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The incorporation of boron—nitrogen (BN) units into polycyclic aromatic hydrocarbons (PAHs) as an
isoelectronic replacement of two carbon atoms can significantly improve their optical properties, while
the geometries are mostly retained. We report the first non-m-extended penta- and hexahelicenes
comprising two aromatic 1,2-azaborinine rings. Comparing them with their all-carbon analogs regarding
structural, spectral and (chir)optical properties allowed us to quantify the impact of the heteroatoms. In

particular, BN-hexahelicene BN[6] exhibited a crystal structure congruent with its analog CC[6], but
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Accepted 23rd October 2023 displayed a fivefold higher fluorescence quantum yield (pq = 0.17) and an outstanding luminescence
dissymmetry factor (|gium| = 1.33 x 1072). Such an unusual magnification of both properties at the same

DOI-10.1039/d35c02685) time makes BN-helicenes suitable candidates as circularly polarized luminescence emitters for
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Introduction

Circularly polarized luminescence (CPL) is the differential
emission of left- (I;) and right-handed (Iz) circularly polarized
light by chiral luminophores.® Recently, CPL-active materials
have demonstrated their immense application potential for
optoelectronics,>* 3D displays,>® switches for data storage,”®
spintronics®'® or chiral sensors."**>

Small organic molecules are particularly suitable as CPL
emitters due to their structural modifiability.” It allows the
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tuning of crucial optical properties like molar absorptivities (¢),
fluorescence quantum yields (¢q) or emission dissymmetry
factors (gum = 2 X (I — Ir)/(Iy, + Iy)), quantifying the degree of
polarization in the emission. Moreover, structure-related
parameters like configurational™ and thermal®® stabilities
towards decomposition are tunable, which is of high relevance
for the processing into functional materials.

Among the various classes of chiral, -conjugated molecules,
helicenes are well-known for their strong optical rotation and
electronic circular dichroism (ECD).'* Carbohelicenes are
chiral, screw-shaped polycyclic aromatic hydrocarbons (PAHs)
with n = 5 ortho-fused benzenoid rings."” Research studies have
especially focused on derivatives of pentahelicene and hex-
ahelicene because they allow chiral resolution at ambient
conditions™ and gram-scale preparation by various synthetic
approaches.”

For assessing the suitability of helicenes as CPL-emitting
molecules, key prerequisites are high |gi.m| values, but also
elevated ¢ and ¢g. To combine these parameters into one, the
CPL brightness factor Bopr, = 0.5 X ¢ X ¢g X |gum| has been
introduced,* allowing to compare the suitability of such lumi-
nophores for potential applications. Planar PAHs typically
display high ¢q values due to electronically allowed m-m*
transitions, but the distorted m-planes of helicenes induce
a significant decrease (¢q = 0.04 for both penta- and hex-
ahelicene). This is a result of accelerated intersystem crossing,
leading to non-emissive triplet states.”® Furthermore, the
dissymmetry factors of carbohelicenes are almost exclusively
below 102 (|gium| = 2.7 x 10~ for penta- and 9 x 10~ * for

© 2024 The Author(s). Published by the Royal Society of Chemistry
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hexahelicene).”»** Consequently, pristine carbohelicenes (Bcpy,
<2 M~ em™") are barely useful as CPL emitters.>

Incorporating main group elements like nitrogen,
oxygen,*? silicon**** or combinations of these (e.g. B-O)* in
PAHs in general can modulate the optical properties signifi-
cantly. However, this also perturbs the molecular architecture
and the estimation of structural and electronic influences iso-
lated from each other is complicated.*

Therefore, the doping with neighboring boron-nitrogen (BN)
units has emerged as a popular strategy especially for planar
PAHSs,*® as it provides isoelectronic and isostructural BN-
PAHs. In such compounds, the disparities in properties are
almost exclusively caused by altered electronegativities of the
heteroatoms,* facilitating the comparison with the parent, all-
carbon CC-PAHs.***

