create a skewed normal distribution F(x) = 2f(x)g(x), where,

f ðxÞ ¼ 1

2

2
41þ erf

0
@a

x� m

sffiffiffi
2

p
1
A
3
5; (6)

is a cumulative distribution function, where m is the mean, s is
the standard deviation and a is a damping parameter, and
© 2024 The Author(s). Published by the Royal Society of Chemistry
gðxÞ ¼ 1

s
ffiffiffiffiffiffi
2p

p exp

�
� 1

2

�x� m

s

�2
�
; (7)

is a normal distribution. The skewed normal distribution is
truncated at 0 (reactant-like) and 1 (product-like) to produce
h(x) as

hðxÞ ¼ FðxÞ
f ð1;a ¼ 1Þ � f ð0;a ¼ 1Þ : (8)

Fig. 4c (lines) shows the behaviour of h for three different
values of a(=DG). At a very endergonicDG= 3 eV (orange line), h
is centred close to 1, indicating a high probability for the
structure being product-like. Conversely, at a very exergonic DG
= −3 eV (blue line), h is centred close to 0, indicating a high
probability of the structure being reactant-like; this behaviour is
in line with Hammond's postulate. Finally, p is determined by
taking a mean of a few randomly sampled points of h(x) (col-
oured points in the distribution of Fig. 4c). Note that we sample
this distribution to determine p, as opposed to, say, taking
a moment of h(x), to allow us to deal with varied reaction
environments, which may be better described by several h(x)
functions instead of just one as we do here.

Fig. 4a and b (blue lines, p f DG) shows the performance of
this Hammond's postulate-inspired interpolation scheme in
comparison to a constant value of p. Overall, the performance
for R (Fig. 4a) is comparable to that of p = 0.5, with most
structures having an MAE lower than 0.05 Å. Interpolations of C
(Fig. 4b) yield similar performance as well. Since we are inter-
ested in predicting activation barriers and coefficient matrix
elements (and not the transition state structure), we use xed
hyperparameter values of m = 0.5, s = 0.25 and a = 1 with ten
randomly sampled points throughout this work. Further anal-
ysis of this method of determining an approximate transition
Chem. Sci., 2024, 15, 2923–2936 | 2929
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Fig. 7 Residual between theC fromDFT and from themodel for (a) minimal basis set (c) full basis set. Comparison of predicted and DFT values of
the HOMOof the transition state sampled on a 4× 4× 4 grid for a bounding box of 1.25 Å away from the farthest atom of eachmolecule in every
direction for (b) minimal-basis representation (i.e. only s and p basis functions) (d) full-basis (i.e. as computed with DFT).
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state is performed in Section S3† and illustrated in Fig. S9† for
a more diverse dataset. However, the inuence of the value of p
may be reduced in such a comparison as signicantly more
input parameters (such as more coefficients) are used in the
model.
C. CoeffNet architecture

Wemodify the equivariant network as implemented in ref. 33 to
incorporate the constraints of C described in Section II. Fig. 5a
shows a schematic of the constrained-network block that we use
as a building block throughout CoeffNet. The inputs to the block
are C, n and R and the outputs are node features (C0) modied by
weights, with the same dimensions of C. The rst three opera-
tions (in red and blue) are consistent with ref. 33, where the
edges are constructed based on a xed cutoff, non-linearities
are applied to the scalar quantities (gates), and convolutions
are performed. The last block (in green) ensures that (1) entries
in node features that come from padding to make the dimen-
sion of the node features equal are masked (i.e. set to zero and
serve no role in the model), (2) this masked output is normal-
ized such that its sum of squares is exactly one (both in line with
the properties discussed in Section II).

To ensure that the network is equivariant with respect to
rotations of the orbitals that make C, we generate appropriate
irreducible representations to be fed into the network. The
irreducible representation of the inputs is given by the
2930 | Chem. Sci., 2024, 15, 2923–2936
maximum number of s, p, d and higher functions that are
present in each node feature. For example, if every node feature
has one s, p and d function, the irreducible representation
would consist of one l = 0 function with even parity, one l = 1
function with odd parity and one l= 2 function with even parity,
in that order.

