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A machine learning based approach to reaction
rate estimation†
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Chemical kinetic models are vital to accurately predicting phenomena in a wide variety of fields from

combustion to atmospheric chemistry to electrochemistry. However, building an accurate chemical kinetic

model requires the efficient and accurate estimation of many reaction rate coefficients for many reaction

classes with highly variable amounts of available training data. Current techniques for fast automatic rate

estimation tend to be poorly optimized and tedious to maintain and extend. We have developed a machine

learning algorithm for automatically training subgraph isomorphic decision trees (SIDT) to predict rate

coefficients for arbitrary reaction types. This method is fully automatic, scalable to virtually any dataset size,

human readable, can incorporate qualitative chemical knowledge from experts and provides detailed

uncertainty information for estimates. The accuracy of the algorithm is tested against the state of the art

rate rules scheme in the RMG-database for five selected reaction families. The SIDT method is shown to

significantly improve estimation accuracy across all reaction families and considered statistics. The

estimator uncertainty estimates are validated against actual errors.

1 Introduction

Automatic, rapid and accurate estimation of reaction rates is
critical in the development of large chemical kinetic models.
Kinetic models can contain tens of thousands of kinetic
parameters1 and the construction processes require
estimation of many more to decide which reactions are fast
enough to be important. Furthermore, chemical kinetic
models are only increasing in size requiring estimation of
more and more rate coefficients. Rate based automatic
mechanism generation relies even more on accurate estimates
as the quality of these estimates affects the species and
reactions included.2–5

While quantum chemistry calculations can be used to
estimate reaction rates to high accuracy, they are not fast and
not yet fully automatic. Although computers continue to
become faster, high accuracy quantum chemistry calculations
can take days to weeks to run. Furthermore, there are often
difficulties in finding the transition state of a particular

reaction, requiring human intervention, making the process
even slower.

Much progress is being made on automatic high accuracy
rate calculations based on transition state finding algorithms
such as Kinbot, nudged elastic band, HFSP, AFIR, and string
methods6–12 and workflow codes such as ARC, Pynta, KinBot,
and AutoMech.6,9,13,14 However, for the moment these
methods are computationally expensive and not entirely
robust, with only limited benchmarking.15,16 But even if these
methods were robust, it would probably be impractical to use
them to compute all the rate coefficients of interest (though
perhaps this assessment could change after exascale
computers become widely available).

Our group has used these automated methods to
construct a large dataset of DFT transition state (TS)
geometries17 and a corresponding dataset of CCSD(T)
barrier heights.18 These datasets have been used to train
machine learning models that provide useful initial
guesses at TS geometries19 and estimates of barriers for a
certain class of reactions of small closed-shell molecules.20

The neural-net modeling methods we developed for these
tasks19,21,22 have some promise, but are still far from
perfect; among other problems they require huge training
sets of accurate transition states or barriers, and at
present the uncertainties in each prediction is unknown.
This latter problem is important because even if the
average prediction error is acceptably small, a significant
percentage of the rate predictions can be completely
wrong, with no warning to the user.
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Fast accurate kinetics estimation for reaction mechanisms
is a difficult problem. Fundamentally, the 2-D structures of
the reactants (typical of reaction mechanisms), the atom
mapping, the type of reaction and the thermodynamic
information for the reactant and product must be mapped to
a temperature dependent reaction rate. The problem is very
different from thermodynamic property prediction.

Thermodynamic properties typically have very linear
relationships with their molecular structures due to the fact
that the thermodynamic properties (Hf298, Sf298, Cp(T)) of a
molecule are approximately equal to the sum of the
thermodynamic contributions of its individual
substructures.23 One can try a similar approach to estimate
the thermochemistry of transition states,24 but it requires a
much larger set of substructures. Unlike thermochemical
properties, reactions both have many different types and are
much more difficult to calculate. This means that it requires
larger datasets to train rate estimation algorithms and the
available datasets are much sparser. These properties
necessitate particular care when designing algorithms for
estimating the rates of chemical reactions.

The most traditional approach to quickly estimating
reaction rates in mechanism construction is rate rules
(RR).2,4,25 Abstractly a rate rule maps all reactions with
specific substructures around the atoms participating in the
reaction to a specified reaction rate. These substructures for
hydrogen abstraction might look something like R–CH2–R*(·)
H–CH3 + H*–CH2–R. A reaction is estimated using the rate
rule corresponding to the most specific substructures it
matches that a rate rule is known for. These rate rules and
associated substructures are usually written by hand. The RR
system used by the reaction mechanism generator (RMG)
software uses an improved version of this that allows use of a
set of training reactions.2,4 In this formulation for a given
tree structure (see Fig. 1) training reactions descend down
the tree (following the substructures they match) and become
additional rate rules at the most specific node they match.
This allows rules to be generated from training data given a
fixed tree structure. The RR approach suffers from two
primary disadvantages: (i) the rules must be constructed
manually, taking substantial human time and effort to

update and improve and (ii) the accuracy of RR depends on
the assumed tree structure.

Other approaches have used reaction group additivity.24,26–29

Reaction group additivity works much like thermodynamic
group additivity except that instead of adding linear
components from specific atoms to estimate thermodynamic
parameters linear components are added from specific
substructures of the reaction mapping to estimate kinetic
parameters. The substructures follow a set of manually
written trees for each reaction type and then the contribution
to each kinetic parameter at each substructure is fit linearly
to a set of reaction rates. Most often the kinetic parameters
used are the logarithm of the components of the modified

Arrhenius form log(A) + n log(T) − Ea

RT
, where A, n, Ea are the

Arrhenius parameters, R is the gas constant and T is the
temperature. The performance of reaction group additivity is
in general mixed. When applied to limited regions of
chemical space that are well covered with data, good
performance can be achieved.24,26,28 However, so far when
applied to large chemical spaces where the data is more
sparse, such as the training set for RMG's estimators,
performance has been poor compared to RR.29 Additionally,
reaction group additivity much like RR must be manually
formulated and the accuracy is limited by that formulation.

Most recently neural nets, decision trees and genetic
algorithms have been applied to predicting kinetic
parameters.17,20,30,31 However, these efforts have so far
focused on either activation energies or on rates at a single
temperature. So far these models are not suitable for large
scale temperature dependent rate estimation. Furthermore,
these methods tend to require large amounts of data, are
rarely human readable or adjustable, and often lack
uncertainty estimates.