Unfortunately, reports of helical BN-derivatives have
remained scarce,”*” which especially applies to helicenes with
B=N groups in the aromatic backbone.*®** Moreover, experi-
mental studies that compare BN-helicenes with their all-carbon
counterparts are rare. To our knowledge, the work from Nowak-
Krol and Ingleson describes the only non-m-extended B=N-
helicenes so far (Fig. 1, top right).*® Besides a small structural
impact, the most distinctive effect was an amplification of the
radiative decay (¢q = 0.30 for the (mono)BN-pentahelicene, ¢g
= 0.21 for the BN-hexahelicene), compared to the all-carbon
congeners, which were calculated but not synthesized. Never-
theless, this suggests the great potential of this compound
class.

Herein, we present the first non-m-extended penta- and
hexahelicenes BN[5] and BN[6], respectively, comprising two
aromatic boron-nitrogen-containing rings (Fig. 1, bottom). A
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Helicenes with two B<N-units / one B=N-unit (previous work)
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Fig. 1 Top: previously reported BN-penta- and hexahelicenes.
Bottom: structures studied in this work and the demonstrated benefits
of such a twofold BN-substitution.®*
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multi-dimensional comparison with their all-carbon analogs
C(C[5] and C([6] allowed us to gauge the exact influence of the
BN-substitution on structural and (chir)optical properties. Most
strikingly, the BN-substitution led to an outstanding CPL
brightness of BN[6] (Bcpr, = 59 M™' em™") while leaving the
geometrical structure almost unaffected.

Results and discussion
Syntheses

BN-helicenes BN[5] and BN[6] were synthesized via transition-
metal-catalyzed electrophilic cyclizations of (bis)ethynylarene
precursors. These mild conditions®** were chosen to ensure
the integrity of the moderately acidic, N-deprotected 1,2-aza-
borinine building blocks.

Initially, electrophilic benzene- 1 and naphthalene precur-
sors 2, equipped with two (trimethylsilyl)ethynyl substituents,
were synthesized (Scheme 1).** Subsequent Suzuki-Miyaura
cross-coupling reactions with nucleophilic mesitylazaborinine 3
(ref. 54) gave TMS-alkynes 4 and 5 in yields of 72% and 75%,
respectively. Under basic reaction conditions, deprotected
alkynes 6 and 7 were obtained quantitatively.

Our previous study of planar BN-PAHs* showed that six-
membered rings are formed almost exclusively when reacting
the deprotected arylalkynes with PtCl, at 100 °C. Transferring
these conditions to BN-helicenes, however, significantly favored
the competing 5-exo-dig pathway, leading to dibenzofulvene-like
side-products in conversions of more than 40%. Therefore, we
investigated different catalytic systems based on Pt(u), Au(i),
Au(m) and Ru(u) (see ESI, Tables S1 and S27).

In the case of BN[5], the reaction of phenylalkyne 6 with
AuCl; at 100 °C for 24 h provided the highest conversion with
less than 5% endo/exo-side product 8 (see ESI, Table S17).
Derivatization of the latter with piperidine®® and chromato-
graphic separation of the resulting Michael-type adduct even-
tually allowed the isolation of BN[5] in 54% yield.

On the other hand, the cyclization of naphthylalkyne 7 to
BN[6] was achieved using [(p-cymene)RuCl,], and AgSbFs.
Among all catalytic systems tested, this was the only one that
favored the formation of two six-membered rings (ca. 80% of
endo/endo) (see ESI, Table S21). We assume that the reaction
with Ru(u) preferably proceeds via the n'-vinylidene interme-
diate, assisting the nucleophilic attack at the terminal alkyne
carbon.” After heating 7 and the catalysts to 170 °C for 1 h in
mesitylene and purification as for BN[5], BN[6] was obtained in
ayield of 11% (Scheme 1). In contrast to the Ru(u) catalyst, the
use of AuBrPPh; and AgSbF, allowed to selectively synthesize
and isolate endo/exo-derivative 9 (see ESI, Section 2.287).