Fig. 5b shows a schematic of the architecture of CoeffNet.
We start by supplying {C, n, R} for reactants and products into
two separate constrained network blocks. The outputs of these
reactant and product blocks (C0

reactant and C0
product respectively)

are averaged using (1 − p) (reactant weight) and p (product
weight) to generate an output for an interpolated transition
state, C0

transition-state. Interpolated transition state positions,
R0

transition-state are generated through eqn (5). C0
transition-state, n

and R0
transition-state are passed to another constrained network

block to obtain the coefficients of the transition state, Ctransi-

tion-state. To obtain the activation barrier from this output, we
elementwise subtract Ctransition-state with C0

reactant and take the
mean along the feature dimension. This subtraction is done to
stay consistent with the denition of an activation barrier as
the difference between the transition state and reactant
energies.
D. Loss function

We use an MAE loss function for the task of predicting the
activation energy and a custom unsigned-MAE loss function for
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Comparison of model-predicted and DFT (red) HOMO of the transition state and (blue) orbital density along the reaction axis of three SN2
reactions between (a) attacking group F and leaving group Br (b) attacking group Cl and leaving group F (c) attacking group Cl and leaving group
Br around a central carbon atom; images of the transition states are visualized to the left of the plots; left-most points on the x-axis indicate
atom-centres of the leaving group and right-most positions indicate atom-centres of attacking groups at the transition state. Both model and
DFT j are visualized in full-basis representation.
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the task of predicting C. We dene this unsigned-MAE loss
function as,

loss ¼
XNbasis

i¼1

min
���CDFT � CPredicted

��; ��CDFT þ CPredicted
��	: (9)

where we continue to use the convention that C is a vector for
a single molecular orbital for all atomic orbitals (i ˛ [1, Nbasis]).
The choice of this loss function (instead of anMAE) is due to the
arbitrariness of the sign associated with the coefficient matrix
(and, in general, with eigenvectors), as mentioned in Section II.
Note that the choice of sign, either positive or negative, needs to
be determined only once per graph, implying that the gradients
© 2024 The Author(s). Published by the Royal Society of Chemistry
will not alternate through different signs with changing epochs.
Fig. S8† shows that the training curves through this unsigned-
MAE loss function is smooth and does not uctuate, implying
that this loss function is stable in its performance.
E. Model performance: activation barriers

We now report the performance of CoeffNet on the task of pre-
dicting the activation barrier on the SN2 dataset computed with
the def2-SVP basis set.35 To demonstrate the working of Coef-
fNet, we choose this proof-of-concept dataset of SN2 reactants
taken from ref. 31 (see Section VI for further description and
Section S4† for hyperparameter testing, Section S5† for
Chem. Sci., 2024, 15, 2923–2936 | 2931
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information about data-splits and Section S8† for correspond-
ing plot for the def2-TZVP basis set). Our motivation for using
this dataset as a basis for testing the performance of CoeffNet
stems from the need for high-accuracy activation barrier
prediction for a specic type of chemical reaction with limited
number of elements.

Fig. 6a and b show the results of the activation barrier
prediction task on both minimal basis and full basis repre-
sentations, respectively, for the test set. Both models accurately
predict the activation barrier computed with DFT calculations
(x-axis) to within an accuracy of 0.025 eV (the mean activation
barrier for the test dataset is 0.29 eV, see Fig. S4† for further
information).

Table 1 shows the performance of the model with two
different basis sets def2-SVP and def2-TZVP; the latter contains
more basis functions than the former. To compare our results
with a baseline, we t a linear model between the activation
barrier and the difference between the product and reactant
energies (a form of BEP relations). Note that the baseline test
does not learn the barriers very well (see Section S6† for further
details); the relatively small numeric value of the error has to do
with the range of activation energies considered in this dataset
(most values are between 0 and 0.5 eV). Kernel-based machine
learning models as in ref. 36 trained on a similar dataset has
a mean absolute error of ∼0.25 eV. Recent implementations of
message-passing neural networks using simpler and easier to
obtain descriptors obtain an MAE of ∼0.11 eV.37