The uncertainties in rate coefficients have been studied
extensively. In the early days of kinetics individual
uncertainty factors were estimated based mostly on reviews
of available experimental data.32 As this area developed, the
importance of properly accounting for correlations in rate
coefficients and experimental data was established.33 Later
work developed techniques such as spectral methods for
quantifying these correlated uncertainties properly.34–36

Detailed work has also been done on quantifying the
uncertainty in rate coefficients based on quantum chemistry
calculations.37–39 The temperature dependence and correct
form of these uncertainties has also been studied in
detail.40

Ideally a kinetics estimator would be nonlinear, scalable
to different dataset sizes (as the amount of available data
varies dramatically for different types of reactions), fast,
accurate, capable of uncertainty estimation, automatically
trainable, human readable, and able to incorporate
qualitative chemical knowledge. However, each of the prior
methods discussed here lacks at least one of these
characteristics. For this reason we present a new approach,
the subgraph isomorphic decision tree (SIDT), a rate
estimator with all of the above desirable properties.

Fig. 1 Example of a subgraph isomorphic reaction template
decision tree.
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2 Theory and implementation

In the following, we will discuss in detail our rationale for
approaching kinetics estimation using decision trees. We will
then introduce the structure of SIDT's and discuss the
algorithm we use for training them. Furthermore, we will
describe how to estimate kinetics from an SIDT and how to
predict associated uncertainties in that estimate. We will also
discuss further important details such as regularization,
scaling and performance optimization.

2.1 Structure

Modern estimators that can be retrained automatically on
new datasets are generally the realm of machine learning.
While graph convolutional neural networks are quite popular
for predicting molecular properties there are a number of
downsides for this particular application. Neural networks
require large training datasets to get accurate results. Little
research has been done particularly in kinetics estimation to
work out how much data is required. It seems unlikely that
datasets smaller than 300 reactions could be used to train a
viable neural network. Successful published studies have
used datasets containing more than 10 000 reactions.17,20,30

Most reaction families in the RMG database are estimated
from fewer than 20 reactions, and the largest families only
contain around 3000 reactions.3,4 For this reason a decision
tree estimator was investigated. Decision trees can work with
almost any training set size and have the additional
advantage of generally being much easier for humans to
interpret than neural networks.

Decision trees are classifiers that start with an item at a
single root node with no parents. At each node the item is

checked against each descendant “child” node and moves to
the first child node that it matches and so on until it reaches
a node where it doesn't match any children. That final node
becomes its classification.41 In traditional decision trees the
item might be a fingerprint and “matching” might be
determined by checking if a specific component of the
fingerprint is zero or is greater than 1. In our context the
items are reactions, essentially, molecular graphs of
reactant(s) and product(s) with atom mapping (e.g.
condensed graph of reaction (CGR) format)22,42 and matching
can be done by subgraph isomorphism checks. See Fig. 1 for
one example of a subgraph isomorphic reaction template
decision tree.

2.2 Training strategy

Such decision trees have been used within RMG for many
years.43 However they are tedious to construct, update and
maintain and their accuracy is dependent on the knowledge of
the kineticists that build and maintain them. In order to
automatically construct an optimal tree one could imagine
searching the space of all possible decision trees. However,
typically it is infeasible to do this on a given dataset due to the
high dimensionality of the problem.41 It is standard instead to
iterate starting from a single root node adding the new node
that best optimizes the tree each iteration. The tree generation
process typically ends when some termination criterion related
to the number of tree nodes or tree depth is satisfied.

This greedy optimization approach in our case starts to look
like the diagram in Fig. 2. One starts with an initial tree
(possibly only containing a single node) and a set of training
reactions classified to the bottom nodes of the initial tree. We

Fig. 2 Decision tree estimator generation algorithm.
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then choose any node in the tree with more than one training
reaction and attempt to add new nodes that best divide those
reactions into groups with similar rate estimates. This involves
generating a set of possible new nodes and selecting the best
extension node. After the new node is selected it is added to
the tree and the training reactions are descended down to the
most specific node they match. Then the iterative procedure is
continued with a new node.

2.3 Generating extension nodes

Each iteration the algorithm must generate a set of group
structures subgraph-isomorphic to the structure at the
chosen node. An example of extension generation is
displayed in Fig. 3. The root (first) structure in the tree is

user specified. Consider a simple structure: R–C*–?R where *
denotes an atom that participates in the reaction in a way
that makes it unique, ? denotes a bond that has an unknown
order and R denotes an unspecified atom. Most real reaction
templates are more complex, but this example structure is
convenient for illustrating important concepts. Structures
that would match this include the following: C*H3–CH3,
CH3–C*H2–NH2, NH2–C*HCH2, CH3–C*H(–CH3)–OH, and
C*H2–CH3.

In this context it is relatively easy to start listing off ways

to make atoms and bonds in R–C*–?R more specific. We call
these specification extensions. We allow the definition of
the element of an atom or the order of a bond. We also
need some way to specify the presence of a radical which

we add by allowing extensions to specify the number of
unpaired electrons on an atom. One could also imagine
situations where the charge on an atom or the number of
paired electrons is important. We allow one last
specification extension that specifies if an atom is in a ring
or not; the significance of this will be discussed later in
this paper.

To ensure we can divide arbitrary sets of reactions we
need to be able to create new bonds and atoms in the
structures. For this reason we define (1) an internal bond
creation extension that forms bonds of undefined order
between atoms present in the structure and (2) an external
bond creation extension that forms a bond of undefined
order between an atom in the structure and a new R!H (any
atom but H).

There are a couple of nuances here. The first is that while
one could define an extension that adds an unattached
unspecified atom to the structure it is unlikely to provide
more useful splitting than an attached unspecified atom. By
extending with R!H rather than R we have made it impossible
to add hydrogens to an atom in the structure. However, this
only means that the way we divide reactions that have
hydrogens in those locations from those that do not is by
defining bonds to R!H that will only match those without
hydrogens. In particular this also significantly reduces the
number of extensions generated; which will be quite
important later.