For the syntheses of CC[5] and CC[6] (phenylethenyl)phen-
anthrene 10 and bis(phenylethenyl)naphthalene 11 were
prepared in total yields of 52% and 18%, respectively. Mallory
photocyclization reactions using UV irradiation at A = 365 nm
in the presence of iodine and propylene oxide gave dibromo-
penta- 12 and dibromohexahelicene 13. Subsequently, mesityl
substituents were installed at positions 2,13 and 2,15, respec-
tively, via Kumada cross-coupling reactions with mesi-
tylmagnesium bromide. Eventually, racemic mixtures of CC[5]

Chem. Sci., 2024, 15, 466-476 | 467
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BN[5]-(CN), ' I9t ;
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Scheme 1 Syntheses of BN- and CC-helicenes. Reagents and conditions: (a) 3 (4.0 equiv.), potassium phosphate (3.0 equiv.), [Pd(dppf)Cl,]
(5 mol%), methyl tert-butyl ether (MTBE), water, 90 °C, 2 d; (b) KOH (2.0 equiv.), MeOH, Et,0, 25 °C, 3 h; (c) 1. AuCls (30 mol%), mesitylene, 100 °C,
24 h; 2. Piperidine, acetonitrile, 25 °C, 1 h; (d) Bromine (2.2 equiv.), DCM, 0 °C, 2 h; (e) CuCN (10 equiv.), DMF, 170 °C, 19 h; (f) 3 (4.0 equiv.),
potassium phosphate (3.0 equiv.), [Pdx(dba)s] (5 mol%), SPhos (10 mol%), THF, water, 60 °C, 17 h; g) 1. [(p-cymene)RuCl,], (30 mol%), AgSbFe
(30 mol%), mesitylene, 170 °C, 1 h; 2. Piperidine, acetonitrile, 25 °C, 1 h; (h) lodine (1.1 equiv.), propylene oxide (500 equiv.), toluene, 365 nm LED,
25°C, 30 min; (i) MesMgBr (3.0 equiv.), [Pd(dppf)Cl,] (5 mol%), 1,4-dioxane, 95 °C, 3 d; (j) lodine (2.2 equiv.), propylene oxide (500 equiv.), toluene,

365 nm LED, 25 °C, 3 h.

and CC[6] were obtained in yields of 82% and 53% over the last
two steps (Scheme 1).

Introducing functional groups onto a pre-existing helicene
scaffold by electrophilic aromatic substitution is highly desir-
able but often demanding. In a 1,2-azaborinine, the uneven
charge distribution renders all carbon atoms distinct in reac-
tivity.”® In particular, the selective electrophilic bromination at
the a-carbon adjacent to boron has been shown to be a viable
starting point for post-functionalizations.**-** This methodology
allowed us to selectively synthesize 3,12-dibrominated BN[5]-Br,
in 75% yield by the reaction of BN[5] with 2.2 equiv. of bromine.
Subsequently, the conversion with an excess of copper(r)
cyanide under Rosenmund-von Braun conditions gave BN[5]-
(CN), in a yield of 62% (Scheme 1). In contrast, the reaction of
C(C[5] with bromine gave the C5,C6-dibrominated adduct.®
Upon heating it to 130 °C, rearomatization occurred and
a mixture of reactant and the C5-brominated derivative was
obtained. This highlights the superior selectivity of BN-PAHSs in
such a reaction (see ESI, Section 2.29%).

468 | Chem. Sci, 2024, 15, 466-476

Structural analysis

Single crystals of the racemic target compounds suitable for X-
ray diffraction analysis were obtained by vapor diffusion of
acetonitrile, methanol, cyclohexane or n-hexane into DCM
solutions of the helicenes.