Both minimal and full basis models predict activation
barriers for the SN2 with low MAE. Applying a larger basis sets
(def2-SVP / def2-TZVP) does not change errors in prediction
signicantly (0.022 vs. 0.023 eV). As expected, employing a larger
basis set while operating on a minimal basis does not change
the mean absolute error signicantly (only changes beyond the
third decimal place). Given that the performance of all models,
irrespective of the basis set, is nearly identical (around 0.02 eV),
it is preferable to use a minimal basis representation as it is
much cheaper to train and requires fewer parameters during
inference for the SN2. Note that the prediction errors are distinct
from those associated with differences in computed and
experimental transition states. However, the errors from Coef-
fNet for this dataset are smaller than those between experiment
and DFT calculations (∼0.08 eV for similar reactions with the
B3LYP functional),38 indicating that errors between our model
and experiment are of similar orders of magnitude as between
DFT calculations and experiments. We achieve this level of
accuracy while training on the coefficients of a single eigenvalue
(i.e. the HOMO) and hence do not need to add more parameters
by using the coefficients of multiple eigenvalues as input.
Furthermore, we note that CoeffNet has been tested only on
a specic reaction class (i.e. the SN2 reaction) and will most
likely require further modications before being applied to
more diverse datasets. It is also likely that there might be
reactions involving more complex species, such as organome-
tallic compounds, which might require an input to CoeffNet
consisting of a combination of multiple eigenstates to accu-
rately predict their activation barriers.
2932 | Chem. Sci., 2024, 15, 2923–2936
Finally, we briey discuss the performance of CoeffNet on
a diverse dataset, consisting of several different reaction classes
(as opposed to just a single reaction class, such as the SN2
dataset discussed in this section). Note that the objective of
training CoeffNet on a diverse dataset is to use its results as
a pre-sieving strategy for high-throughput study of large reac-
tion networks. For example, if CoeffNet predicts an activation
barrier that is too large to be of chemical interest (typically >1 eV
for reactions at room temperature) it is removed from further
consideration in the reaction network. Conversely, if it predicts
an activation barrier that indicates that the reaction is likely to
occur, then the conventional computationally-intensive transi-
tion state search approaches are employed to determine the
correct value of the activation barrier.

In order for CoeffNet to perform this pre-sieving role for high-
throughput reaction networks, it must predict reasonably
accurate transition state barriers with a small spread (i.e.
a small standard deviation of the errors). We train CoeffNet on
the dataset generated by ref. 25 and 39 (see Section S10† for
a detailed discussion). We nd that the MAE is 0.42 eV on
a dataset which spans z10 eV, similar to the MAE of obtained
with the SLATM(2)

d kernel and nearly double that of a trained
directed message-passing neural network for slightly different
dataset splits.40 We do not perform extensive hyperparameter
tests, instead we use the same parameters as listed in Section VI;
while out of the scope of our current work, we expect that
further hyperparameter and model tuning to be benecial to
reduce the mean absolute error for this dataset. Furthermore,
we nd that the standard deviation of the error to be 0.68 eV
(corresponding to a root-mean-square error of 0.65 eV), well
within the margin of error expected to accurately predict reac-
tions of interest which can then undergo computationally
intensive DFT and transition state nding calculations.
F. Model performance: predicting HOMO on a grid

Fig. 7 shows the model's performance in predicting the HOMO
of the transition state. Fig. 7a and c show the signed error
between the coefficients of the HOMO determined by DFT
(CDFT) and those that are output from the model (Cmodel) for the
minimal and full basis set respectively. Most errors are between
−0.2 and 0.2, indicating that the model learns the relative
importance of each atomic orbital in the HOMO. There are a few
select p-functions (less than 20 elements out of a possible
approx. 6000 elements) that have considerable errors of less
than −0.4 and more than 0.4 for both minimal and full basis
representations. This large error in a small percentage of points
likely stems from incorrectly learnt polarization functions
(largely composed of p-orbitals). If highly accurate coefficients
are needed, we suggest excluding polarization functions in the
minimal basis representation or incorporating further con-
strained network blocks (cf. Fig. 5) to learn core and polarization
functions separately. Given that our purposes are largely for
interpretation (see Section IV), we suggest that this level of
accuracy, from a relatively small dataset, is sufficient.