So far we have described individual one-step extensions
we can apply to a structure, but we have not determined how

Fig. 3 Extension generation example. Includes only nodes that split the reaction set.
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we should concatenate them to generate the considered set
of extensions. Naively one might consider applying
extensions in N-steps where the set of one-step extensions is
generated off the original structure, and then extensions off
those structures and so on eventually combining them all
into one set of possible extensions. However, even beyond
making the number of structures combinatorically large this
approach is insufficient to divide all sets of reactions.

There are a few important things to understand in these
cases. First, when a selected extension is compared with the
set of reactions there are three possible results: it matches
none of the reactions, it matches some of the reactions or it
matches all of the reactions. Second, specification extensions
as defined in this study are only useful for purposes of
extension selection if they match some of the reactions.
Third, bond creation extensions are important when they
match some or all of the reactions. Consider our structure

from before R–C*–?R and suppose our reactions can be
represented: CH3–C*H2–CH2–CH2–CH3, CH3–C*H2–CH2–OH
and CH3–C*H2–CH2–CHO. Using one-step extensions this
set of reactions cannot be divided because every one-step
extension either matches all or none of the reactions. If we
were to only have CH3–C*H2–CH2–CH2–CH3 and CH3–C*H2–

CH2–CHO in fact two-step extensions would be insufficient
as well. This situation is common since training reaction data
are sparse. It is particularly important in reactions that
involve rings.

In order to get around these issues and run efficiently we
start by generating one-step extensions from the original
structure. If a bond creation extension matches all of the
reactions the identified tags from that iteration are applied
to it and then it is treated like the original structure and first
step extensions are generated for it and so on. Each
specification extension that matches none of the reactions is
tagged for future reference and not generated again. For

example if H–C*–?R is found to not match any structures

under R–C*–?R we don't generate the atomic extensions of

that particular R again when we examine R–C*–?R–?R!H. After
this recursive procedure is run, all generated extensions that
match some, but not all, of the reactions are combined to
form the set of considered extensions.

Note that when we recurse on the bond creation
extensions we do recheck specification extensions that
matched all reactions before, even though it might seem like
this would be true for all descendent structures. This is
because a specification extension that matches all reactions
can in some cases stop matching reactions as the structure is
extended. Consider the node C*–R!H with reaction templates
HO–H2C*–NH–CH3 and H2C*(–NH2)–O–CH3. Naturally the
algorithm will extend C*–R!H to C*(–R!H)–R!H–R!H.
However, by the time C*(–R!H)–R!H–R!H is generated the
algorithm will have tagged atom extensions on the R!H atoms
bonded to C* and found that both N and O match all of the
reactions. If each generalization between the group and its

reactions was fixed (only N or only O in the case above) it
would be safe to assume a specification extension that
matched all reactions would match all reactions for all
subgraph isomorphic groups that matched a reaction in the
set because it would be the same. However now that the third
R!H is added specifying the atom type of one of the R!H
atoms bonded to C* is the only way to divide the two
reactions. If we were to not recheck specifying atom types for
those atoms it would be impossible to divide the reaction set.

2.4 Choosing the best extension

The best extension to add to a rate tree should be the one
that improves estimation the most after adding it. In an ideal
situation one would fit all of the data on each side of the
split to a model of choice for nodes in the tree and then run
leave-one-out cross validation at a variety of temperatures to
determine the differences in errors. However, our model
parameters (which will be discussed later) are not analytic
functions of the data, so such an analysis would be very
computationally expensive.

Using a variety of temperatures is also problematic.
Quantum chemical rate calculations are much more accurate
at higher temperatures than lower temperatures and
experimental rates are often only accurate in a specific
temperature range. As a result the RMG database we draw
our training sets from contains many rates that aren't
accurate at low or very high temperatures, however accuracy
for most rates is good in the vicinity of 1000 K.

For these reasons in this work we choose extensions based
on accuracy improvement at 1000 K assuming errors in the
rate coefficient are lognormally distributed. We choose the
extension that minimizes

∏ = N1σ1 + N2σ2 (1)

where Ni is the number of reactions in partition i and σi is
the standard deviation in log(k(1000 K)) within partition i.
We therefore choose the extension that clusters reactions
with similar rates into the same partitions. It should be
relatively easy to extend this to more complex schemes in the
future. We can continue to extend the tree in this manner
until each leaf node contains a single training reaction.

2.5 Extending the tree: complementary nodes

Once an extension is selected it is added to the decision tree
under its parent node. If the extension does not create any
bonds it is usually possible to define a complementary node
that matches any reaction that matches the parent, but does
not match the new node. For example if an R is defined as
being a H the complement would be the same structure with
R as R!H. If such a complementary node can be defined it is
also added under the parent. Then reactions are descended
from the parent to any of the new nodes they match.
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Adding complementary nodes improves readability.
Suppose we have a parent node R–C*–?R!H, we select a first
child node H–C*–?R!H and we do not define a
complementary node. Since we still have reactions at the
parent node we need to generate a second child node. For
example we might generate R–C*–?R!H–?R!H a structure that
isn't mutually exclusive with the other child. However,
because the first child comes first in the tree no structure
that matches it will be matched to the second child. This
means that the R in reactions matching the second child will
never be H so the second child would be more clearly written
as R!H–C*–?R!H–?R!H. Adding complementary nodes when
possible makes the generated tree structure easier for a
human to read.