Comparing the bond lengths within the terminal rings (B-N:
1.426 £ 0.003 A, C1-C2: 1.385 £ 0.003 A, Ad = 3%) showed the
expected, relatively small geometric effect of the BN-
substitution. Moreover, the C-C bond lengths within outer
(1.34-1.38 A) and inner helices (1.43-1.46 A) remained almost
identical, confirming the high two-dimensional iso-
structuralism of carbo- and BN-helicenes.®® On the other hand,
the effect of BN on the spatial configurations of the pentaheli-
cenes was remarkable (Fig. 2). Compared to CC[5] (¢ = 52.4°),
the torsion angle (¢) between the terminal rings (A) was only ¢ =
42.8° in BN[5], pointing at attracting interactions involving the
NH units in close proximity (d (NH---N) = 2.35 A).

This also has implications on the molecular arrangements.
While the packing structures of both compounds consist of

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Solid-state structures as obtained from X-ray diffraction analysis. Thermal ellipsoids are shown at a 50% probability level. Hydrogen atoms
(except for N-H and C1-H) are omitted for clarity. NICS(0) values for the individual rings were calculated at the MP2 (ref. 64)/cc-pVDZ® level of
theory, as implemented in the Q-Chem 6.0 program package.®® C, symmetry was assumed so that angles and distances are given as average

values of both sides of the molecules.

opposite pairs of (P)- and (M)-enantiomers, there is a significant
overlap of the helicene scaffolds (d = 3.59 A between rings C) in
a BN[5] crystal, hinting at the presence of m-m-interactions.
Furthermore, the mesityl groups of each molecule are oriented
almost parallelly (¢ = 7.9°), which leads to a highly ordered
packing arrangement. In CC[5], rings A and B of opposite
molecules are arranged co-planarly but displaced. Also, the
interplanar angle between the mesityl groups is larger (¢ =
36.8°). The structural parameters of BN[5]-(CN), were mostly
comparable with BN[5] (see ESI, Section 3.37).

Both hexahelicenes exhibit much more similar metrics (¢ =
69.1° for BN[6], ¢ = 66.6° for CC[6] between rings A), identical
packing modes (see ESI, Fig. S10 and S1471) and very similar
unit-cell parameters. The absence of additional dipolar inter-
actions in BN[6] indicates that for hexahelicenes, the distant
BN-units do not play a structure-determining role.

Besides the high planarity of the 1,2-azaborinine rings
(averaged ¢ = 2.6° within rings A), aromaticity was clearly
confirmed by nucleus-independent chemical shift (NICS)
calculations (NICS(0) < —3 ppm, Fig. 2).*

Optical spectroscopy

Absorption and fluorescence spectra as well as ¢q and fluores-
cence lifetimes (zq) of the investigated helicenes were acquired
in DCM solutions (Table 1).

BN][5], CC[5], BN[6] and CC[6] revealed comparable absorp-
tion maxima (A,ps = 266-283 nm) with decent molar extinction
coefficients (¢ = 3.4-5.2 x 10* M~ ' cm " see ESI, Fig. S18-S227).
The absorption bands of both hexahelicenes closely resembled
each other with small bathochromic shifts of BN[6] (Ad,ps =
10-15 nm, Fig. 3b). This suggests similar energy orderings of
the differently polarized dipole transition moments.®®* Most
remarkably, the BN-moieties induced a substantial

© 2024 The Author(s). Published by the Royal Society of Chemistry

intensification of the least energetic 'Ly, band, which is associ-
ated with fluorescence® (BN[6]: ¢ = 3300 M~ ' cm ™' at 424 nm,
CC[6]: ¢ = 200 M™' cm™" at 414 nm).”*”* With respect to the
pentahelicenes, the absorption spectra were more different in
shape but both revealed shoulder bands at A,,s = 400 nm. The ¢
value of the lowest-energy transition of BN[5] was intensified by
about an order of magnitude as well (Fig. 3a). This is a typical
effect of BN-doping, rendering the symmetry-forbidden S, — S;
transition of all-carbon aromatics partially allowed.”