We now discuss the model's performance aer using its
output coefficients to generate the HOMO on a grid through eqn
© 2024 The Author(s). Published by the Royal Society of Chemistry
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(1). Fig. 7b and d shows a parity plot between the predicted and
DFT j for the HOMO of the transition state for the minimal and
full basis set, respectively. We generate a uniform grid of 4 × 4
× 4 around the molecule to determine this j. Overall, we nd
that the test set predictions faithfully represent the DFT outputs
on the grid for most of the points (darker colours in Fig. 7b and
d represent a larger concentration of points). In the next
section, we use this predicted HOMO to gain insight into SN2
reactions and compare this insight with conventional chemical
intuition.
IV. Model output coefficients of
frontier orbitals are interpretable

In this section, we analyze the predicted HOMO for a few specic
SN2 reactions to illustrate the interpretive qualities of the outputs
of CoeffNet. Fig. 8 shows j (in red) along a one-dimensional
channel for three arbitrarily chosen reactions in the test data-
set, F attacking and Br leaving in Fig. 8a (transition states are
visualized to the le of the plot), Cl attacking and F leaving in
Fig. 8b and Cl attacking and Br leaving in Fig. 8c; all occurring via
a commonly bound carbon atom, which is bound to different
species (such as H, CN, CH3 and NO2). The corresponding orbital
densities, jjj2, are shown in blue. The x-axis indicates the relative
positions of the leaving group (le) to the attacking group (right)
at the transition state structure, centred around the carbon atom
(i.e. the carbon atom centre is at zero on the x-axis). In the reac-
tant state, the attacking group has a charge of −1, and leaving
group is bound to the carbon atom, while in the product state,
leaving group has a charge of −1, and the attacking group is
attached to the carbon atom. At the transition state, the attacking
and leaving groups are at an intermediate distance from the
carbon atom. Dashed lines indicate outputs from DFT, while
solid lines indicate the outputs fromCoeffNet. Consistent with the
tests of Fig. 7b and d the model predicted and DFT j are very
similar (i.e. the dashed and solid lines nearly overlap for all r).

We observe a peak in the orbital densities for the HOMO for
all reactions shown in Fig. 8 between the central carbon atom at
the attacking group (between 0 and 1 Å on the x-axis). This peak
indicates the formation of a negatively charged substituent and
is present irrespective of the character of the attacking group or
the surrounding reaction environment around the carbon atom.
Furthermore, certain reactions, such as in Fig. 8c, have peaks
present near the attacking group atom (∼1.5 Å on the x-axis),
which is likely due to a large anionic character present on the
chlorine atom at the transition state. Smaller secondary peaks
are observed in Fig. 8a and b, indicating a weaker anionic
character of these incoming substituents at this particular tran-
sition state. Anionic character is present in the leaving group as
well; all reactions in Fig. 8 show an increase in the orbital density
at the attacking group atom centre (∼−2 Å), though their relative
magnitude is given by their electronegativity (larger for uorine
in Fig. 8b and smaller for Br in Fig. 8a and c).41 Note that the
complexities of the task of predicting the activation barrier are
represented by the lack of clear trends in orbital densities in
Fig. 8, i.e. a combination of factors, such as electronegativity and
© 2024 The Author(s). Published by the Royal Society of Chemistry
incoming and leaving groups and steric effects of ligands appear
to inuence chemical reactivity (and hence the barrier).

As CoeffNet facilitates predictions of activation barriers as
well as j, we suggest that it can lead to interpretive arguments
about patterns of chemical bonding present in a large dataset.
We hypothesize that predictions of j can be used to determine
if the model is incorrectly learning attributes of a certain reac-
tion, thus offering checks and balances on the predicted acti-
vation barriers. Overall, we nd that using C as a feature to
CoeffNet allows us to interpret our model predictions in the
context of known chemical bonding patterns, leading to more
robust and interpretable predictions for a given class of reac-
tions. Furthermore, we suggest that predictions of C could lead
to easy initialization of a DFT calculation, allowing for a direct
link to active-learning procedures to reduce the number of
optimizer steps required to determine a transition state.