2.6 Estimating rates from the tree

Now that we have a tree we need to define precisely how we
use that tree to estimate rates. We define a rule at each node.
In order to do this we take all the reactions that match a
given node (so the top node would have all reactions) and fit
them to a Blowers–Masel interpolant.44 This interpolant
developed in Blowers and Masel 2000 correlates ΔHr with Ea
in a way that is much more accurate across the range of ΔHr

values than other more typical forms such as Evans–
Polanyi.44 The interpolant is defined by the equations

Ea ¼

0if ΔHr < −4E0
a

ΔHr if ΔHr > 4E0
a

else
wo þ ΔHr

2

� �
Vp − 2wo þ ΔHr
� �2

V2
p − 4w2

o þ ΔH2
r

8>>>>>><
>>>>>>:

(2)

Vp ¼ 2wo
wo þ E0

a

wo −E0
a

(3)

wo ¼ wB þ w F

2
(4)

k Tð Þ ¼ ATne
−Ea
RT (5)

where ΔHr is the heat of reaction, wB is the bond dissociation
energy of bonds breaking and wF is the bond dissociation
energy of bonds forming, E0a is referred to as the intrinsic
barrier to reaction, and A and n are Arrhenius parameters.44

This interpolant is controlled by four parameters: A, n, E0a
and wo. While one can fit all four of these parameters to set
of rate coefficients, the rate isn't very sensitive to wo, which
can cause problems during fitting.44 For this reason wo was
calculated using eqn (4) with wB and wF estimated from
tabled bond dissociation energy values for each reaction. The
remaining parameters: A, n, E0a were fit using weighted non-
linear least squares to the rate coefficients for each training
reaction in the temperature range of 300–1500 K

A; n; E0
a ¼ argminA;n;E0

a

XNrxns

i

XNT

j

RTj

ΔEij

� �2

log ki Tj
� �� �

− log k Tj; A; n; E0
a

� �� �� �2
(6)

where Eij is the estimated error in log(ki(Tj)), Nrxns is the
number of reactions, NT is the number of temperatures, k(T;
A, n, E0a) is the Blowers–Masel fitting form from the above
equations.

There are errors in ki(Tj) values, whatever their source, but
some ki(T) values are very accurate. It is therefore important
to assign different uncertainties ΔEij to different data.
Considering the known inaccuracies in the experimental
techniques several approaches have been employed to
estimate uncertainties. One approach is for experts to
consider all the (mostly experimental) data about individual
reactions.32 Another is to further constrain ki(T) using system
measurements (e.g. flame speeds).33–35 If the estimate is from
theoretical calculations one can try to bound the errors due
to each approximation, or more commonly compare the
present reaction to other similar reactions, with known
errors, computed using the same technique.37,38 RMG
currently has a mix of uncertainty estimates, some very
accurate but many quite rough.

If E0a < 0 the Blowers–Masel interpolant is no longer valid
and we simply take averages of the parameters in our log-
modified-Arrhenius expressions for each training reaction
instead

A ¼ exp
1

Nrxns

XNrxns

i

log Aið Þ
 !

(7)

n ¼ 1
Nrxns

XNrxns

i

ni (8)

Ea ¼ 1
Nrxns

XNrxns

i

Eai (9)

where Xi denotes the corresponding modified Arrhenius
parameter of reaction i.

2.7 Estimating uncertainties from the tree

Estimating useful uncertainties for the input reactions, the
interpolant, and particularly for the k(T) estimate for a new
reaction where no data is available, is quite challenging. Most
earlier attempts32–34,40 at estimating errors in rate estimates
have been fairly heuristical, and many focused on not
overestimating uncertainties for purposes of uncertainty
analysis of full kinetic models.45,46 Here we present an
automated approach focused on representing the distribution
of uncertainties of each k(T) estimate.

We are interested in the distribution of Δlog(ki) =
log(kmodeli) − log(ktruei). For an individual training reaction
rate coefficient krxni

we assume that
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log krxnið Þ∼ N log ktrueið Þ; σ2rxni

� �
(10)

where N denotes the normal distribution, ktruei is the true rate
coefficient for reaction i and σ2rxni

is the variance of log(krxni
)

based on the uncertainty in the training reaction. We assume
that the Blowers–Masel estimate of a particular reaction i,
kmodeli is distributed as

log kmodelið Þ∼ N log kbest fitið Þ; σ2modeli

� �
(11)

where σ2modeli is the variance associated with errors in the the

Blowers–Masel parameters and kbest fiti is the output the
Blowers–Masel model would give without any errors in the
parameters. This hypothetical errorless Blowers–Masel is
what would be achieved by fitting to an arbitrarily large
number of training reactions with σrxni

= 0 that match the
associated node. Such an ideal model would have σmodeli, but
still have error associated with the limitations of the Blowers-
Masel fit form causing kbest fiti ≠ ktruei. Taking the difference
between the two distributions we have

Δlog kið Þ∼ N log kbest fitið Þ − log ktrueið Þ; σ2rxni
þ σ2modeli

� �
(12)

giving us the distribution for Δlog(ki). However, this
expression isn't very useful. We can roughly estimate σ2rxni

,

but the other parameters are unknown and since this
distribution is specific to reaction i we cannot draw samples
from the node to estimate the parameters. It does, however,
outline two primary sources of error in the quantity:
limitations in the models ability to represent the chemical
space and the errors in the training data. In general we
expect there to be two limits. At lower nodes there will be
fewer training reactions, but a much smaller chemical space.
In this small chemical space limit we have kbest fiti ≈ ktruei
and since the smaller chemical space is easier to fit with
proper weighting we expect σ2modeli to be reaction independent

and small giving us

Δlog kið Þ∼ N 0; σ2rxni
þ σ2model

� �
(13)

a dramatically simpler expression where σ2model is the reaction
independent model variance. In this limit because the mean
is zero we expect the rule to be more accurate than the
individual training reactions used to fit it. In this case we can
take advantage of the fact that

Δlog kið Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2rxni

þ σ2model

q ∼ N 0; 1ð Þ (14)

and compute σ2model by solving

E
Δlog kið Þ

σ2rxni
þ σ2model

" #
¼ 0 (15)

However, this approach requires us to separate the small
σ2model from large values of σ2rxni

. If high accuracy values for

σ2rxni
are available this is possible to do accurately. However,

in this work we do not have sufficiently accurate values for
σ2rxni

and to ensure our estimates are reasonable we estimate

all uncertainties in the other limit. This will likely cause
overestimation of uncertainties at nodes that have very low
uncertainties.