The fluorescence spectra of all five compounds consisted of
at least three distinct vibronic bands, and the Stokes shifts, if
determinable, were small (=600 cm ™', Fig. 3). Compared to the
very similar emission bands of the pentahelicenes (1q =
410 nm, Aq = 2 nm for the 0-0 bands), the difference between
the hexahelicenes was slightly more pronounced (1 = 434 nm
for BN[6], g = 423 nm for CC[6]).

Moreover, the bathochromic effect of a twofold BN-
substitution was identified by comparison with the reported
(mono)BN-hexahelicene (Fig. 1, top right, A,ps = 397 nm, g =
419 nm).*® In terms of fluorescence quantum yields, the BN-
helicenes were substantially brighter (pg = 0.10 for BN[5], ¢q
= 0.17 for BN[6]) than the sparsely emissive carbohelicenes (¢q
= 0.04 for CC[5], g = 0.03 for CC[6]). Furthermore, the inten-
sity averaged tq of the heterohelicenes were comparably smaller
than those of the studied carbohelicenes. While the difference
was just 20% for the hexahelicenes, the lifetime of BN[5] (tq =
4.7 ns) was halved compared to CC[5] (tq = 9.7 ns). The increase
of ¢ with a concomitant decrease of tq for BN-helicenes can be
rationalized with a larger emissive rate of these fluorophores
compared to the all-carbon analogs. The influence of the
mesityl-substitution on the optical features of the parent car-
bohelicenes (¢f: hexahelicene: A;ps = 410 nm, Aq = 420 nm, @q =
0.03, tg = 8.4 ns)”® was negligible, emphasizing that the

Chem. Sci., 2024, 15, 466-476 | 469
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Table 1 Experimental, photophysical properties of the investigated helicenes and calculated oscillator strengths f for the lowest-energy

transitions
Stokes shift

Compound Jabs™? [nm] (1072 x ¢ [M~* em ™) 2% [nm] »q" [em™] 70 [ns] f (A [nm])
BN[5] 283 (48.2), 363 (14.7), 383 (12.6) 407, 428 0.10 d 4.7 0.1599 (370)
CC[5] 275 (34.2), 308 (27.0), 336 (14.8), 375 (1.0) 409, 425 0.04 4 9.7° 0.0010 (372)
BN[6] 280 (52.2), 342 (26.3), 401 (3.1), 424 (3.3) 434, 459 0.17 540 7.1° 0.0418 (400)
cCl6] 266 (44.7), 318 (19.1), 390 (0.3), 414 (0.2) 423, 444 0.03 510 8.7 0.0027 (387)
BN[5]-(CN), 313 (28.0), 390 (14.9), 413 (16.6) 424, 446 0.25 630 3.5 0.0053 (415)

“ Measurements performed in DCM solutions at ¢ = 2.4 x 10" t0 4.0 x 10~° M. * Bold values represent intensity maxima. © LED, A.x = 370 nm (BN-
helicenes), 300 nm (carbohelicenes). ¢ Not determinable because the 0-0 transitions were present as shoulder bands (A,ps = 400 nm). ¢ Intensity
averaged values because fluorescence decay consisted of more than one species (see ESI, Section 5.3 for more details).” TD-DFT at the B3LYP”*7/cc-

pVDZ® level of theory.
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Fig. 3 Normalized absorption (continuous lines) and fluorescence
(dotted lines) spectra of pentahelicenes (a) and hexahelicenes (b) in
DCM (c = 2.4 x 107° to0 4.0 x 107> M). Insets show the lowest-energy
absorption (shoulder) bands of the carbohelicenes.