V. Conclusion

In this work, we introduce CoeffNet, an interpretable, equivar-
iant and physically constrained graph neural network. CoeffNet
uses the coefficients of a chosen molecular orbital of reactants
and products to predict activation barriers as well as coefficients
for the same molecular orbital of the transition state. We
illustrate the different components of CoeffNet, starting with the
interpolation routine to predict interpolated transition state
quantities based on Hammond's postulate and the constraints
to ensure that its node features can always be interpreted as
coefficients. As a proof-of-concept, we test our model on an SN2
dataset and show that the predicted activation barriers are
accurate with respect to DFT calculations. Based on the SN2
dataset, we show that the output molecular orbitals allow for
chemically intuitive interpretations. Overall, we nd that by
using the coefficients of a molecular orbital as features, we gain
accurate transition state predictions and an interpretive
understanding of the chemical reactions in a dataset.

VI. Computational methods

Localized-basis density functional theory calculations were
performed using the Q-Chem42 (v5.4) soware package. Work-
ows to perform these calculations were taken from the atom-
ate43 Python package and were facilitated through the
reworks44 package. Parsing of all energies, Hamiltonian
matrices, overlap matrices and coefficient matrices from Q-
Chem output les were performed using pymatgen.45

The SN2 dataset was taken directly from ref. 31. As these
structures were computed with a different electronic structure
code and transition states were determined using numerical
frequencies, we recomputed the frequencies for all provided
transition state structures. We re-optimized the transition states
for all structures that did not have exactly one imaginary
frequency using the FrequencyFlatteningTransitionStateFW
implemented in atomate,43 which computes the transition state
structure and iteratively checks if exactly one imaginary
frequency is present. We take all structures that contain one
imaginary frequency (2178 total entries). We note that the
Chem. Sci., 2024, 15, 2923–2936 | 2933
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dataset in ref. 31 does not contain complexes in the product
state. To determine these end states, transition state structures
are perturbed along the eigenvectors scaled by −0.5 and 0.5.
Constraints on atoms are used in line with ref. 31 to ensure that
the halogen atoms do not abstract hydrogen atoms away from
the carbon skeleton. Aer determining the structures, a single
point with the different basis sets used in this study, i.e. def2-
SVP and def2-TZVP,35,46 were performed. Note that the def2
family of basis sets requires the use of effective core potentials
(ECPs) for atoms heavier than Kr. No reactions using an ECP
were included in the training set. While the inclusion of ECPs
should change only the Kohn–Sham effective potential in the
Hamiltonian, application of CoeffNet to reactions using heavier
element ECPs may require further training. All calculations
were performed with the B3LYP47,48 functional in spin-restricted
mode. The purecart = 1111 option was used to ensure that all
calculations were performed in a spherical basis.

CoeffNet is written entirely in Python using the pytorch-
geometric framework. Equivariant networks, consisting of
convolution, activation (of scalars) and aggregation, were per-
formed using the e3nn package. All training was performed on
NVIDIA A100 GPUs. Further details on hyperparameter testing
are shown in Section S4.† Tests were conducted on the SN2
dataset using a random split of 80 : 10 : 10 train/validation/test
set. Model parameters were optimized on the training set,
hyperparameters are selected based on model performance on
the validation set, and errors are reported using the test set
unless otherwise stated. The Adam optimizer with a batch size
of 8 with an initial learning rate of 0.001 was adopted. The
learning rate is altered through the training process by a factor
of 0.5 each time the learning rate plateaus for more than 10
epochs through the ReduceLROnPlateau function implemented
in the torch python library.

Data availability

CoeffNet is freely available at https://github.com/sudarshanv01/
coeffnet. Hamiltonian matrices, overlap matrices, coefficient
matrices, eigenvalues and structures for all SN2 reactions used
in this work are available at https://doi.org/10.5281/
zenodo.10530180.
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7 E. Skúlason, G. S. Karlberg, J. Rossmeisl, T. Bligaard,
J. Greeley, H. Jónsson and J. K. Nørskov, Density functional
theory calculations for the hydrogen evolution reaction in
an electrochemical double layer on the Pt(111) electrode,
Phys. Chem. Chem. Phys., 2007, 9, 3241–3250.