In the other limit at higher nodes there will be more
training reactions and a larger chemical space. In this case
we expect log(kbest fiti) − log(ktruei) to be large. In this case we
expect the errors in kmodeli to dominate. This allows us to
neglect σ2rxni

, although they are still necessary to use as

weights. Note that when errors are properly weighted the true
scale of σ2rxni

is determined by the smallest value among the

set of reactions. In this case however the simplification only
gets us to

Δlog kið Þ∼ N log kbest fitið Þ − log ktrueið Þ; σ2modeli

� �
(16)

to get a distribution we can sample we have to assume there
is a general non-reaction dependent σ2model associated with
the chemical space and likely a small bias μmodel giving us

Δlog(ki) ∼ N(μmodel, σ
2
model) (17)

note that this analysis turns a lot of the bias error for
individual reactions (log(kbest fiti) − log(ktruei)) into an overall
variance σ2model. These limits are best differentiated by the
criterion

σ2model

σ2rxnmin
≫ 1 (18)

where σ2model is the model variance in the large chemical
space limit and σ2rxn min is the variance of the most accurate
training reaction matching the node. If the criterion is true it
is best to use the large chemical space approach if
σ2model

σ2rxnmin
∼ 1 or smaller it is best to use the small chemical

space approach. Although as noted above we do not have
sufficiently accurate training uncertainties to accurately
implement the small chemical space approach. Our
implementation of the large chemical space approach is
described below.

First, we estimate the distribution of errors in the training
data. Training reactions within the RMG-database come from
many different sources. However, the vast majority are based
on quantum chemistry calculations. Rate expressions from
quantum chemistry calculations primarily have four sources
of error: errors in the computed frequencies, errors in the
internal rotor treatment, errors in the computed energies and
errors in fitting the rate coefficients to a functional form (e.g.
Arrhenius equation). While the fourth is commonly reported
because it is easiest to estimate it is rarely significant. The
errors are most often dominated by the error in the
computed energies. While one could envision complex
schemes of accounting for calculation uncertainties typically
only the level of theory is recorded in the RMG-database. For
this reason we map RMG-database reactions' ranks
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(identifiers associated with source types: experiments,
calculations, and estimates) to our own estimates of 2-sigma
uncertainties in the Arrhenius Ea. For example a CBS-QB3
calculated rate (a typical level of theory in the RMG training
data) would be associated with a 2.5 kcal mol−1 uncertainty
while the least reliable data source, a “rule of thumb”
generalization, would be assigned a 14 kcal mol−1

uncertainty.47 We express our errors as Δlog(k) rather than Δk
because Δlog(k) ∼ ΔEa.

Once we have estimates of the uncertainties in the
training data, we can look at estimating the uncertainties in
the predictions of our new tree-based rate estimator. For
similar reasons to building the tree we do this analysis at
1000 K. However, under suitable assumptions (for example
all of the error being associated with Ea) it is relatively easy to
reasonably extrapolate the uncertainties generated to other
temperatures. For each node with more than one training
reaction we compute the leave-one-out errors for the model
predictions for reactions that match that node against the
training reactions at 1000 K.

ΔLog kið Þ ¼ Log
kmodel rxns−ið Þ

ki

� �
(19)

where kmodel(rxns−i) is the prediction of the model without
training reaction i and ki is training reaction i. We compute
the variance in the training data assuming the error is
associated with Ea

1
wi

¼ σ2rxni
¼ σEi

RTref

� �2

(20)

where σEi is the standard deviation in the Ea of the ith training
reaction calculated from the rank errors, σrxni

is the standard
deviation in log(ki), R is the gas constant and Tref is the reference
temperature. Weighting each leave-one-out error by the expected
uncertainty in the data point due to how its Ea was computed,
we compute the weighted mean model error μmodel

μmodel ¼
w·ΔLog kð ÞX

i

wi
(21)

which one might expect to be small for nodes with a large
number of training reactions if the leave-one-out errors are
equally likely to be positive or negative. The weighted variance
of the leave-one-out prediction errors can also be obtained in
this manner

σ2model ¼
w· ΔLog kð Þ − μmodel

� �2� �
X
i

wi −

X
i

w2
iX

i

wi

(22)

where σmodel is the standard deviation in the model estimate of
log(k). In general σ2model is expected to be large when ΔLog(k) −
μmodel is large because the chemical space is large and/or
training reactions are inaccurate, and when Nrxns, the number of
training reactions, is small. σ2model will be small when ΔLog(k) −

μmodel is small because the chemical space is small or training
reactions are accurate, and asymptote down to a constant value
when Nrxns is large. We also define

μdatam ¼
PNrxnsm

i
Log kið Þ

Nrxnsm
(23)

where μdatam is the mean of the data at node m and Nrxnsm is the
number of training reactions at node m. Taking the difference
between a parent and one of its child nodes μdataparent − μdatachild
provides us with some measure of whether the chemical space
spanned by the child is representative of the parent. If this
number is small in magnitude the node may be better
represented by the parent that will have more training reactions
to fit to, if it is large in magnitude the parent is likely a poor
representation. In addition to μmodel, σmodel and μdatam we also
provide the number of reactions it was fit to and the name of
the node, which is important for accounting for correlation
between uncertainties.45

We now have the capability to estimate reaction rate
coefficients and uncertainties (based on μmodel and σ2model) at
each node. This in fact provides us with many different
estimates for a given k(T): one for each node in the tree a
reaction matches. Naively one might think it would be best
to estimate each reaction using the most specific node it
matches, however, this is not always the case. At each node
there is error associated with ability of the Blowers–Masel
model to accurately represent all the reactions at that node,
the error in the training reactions, and also error associated
with the ability to accurately estimate the Blowers–Masel
parameters from the available training reactions. At nodes
near the top of the tree there are many reactions making it
possible to accurately calculate the Blowers–Masel
parameters, however, the chemical space spanned can be
quite large making it difficult for a single Blowers–Masel
model to represent all of the involved reactions. At nodes
near the bottom of the tree the chemical space spanned is
much smaller and the Blowers–Masel model can better
represent the space, but there are fewer reactions to fit to
making the Blowers–Masel fit sensitive to errors in the
training data.

Now that we have uncertainties it is possible to use them
to choose the best node to estimate from. If we think an
estimate from a certain node is less accurate than estimating
from its parent we can estimate from its parent instead.
However, this analysis needs to balance several different
kinds of error: the error expected from the model at that
node, the error expected from the model at the parent node,
and the error associated with using the parent node to
estimate at the child node. The later may seem unimportant,
but it's a very important consideration particularly in the
dataset we use. This is because rate rules especially at large
scale are manually constructed to generate accurate chemical
kinetic models. This means that a sensitive reaction may be
similar to many training reactions in the database, while an
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insensitive reaction may only be similar to one or two. This
means we may have cases where moving up a node
dramatically changes estimates. To account for these errors
we add the difference in the data mean values of the
distributions to the bias (model mean) of the parent
distribution. Assuming errors in log(k) are distributed
normally and given that for a half-normal distribution the

expected value is

ffiffiffiffiffiffiffiffi
2σ2

π

r
we can compare the expected errors.