enhancement of the photophysical properties by the BN-unit
should not be limited to this particular substitution pattern.
We further investigated the structural and electronic prop-
erties of the helicenes by time-dependent density functional
theory (TD-DFT) calculations at the B3LYP”*7%/cc-pVDZ® level of
theory, as implemented in the Q-Chem 6.0 (ref. 66) and
Gaussian 09, Rev. B.01 (ref. 77) program packages. For all hel-
icenes, the emissive S; states’” mostly consisted of highest
occupied (HONTO) and lowest unoccupied (LUNTO) natural
transition orbitals (NTOs). Moreover, the carbohelicenes
revealed increased contributions of HONTO—1 and LUNTO+1
(see ESI, Section 7.4, Fig. S311). All NTOs were delocalized over
the PAH scaffolds with little to no involvement of the mesityl-
groups due to their perpendicular orientations. Most notice-
ably, BN-substitution induced a symmetry break of the NTOs of
BN[5] (Cs for HONTO, C, for LUNTO, both are C, symmetric for

470 | Chem. Sci, 2024, 15, 466-476

CCJ[5]). This feature is the cause of the higher ¢q of the BN-
helicenes, because the associated transition is rendered
symmetry-allowed. Therefore, the related oscillator strength of
BN[5] (f = 0.1599) was increased by more than two orders of
magnitude compared to CC[5] (f = 0.0010). Despite the almost
identically shaped NTOs of BN[6] and CC[6], the BN-helicene
still revealed a tenfold increase of f. Overall, these results
rationalize the experimental increase of e in the low-energy
regions.

The change of the optical properties of BN[5] upon installa-
tion of cyano-substituents was remarkable and higher than for
similarly functionalized carbohelicenes:”® BN[5]-(CN), not only
revealed an intensification and a bathochromic shift of the 0-
0 absorption band (AA,ps = 30 nm), but was also the most
emissive compound (¢q = 0.25). In combination with the short
lifetime (tq = 3.5 ns), this indicates a particularly high fluo-
rescence emission rate.

Chiral resolution & kinetics of racemization

The targeted helicenes were resolved into their enantiomers by
high-performance liquid chromatography (HPLC), employing
a chiral stationary phase (CSP). From a practical perspective, the
pentahelicenes revealed a better resolution than the hex-
ahelicenes with baseline-separated peaks (see ESI, Fig. S15 for
chromatogramst). While CC[6] could not be resolved as a result
of its low polarity concomitant with a poor solubility, BN[5]
and BN[6] (enantiomeric excess ee = 99% for both) as well as
BN[5]-(CN), (ee = 94%) and CC[5] (ee = 70%) were collected in
their highly enantiomerically enriched forms.

This enabled the determination of the half-lives (¢;/5;2c) and
activation parameters of enantiomerization. For that purpose,
each enantioenriched pentahelicene was subjected to time-
course ECD measurements at 50, 60 and 70 °C. BN[5] showed
a significantly lower racemization rate (¢;/,rac = 80 min at 60 °C)
than CC[5] (f1/2rac = 20 min). This translated into a Gibbs
activation energy AG* (25 °C) of 25.7 kcal mol ~* for BN[5], which
was higher by more than 1 kcal mol ' compared to CC[5]
(24.3 kcal mol ™", Table 2, for Eyring plots and calculations see
ESI, Section 4.27). Despite the bulkiness of the mesityl groups,
the 2,13 disubstitution had a comparably small effect on the
configurational stability (AG* (25 °C) = 24.1 kcal mol ' for

© 2024 The Author(s). Published by the Royal Society of Chemistry
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pentahelicene).®® In contrast to the pentahelicenes, heating an
enantiopure sample of hexahelicene BN[6] to 200 °C for 14 h did
not induce any racemization as analyzed by (CSP)-HPLC.
Instead, higher temperatures caused a rapid decomposition.

In order to understand the influence of BN- and mesityl-
substitution on the racemization, we calculated the respective
transition states and activation barriers (see ESI, Section 7.27).
Although the absolute theoretical values of AG* (T) were higher
than the experimental ones, a gain in configurational stability
upon BN-substitution was reproduced. We attribute this to the
dipolar repulsions of the opposite NH hydrogen atoms, which
are in significantly closer proximity in the transition state (d =
1.5 A for BN[5]) than in the C,-symmetric ground state (d = 2.2 A
in a crystal). In contrast, the parallelly aligned but distant
mesityl groups in the transition states do not appear to play
a major role.