8 E. D. Hermes, A. N. Janes and J. R. Schmidt, Micki: a python-
based object-oriented microkinetic modeling code, J. Chem.
Phys., 2019, 151, 014112.

9 J. Andersen and J. Mack, Mechanochemistry and organic
synthesis: from mystical to practical, Green Chem., 2018,
20, 1435–1443.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://github.com/sudarshanv01/coeffnet
https://github.com/sudarshanv01/coeffnet
https://doi.org/10.5281/zenodo.10530180
https://doi.org/10.5281/zenodo.10530180
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc04411d


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
0/

29
/2

02
5 

12
:5

2:
28

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
10 T. Nakayoshi, K. Kato, S. Fukuyoshi, O. Takahashi,
E. Kurimoto and A. Oda, Comparison of the activation
energy barrier for succinimide formation from a-and b-
aspartic acid residues obtained from density functional
theory calculations, Biochim. Biophys. Acta, Proteins
Proteomics, 2018, 1866, 759–766.

11 X. Li, Z. Cai and M. D. Sevilla, Investigation of proton
transfer within dna base pair anion and cation radicals by
density functional theory (d), J. Phys. Chem. B, 2001, 105,
10115–10123.

12 H. B. Schlegel, Exploring potential energy surfaces for
chemical reactions: an overview of some practical
methods, J. Comput. Chem., 2003, 24, 1514–1527.

13 J. Bronsted, Acid and basic catalysis, Chem. Rev., 1928, 5,
231–338.

14 R. P. Bell, The theory of reactions involving proton transfers,
Proc. R. Soc. London, Ser. A, 1936, 154, 414–429.

15 M. G. Evans and M. Polanyi, Some applications of the
transition state method to the calculation of reaction
velocities, especially in solution, Trans. Faraday Soc., 1935,
31, 875–894.

16 P. N. Plessow and F. Abild-Pedersen, Examining the linearity
of transition state scaling relations, J. Phys. Chem. C, 2015,
119, 10448–10453.

17 A. O. Cohen and R. A. Marcus, Slope of free energy plots in
chemical kinetics, J. Phys. Chem., 1968, 72, 4249–4256.

18 M. M. Melander, Grand Canonical Rate Theory for
Electrochemical and Electrocatalytic Systems I: General
Formulation and Proton-coupled Electron Transfer
Reactions, J. Electrochem. Soc., 2020, 167, 116518, ISBN:
192.38.90.123.

19 S. M. Brown, M. J. Orella, Y. W. Hsiao, Y. Roman-Leshkov,
Y. Surendranath, M. Z. Bazant, and F. Brushett, Electron
Transfer Limitation in Carbon Dioxide Reduction Revealed
by Data-Driven Tafel Analysis, ChemRxiv, 2020, preprint,
DOI: 10.26434/chemrxiv.13244906.v1.

20 S. Gosavi and R. A. Marcus, Nonadiabatic Electron Transfer
at Metal Surfaces, J. Phys. Chem. B, 2000, 104, 2067–2072.

21 S. Choi, Prediction of transition state structures of gas-phase
chemical reactions via machine learning, Nat. Commun.,
2023, 14, 1168.

22 T. Lewis-Atwell, P. A. Townsend and M. N. Grayson, Machine
learning activation energies of chemical reactions, Wiley
Interdiscip. Rev.: Comput. Mol. Sci., 2021, 12(4), e1593.

23 J. A. Garrido Torres, P. C. Jennings, M. H. Hansen, J. R. Boes
and T. Bligaard, Low-Scaling Algorithm for Nudged Elastic
Band Calculations Using a Surrogate Machine Learning
Model, Phys. Rev. Lett., 2019, 122, 156001.

24 S. Heinen, G. F. von Rudorff and O. A. von Lilienfeld, Toward
the design of chemical reactions: machine learning barriers
of competing mechanisms in reactant space, J. Chem. Phys.,
2021, 155, 064105.

25 C. A. Grambow, L. Pattanaik and W. H. Green, Deep
Learning of Activation Energies, J. Phys. Chem. Lett., 2020,
11, 2992–2997.
© 2024 The Author(s). Published by the Royal Society of Chemistry
26 K. A. Spiekermann, L. Pattanaik and W. H. Green, Fast
Predictions of Reaction Barrier Heights: Toward Coupled-
Cluster Accuracy, J. Phys. Chem. A, 2022, 126, 3976–3986.