Taking an upper bound on the means gives us the criterion

μmodelnodej jþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2modelnode

π

s
> μdataparent − μdatanode
� �

− μmodelparent

			 			
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2σ2modelparent

π

s (24)

where node and parent denote the uncertainty distribution
properties associated with each node. If eqn (24) is true it is
better to use the parent node when estimating k(T) and
uncertainties. In most cases μmodelnode and μmodelparent are small
relative to the other terms. Near the top of the tree when
many training reactions are available accuracy is limited by
the fact that the Blowers–Masel cannot represent the set of
reactions well and we expect that σmodelnode < σmodelparent and
that μdataparent − μdatanode is large in magnitude implying that
reactions are better estimated by child nodes if they match
them. Near the bottom of the tree where there are fewer
training reactions accuracy is limited by the quantity and
quality of training reactions and usually σmodelnode > σmodelparent

so often reactions are better estimated at the parent nodes.
However, while typically μdataparent − μdatanode will be smaller in
this regime it can be very large when a segment of chemical
space containing reactions with very different rate
coefficients is only represented by a small number of training
reactions making some reactions more accurately computed
from a child than a parent.

In the literature there are arguments that rate coefficient
errors should be treated log-uniformly instead of log-
normally.48 However, in practice we found when attempting
to represent larger normal distributions based on small
samples (2–4 data points) that treating these samples as
distributed normally significantly improved agreement with
the histograms over uniform when the samples were fairly
representative and was roughly equally as bad as treating
them uniform when they were not. However, this assumption
is only made for purposes of ascending the tree during rate
estimation and our uncertainty outputs are of course not
distribution specific.

2.8 Regularization and embedding qualitative chemical
knowledge in estimators

Fundamentally regularization is choosing between two
different estimators that have similar accuracy on the data
they were trained on.41 It is an important component in
machine learning for avoiding overfitting or having a model

that fits the training data well, but performs much more
poorly on other data. In most contexts discussing the space
of models with similar training accuracy is complex.
However, for our subgraph isomorphic decision trees it is
fairly simple.

Earlier we discussed that during tree generation we
tracked specification extensions in each structure down the
tree that matched all of the reactions matching that node.

Suppose again we have the node R–C*–?R and suppose our
training reaction templates are CH3–C*H2–CH2–CH2–CH3,
CH3–C*H2–CH2–OH and CH3–C*H2–CH2–CHO. It is clear
here that converting R– > C for both R's in the node will not
affect the training reactions that match this node and
therefore not affect training errors. However, if we were to
use this tree to estimate reactions represented by the
templates H–C*H2–CH3 and CH3–C*H3 whether they
matched the node and thus how they were estimated would
be changed if one were to convert R– > C for those R's.

Typically a model would be regularized by setting aside a
test set of reactions and then tuning optimization
hyperparameters according to heuristics to improve
performance on the test set. This is problematic for small
datasets particularly when the estimators' accuracy may depend
on the presence of key reactions in the training set. Here we
can simply do so by moving along these “regularization”
dimensions that do not affect the training split without
sacrificing any accuracy on reactions similar to the training set.

Even more beautifully these regularization dimensions are
human readable. This means that we can do more than just
regularize while preserving training accuracy. An expert can
embed their chemical knowledge within the estimator by
adjusting the regularization algorithm. Suppose we have the

node C*–?R and we have training reaction templates: C*H3–

CH2–CH3, C*H3–O–CH3 and C*H2O. A good safe default
regularization choice is to make each node as specific as the
reaction set that matches it so you might get post
regularization C*–? [C, O]. However, suppose the expert does
not think the identify of that atom is important they could
choose to keep that atom general or at least extend it to
another atom type. This can be particularly helpful for small
datasets.

The tree generation algorithm is even robust to mistakes
on the part of the expert. In the last case if the identity of
that atom is important you would expect the algorithm to
extend the tree with C*–?O or C*–?C. The expert's choice of
regularization won't affect estimation in the tree for any
reaction hitting this split or below. This means that if
enough data is present to learn the difference these
substructures make on rate estimation any potential
mistakes in the chemical knowledge embedded in the
regularization will be ignored.

2.9 Performance and scaling

If our generated tree was a binary tree with perfectly even
splits we would expect to have the number of nodes double
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until we had Nrxns nodes. The partial sum for the number of
nodes in this idealized tree with k layers is 2k+1 − 1 since our
last layer is 2k = Nrxns this implies that our number of nodes
should be approximately 2Nrxns, which agrees well with
observed tree node numbers, and scales, O(Nrxns), linearly
with our number of reactions. However, the amount of work
needed for each node can vary significantly, but has two
primary expensive operations: making new groups which
scales O(Nextensions) and identifying whether extensions map
the reactions at the node which (noting that the number of
reactions at a node scale with the total number of training
reactions) scales O(Nnode rxnsNextensions), where Nnode rxns is
the number of reactions at a node that scales linearly with
Nrxns and Nextensions is the number of extensions generated at
a node. This means that for large enough Nrxns the overall
naive algorithm will scale quadratically with Nrxns.

In practice the algorithm works quite efficiently serially on
datasets that tend to have low numbers of heavy atoms or are
small. For these datasets training times using the naive
algorithm are at most an hour. This heavy atom dependence
comes from its impact on Nextensions. Larger numbers of heavy
atoms make it possible to have nodes where all the reactions
involve large species that are nearly identical around the
reactive sites. In these extension generation cases Nextensions

can combinatorically explode from repeatedly generating
bond extensions that need to be extended themselves
resulting in Nextensions being several orders of magnitude
larger than is typical. This becomes problematic for a couple
of RMG families that contain 3000–6000 reactions a
significant subset of which have many heavy atoms.