Chiroptical spectroscopy

Electronic Circular Dichroism (ECD) measurements of the
highly enriched enantiomers throughout resulted in mirror-
imaged spectra (Fig. 4 and Table 2).

In all cases, the correlation with the computed rotatory
strengths Ry allowed us to assign that the absolute configura-
tion of the first fraction from (CSP)-HPLC was (P), which
corresponds to parent penta- and hexahelicenes (Fig. 4).*°

The (P)-enantiomers of BN[5] (A = 393 nm, Aes =
+111 M~ " em™ ') and BN[5{CN), (A = 412 nm, Ac¢ =
+127 M~ ' ecm ™ ") revealed intense, positive Cotton effects (CE) in
the low-energy region. Comparably sharp, negative CE maxima
were located at A = 300 nm. In contrast, the band that repre-
sents the 'L, transition of (P)-CC[5] (A = 399 nm, Ae =
—1.8 M~' ecm™ ") was barely visible (Fig. 4b), which closely
resembles the parent pentahelicene.”> Moreover, the band for
the "By, transition was mirrored as a positive CE at A = 319 nm
(Ae =+152 M ' em™ ).

The ECD spectra of (P)-BN[6] and (mono)BN-hexahelicene
(Fig. 1, top right)*® were similarly shaped, with one strongly
negative CE (A = 285 nm, Ae = —151 M~ ' cm ™" for BN[6], A =
245 nm, Ae = —290 M~ ecm ™" for the reported compound) and
several less intense CE with opposite sign at higher wave-
lengths. As for the absorption and emission maxima, a twofold
BN-substitution induced a significant bathochromic shift of the
whole ECD spectrum (AA = 40 nm).

The experimental absorption dissymmetry factors were
typical of helicenes (|gaps| = 6-11 x 1073, ¢f 7.6 x 107" for
pentahelicene®®> and 9.2 x 10> for hexahelicene,® in DCM
solutions at 25 °C, see ESI, Section 5.41). By means of TD-DFT
calculations, we analyzed the contributions of electric (|p)
and magnetic (jm|) transition dipole moments and the angle
between both (f) on absorption dissymmetries. For helicenes,
the simplified expression g.ps = 4 X |m| x cos(6)/|u| applies.*
Due to the good reproduction of the experimental transition
energies, we made use of the same level of theory as applied
previously, although several recent studies reveal the accurate
prediction of |g.ps| and |gium| values by using long-range cor-
rected functionals (see ESI, Section 7.71).5>%
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Fig. 4 Experimental ECD (continuous lines) and CPL (dotted lines)
spectra in DCM (c = 1.3 x 107> to 4.0 x 10~> M) as well as computed
rotatory strengths (bars outlined in grey). Al was normalized to the
respective global maxima of |giym|-

For BN[5] and BN[5]-(CN),, strongly enhanced transition
dipole moments (= thirtyfold increases of |m| and = tenfold
increases of |p|), compared to CC[5]), were calculated for the
lowest-energy transitions (see ESI, Tables S55 and S567).
However, the favorable, parallel orientations of the transition
dipole moments of CC[5] (# = 0°, ¢f: 114° for BN[5]) balanced
out the BN-induced increase of |m|, so that |g,ps] = 1.0-1.3 X
1072 for all pentahelicenes. With respect to the S, — S; tran-
sitions of the hexahelicenes, both |u| and |m| of BN[6] were
enhanced only by a factor of four, compared to CC[6]. Here, the
more favorably aligned dipole moments result in a considerably
enhanced theoretical absorption dissymmetry.

TD-DFT calculations of the geometry-optimized structures in
the S, states also allowed us to obtain the theoretical lumines-
cence dissymmetry factors |gjum| (see ESI, Table S567). Overall,
the absolute values of ||, |m| and 6 of the S; — S, transition
were comparable with the S, — S; transition, so that |gj,m| =
0.74-1.02 X |gaps|- Although the calculated bond lengths were
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very similar in both electronic states, the disparities in plane-to-
plane angles were more pronounced, leading to deviating
geometries (see ESI, Tables S49-531).