27 R. Jackson, W. Zhang and J. Pearson, Tsnet: predicting
transition state structures with tensor eld networks and
transfer learning, Chem. Sci., 2021, 12, 10022–10040.

28 W. Yang, Direct calculation of electron density in density-
functional theory, Phys. Rev. Lett., 1991, 66, 1438.

29 T. Stuyver and S. Shaik, Unifying conceptual density
functional and valence bond theory: the hardness–soness
conundrum associated with protonation reactions and
uncovering complementary reactivity modes, J. Am. Chem.
Soc., 2020, 142, 20002–20013.

30 E. P. Wigner, Gruppentheorie und ihre anwendung auf die
quantenmechanik der atomspektren, 1931.

31 G. F. von Rudorff, S. N. Heinen, M. Bragato and O. A. von
Lilienfeld, Thousands of reactants and transition states for
competing e2 and s2 reactions, Mach. Learn.: Sci. Technol.,
2020, 1, 045026.

32 L. A. Agapito, S. Ismail-Beigi, S. Curtarolo, M. Fornari and
M. B. Nardelli, Accurate tight-binding hamiltonian
matrices from ab initio calculations: minimal basis sets,
Phys. Rev. B, 2016, 93, 035104.

33 M. Geiger and T. Smidt, e3nn, Euclidean Neural Networks,
arXiv, 2022, preprint, arXiv:2207.09453 [cs], DOI: 10.48550/
arXiv.2207.09453.

34 G. S. Hammond, A correlation of reaction rates, J. Am. Chem.
Soc., 1955, 77, 334–338.

35 F. Weigend and R. Ahlrichs, Balanced basis sets of split
valence, triple zeta valence and quadruple zeta valence
quality for h to rn: design and assessment of accuracy,
Phys. Chem. Chem. Phys., 2005, 7, 3297–3305.

36 S. Heinen, G. F. von Rudorff and O. A. von Lilienfeld,
Transition state search and geometry relaxation
throughout chemical compound space with quantum
machine learning, J. Chem. Phys., 2022, 155(22), 221102.

37 E. Heid, K. P. Greenman, Y. Chung, S.-C. Li, D. E. Graff,
F. H. Vermeire, H. Wu, W. H. Green, and C. J. McGill,
Chemprop: a machine learning package for chemical property
prediction, 2023.

38 A. D. Kaplan, C. Shahi, P. Bhetwal, R. K. Sah and J. P. Perdew,
Understanding density-driven errors for reaction barrier
heights, J. Chem. Theory Comput., 2023, 19, 532–543.

39 C. A. Grambow, L. Pattanaik and W. H. Green, Reactants,
products, and transition states of elementary chemical
reactions based on quantum chemistry, Sci. Data, 2020, 7,
137.

40 K. A. Spiekermann, T. Stuyver, L. Pattanaik and W. H. Green,
Comment on ‘physics-based representations for machine
learning properties of chemical reactions’, Mach. Learn.:
Sci. Technol., 2023, 4, 048001.

41 A. P. Bento and F. M. Bickelhaupt, Nucleophilicity and
leaving-group ability in frontside and backside sn2
reactions, J. Org. Chem., 2008, 73, 7290–7299.

42 Y. Shao, Z. Gan, E. Epifanovsky, A. T. Gilbert, M. Wormit,
J. Kussmann, A. W. Lange, A. Behn, J. Deng, X. Feng,
D. Ghosh, M. Goldey, P. R. Horn, L. D. Jacobson,
Chem. Sci., 2024, 15, 2923–2936 | 2935

https://doi.org/10.26434/chemrxiv.13244906.v1
https://doi.org/10.48550/arXiv.2207.09453
https://doi.org/10.48550/arXiv.2207.09453
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc04411d


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
Ja

nu
ar

y 
20

24
. D

ow
nl

oa
de

d 
on

 1
0/

29
/2

02
5 

12
:5

2:
28

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
I. Kaliman, R. Z. Khaliullin, T. Kuś, A. Landau, J. Liu,
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