Fitting the Blower–Masel interpolants could also be
limiting in the overall process of generating an estimator.
Fitting an interpolant scales roughly O(Nrxns) so naively
running the fitting at every node will scale roughly
quadratically. However, one can set a maximum number of
reactions Nmax and using stratified sampling based on rate
values at a chosen temperature to select a representative

subset of Nmax reactions to fit to. Fitting on this subset of
reactions is O(1) making the overall fitting process scale
linearly with the number of reactions. However, we have not
found this process to be limiting in practice so this approach
is not implemented here.

We have developed techniques that enable parallelization
of tree generation, avoid computational explosion in
extension generation and enable linear scaling with respect
to Nrxns.

2.9.1 Parallelization. The two dominant processes in
estimator training are the construction of the tree and the
fitting of the Blower–Masel interpolants. The later process is
embarrassingly parallel so we will focus on discussing the
structure of the former.

The construction of subtrees that don't intersect with each
other is embarrassingly parallel, but are dependent on the
shared nodes above. The parallelization is handled
recursively. Processes have an assigned subtree and a specific
number of processors at their disposal. If a split divides the
set of reactions into large enough chunks that it is worth
sending information to another processor it will generate a
subprocess that is assigned an associated subtree in the split
and an appropriate number of processors for the size of that
subtree. When a process completes its subtree it sends the
subtree back to the process that spawned it and so on until
the entire tree is constructed.

2.9.2 Cascade algorithm. Unfortunately, a lot of time is
spent generating the top nodes of the tree before
parallelization can be properly taken advantage of. This is
because if a tree has 3000 reactions at the top node the
algorithm needs to run subgraph isomorphism checks
between each proposed extension and 3000 reactions instead
of perhaps 10 reactions further down the tree and occurs
because of the aforementioned quadratic scaling. However,
the top nodes are identifying the substructures that most
affect the rate across the whole set of reactions. These
particular substructures should be identifiable from a smaller

Fig. 4 Diagram of cascade algorithm.
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training set particularly ones with simpler reactants.
Furthermore, if we can effectively bound the size of the
training set being used to test extensions the algorithm will
scale linearly with Nrxns.

The cascade algorithm operates on the principle that we
feed data to the training algorithm as needed to extend the
tree properly instead of all at once. A diagram of the
algorithm is available in Fig. 4.

We first sort the reactions based on their number of
atoms and divide them into batches of a specified size. The
first iteration the tree is trained on the first batch like
normal. After the Nth tree generation the N + 1th batch (if it
exists) is added and descends down the tree. Then the tree is
pruned, removing all nodes that have more than a set
fraction of reactions from the latest batch, and then
reoptimized with the new reactions. Once there are no
batches left it terminates after optimization.

2.9.3 Extension generation adjustments. Since the
primary bottleneck is in extension generation it makes
sense to examine ways to reduce the amount of work that
needs done during this step. There are a lot of different
ways this might be done and this choice is mostly about
picking the approach that provides the most speed up
while decreasing accuracy as little as possible. We
approached this by capping the number of recursions
extension generation is allowed to do if a splitting
extension has already been found and additionally capping
the number of extensions allowed in a recursion.

Normally if a bond formation extension matches all
reactions the resulting structure is sent to be extended itself.
This ensures that every set of reactions can be split. However
it is very expensive because computing extensions for each
new structure is roughly as expensive as the original
extension generation step and the number of extensions has

a tendency to combinatorically explode. Even worse, unless
these extensions are linking back to another reaction site or
forming a ring they typically won't have much of an affect on
the reaction rate. This means they won't be picked and will
likely end up regenerated entirely when extensions are
generated a level down the tree.

We added the ability to cap the recursion depth for
extension generation as long as a splitting extension has
already been found. Tests capping the depth at one recursion
on intra-molecular hydrogen transfer actually showed a
small, but measurable decrease in error (except for median
error that increased by only a factor 1.04) suggesting this has
relatively minimal impact on accuracy.

Table 1 Comparison of accuracy of RMG rate rules (RR) and the subgraph isomorphic decision tree (SIDT) estimator for three different RMG families
oxygen substitution (O-Sub), intra-molecular hydrogen transfer (intra-H), internal endocyclic radical addition (Int-Endo) and radical addition (R-Add)

Estimator
O-Sub
RR

O-Sub
SIDT

Intra-H
RR

Intra-H
SIDT

Int-Endo
RR

Int-Endo
SIDT

R-Add
RR

R-Add
SIDT

H-Abs
RR

H-Abs
SIDT

Median absolute error factor 10.3 5.28 8.94 3.56 9.67 1.73 2.25 1.88 5.11 4.05
MAE factor 18.5 10.1 38.1 10.9 24.7 2.95 3.07 2.34 16.4 8.02
RMSE factor 61.7 27.6 575 79.3 98.3 7.07 5.59 3.51 89.7 23.7
2-Sigma error factor 3876 770 333 000 6320 9710 50.1 31.3 12.3 8040 564

Table 2 Reaction templates

Oxygen substitution

Intra-molecular hydrogen transfer

Internal endocyclic radical addition

Radical addition

Hydrogen abstraction

Fig. 5 Histogram of errors for oxygen substitution reactions. Dark
green is overlap. Trained on 256 reactions.
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We also added the ability to end splitting attempts if the
recursion is returning more than a set number of extensions.
This robustly prevents combinatoric explosion. One can
certainly contrive counter examples where this choice might
be problematic. However, in practice with a cap of 100
extensions this has only been observed to affect nodes with
only two reactions present.

3 Results and discussion
3.1 Rate estimation

Estimators were generated using the training sets for RMG's
oxygen substitution, intra-molecular hydrogen transfer,
internal endocyclic radical addition, radical addition and
hydrogen abstraction families. These reaction families were

chosen primarily because they have larger training sets and
higher variances in their rate coefficients. On Github, the
associated database state is available on the sidt_paper
branch of the RMG-database and the associated code state
used is available on the sidt_paper branch of RMG-Py. All of
these except internal endocyclic radical addition and radical
addition are their own reverse and the reversed reactions
were used as a part of the training set. Note that we count
these reversed reactions when giving the number of reactions
in the training set. The templates for these reactions are
available in Table 2.