Despite the previously discussed small Stokes shifts (Table
1), this could contribute to the experimental and theoretical
differences between |gaps| and |gium|-

Experimental CPL spectra were obtained and normalized to
the respective maxima of gj,,, (Fig. 4 and ESI, Section 5.51). In
all cases, the sign of the CPL was identical with the sign of the
lowest-energy transition in ECD. All pentahelicenes revealed
comparable luminescence dissymmetry factors (|gjum| = 4-5 X
107?), which is in good agreement with the empirically observed
correlation in helicenes (gjum = 0.61 X gaps) in the case of CC[5]
and BN[5]-(CN),.** Due to the enhanced fluorescence quantum
yields of both BN-pentahelicenes, their CPL brightness factors
were considerably elevated (Bcp, > 10 M~ ' ecm ") compared to
CC[5] (Bcp, = 3.0 M ' ecm™ ).

BN][6] exhibited an outstanding experimental value of |gjum|
= 1.33 x 107?, which is considerably higher than of unsub-
stituted hexahelicene (|gjum| = 9 x 107*).2* In accordance with
that, the theoretical values (|gjum| = 2.3 x 102 for BN[6], |gium|
= 0.6 x 102 for CC[6]) indicate a stronger impact of BN-
substitution on a hexahelicene than on a pentahelicene. In
particular, the much more favorable orientation of the transi-
tion dipole moments in BN[6] (135°, c¢f. 102° for CC[6]) is the
most significant contributor to the dramatically improved
theoretical |gj,m| value.

Compared to several reported helicenes®*® with coordinative
B—N-bonds (|gium| = 0.25-3.5 x 10> and Bcp, <10 M ' em™ 1),
the combination of increased ¢g and |gj,m| values led to a CPL
brightness of Bep, = 59 M~' em™' for BN[6]. This value is
exceptionally high for a non-m-extended, monomeric helicene,
and proves that BN-doping of helicenes is a concept that could
foster the development of potent CPL emitting materials.

Conclusions

In summary, we have prepared and investigated the first
examples of fully conjugated and non-m-extended (bis)BN-
substituted penta- and hexahelicenes. Comparing them with
their all-carbon congeners allowed the precise estimation of the
influence of such BN-doping.

As seen from the solid-state structures, the helix torsion of
pentahelicene BN[5] was significantly smaller than of CC[5].
Owing to a larger spatial separation, this was not the case for
BN[6], resulting in congruent structures of both hexahelicenes.
The impact of BN-substitution on A,,s and Aq was rather small
(A2 = 10-15 nm). However, both the intensities of the low-
energy absorptions as well as the ¢g values were significantly
elevated, peaking at 0.17 (BN[6]) and 0.25 (BN[5]-(CN),).
TD-DFT calculations allowed us to reproduce the causal, largely
increased oscillator strengths of the BN-helicenes, being
attributable to the reduction of symmetry. With respect to the
configurational stabilities, BN[5] (¢1/2rac = 80 min at 60 °C)
racemized four times slower than CC[5], which is possibly due
to NH-repulsions in the transition state.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Mirror-imaged ECD spectra were obtained and, according to
the strengthened low-energy absorptions, the Ae was consider-
ably intensified in this region for the BN-pentahelicenes, as
well. Regarding CPL, the |gj,m| value of BN[6] (1.33 x 102, cf.
hexahelicene: 9 x 107*) was unusually high, as elevated
dissymmetry factors are usually associated with a loss of fluo-
rescence efficiency.”

Taking into account that a selective dibromination of BN[5]
was possible and the boron atoms may be modified with
nucleophilic groups at an earlier stage of the reaction
sequence,” BN-helicenes with tailored push-pull substitution
patterns could be synthesized in the future in order to explore
their potential as efficient CPL emitters.
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