All RMG families tested except for hydrogen abstraction
and radical addition were trained on the vanilla algorithm
capping the number of recursions at two and capping the
number of recursion items at 100 in less than two hours.
Hydrogen abstraction and radical addition were both trained
in less than 7 hours using the cascade algorithm with a batch
size of 1000, a reoptimization fraction of 0.25 and fitting the
interpolants in parallel on six cores. The default
regularization scheme was used for all families.

Reaction family error factors based on leave-one-out cross
validation are available in Table 1. Histograms of leave-one-
out errors are available in Fig. 5–8. The subgraph isomorphic
decision tree (SIDT) estimator is a significant improvement
over RMG's RR scheme in every category for every reaction
family and in a number of cases approaches the dataset error
limits. We can see both significant improvements in the
estimation of reactions RR already predicts well and very
large improvements in the estimation of reactions not
predicted well by RR. Differences in prediction performance
on different reaction families are best understood as result of
different overall variances in the rate coefficient values,
different quantities of training reactions, different training
reaction accuracies and different overall chemical scopes.

Oxygen substitution is a particularly useful test case
because the training set is entirely CBS-QB3 calculations. In

Fig. 6 Histogram of errors for intra-molecular hydrogen transfer
reactions. Dark green is overlap. Trained on 422 reactions.

Fig. 7 Histogram of errors for intramolecular endocyclic radical
addition reactions. Dark green is overlap. Trained on 843 reactions.

Fig. 8 Histogram of errors for radical addition reactions. Dark green is
overlap. Trained on 2892 reactions.
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this case the improvement is pretty consistent: about a factor
of 2–5 in all errors. Given that the median absolute error
achieved by SIDT is 5.28, which corresponds to roughly 3.34
kcal mol−1 in terms of energy, and the training set assuming
a lognormal distribution only has a median absolute error of
about 0.84 kcal mol−1 this set provides a good idea of
performance improvement away from the training set limit.
It also shows the performance of this method on small
training sets.

Intra-molecular hydrogen transfer is a reaction family of
more practical interest than oxygen substitution. The training
set is mostly CBS-QB3 calculations, but integrates some DFT
calculations and literature estimates. The accuracy
improvements mostly decrease for this family across 2-sigma
errors, RMSE errors, MAE errors to median absolute errors
implying that the accuracy improvements on reactions not
predicted well by RR are much larger than those for reactions
that are predicted well by RR.

Internal endocyclic radical addition is another important
reaction family and is one of RMG's larger families with 843
reactions. The training reactions are mostly CBS-QB3
calculations, with a handful of G3 calculations and literature
estimates. An enormous improvement in estimation for this
family is visible in Fig. 7. The 2-sigma improvement is larger
than the other improvements this time as well (∼190×), but the
improvement is more consistent across the other metrics.
Impressively the median absolute error for this family in terms
of energy corresponds to 1.09 kcal mol−1 while the training set
median absolute error assumed all CBS-QB3 calculations should
be about 0.84 kcal mol−1. This amounts to about a 10% error
against the training set at 1000 K. This suggests that there is
little room for improvement over the SIDT estimator on the
best-estimated 50% of reactions in this family.

Radical addition is an important reaction family and this
is reflected in the size of its 2892 reaction training set. This
training set however is mostly estimates based on a reaction

group additivity scheme, except for about 400 reactions that
are mostly calculations at the CBS-QB3 level of theory or
better. However, it is clear that these estimates must at least
have low uncorrelated errors because once again we can see
that SIDT is achieving a median accuracy of 1.25 kcal mol−1

not much larger than the 0.88 kcal mol−1 limit of a pure CBS-
QB3 dataset. The associated histograms are available in
Fig. 8. While the improvements for this family are smaller this
seems likely to be a result of the fact that the accuracy of this
family is being limited by the quality of the training data.

Hydrogen abstraction is another important reaction
family. Much like radical addition the training set is mostly
estimates from a group additivity scheme along with CBS-
QB3 or better calculations and some estimates. The
comparison histogram is available in Fig. 9. The
improvements are more similar to those in intra-molecular
hydrogen transfer being greatest for 2-sigma error and

Fig. 9 Histogram of errors for bimolecular hydrogen abstraction
reactions. Dark green is overlap. Trained on 6170 reactions.

Fig. 10 Histogram of normalized errors for the oxygen substitution
reactions. The uncertainties in rate rules (purple) are taken from Gao
et al. 2020.45 Ideally at high sample sizes the histogram should
become a normal distribution.

Fig. 11 Cumulative histogram of the probability that the uncertainty
estimate is less than the actual leave-one-out error. The rate rules
uncertainties are from Gao et al. 2020 and both uniform and normally
distributed uncertainty models from that work are included. The new SIDT
method (blue) slightly underestimates the true errors by this measure.
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gradually decreasing across RMSE error, MAE error and median
absolute error. However, in general the lower median accuracy
for both RR and SIDT and the low improvement in median
accuracy relative to the other smaller families suggests that
either the training set is less accurate or the estimation problem
is simply more difficult for hydrogen abstraction.

3.2 Uncertainty estimation

Examining the accuracy of uncertainties is significantly more
difficult than that of predictions. A histogram of errors in
log(k(1000 K)) normalized by their uncertainty distribution
parameters is available in Fig. 10. The SIDT uncertainty
estimates approach the ideal standard normal distribution
much closer than the heuristical uncertainties from Gao
et al. 2020.45 Here the SIDT is able to achieve a mean and
standard deviation of 0.09 and 1.21 respectively compared to
−0.172 and 3.30 from the heuristics.

A cumulative histogram of the probability of errors is
available in Fig. 11. This plot is a bit more difficult to interpret.
Uncertainty models above the red “ideal” line are overpredicting
the uncertainties while those under the line are underpredicting
uncertainties. Along the x-axis the histogram is excluding
reactions with larger and larger errors normalized by their
predicted uncertainty. From this plot we can conclude that while

Fig. 12 Histogram of expected correlated and uncorrelated errors for
oxygen substitution reactions.

Table 3 Mean and standard deviation of the normalized errors for the
SIDT uncertainties. The ideal values are 0.0 and 1.0 respectively

Reaction class O-Sub Intra-H Int-Endo R-Add H-Abs Ideal

Mean 0.09 0.14 −0.08 0.21 0.03 0.0
Std 1.21 1.48 1.47 1.04 1.19 1.0

Fig. 13 Histograms of normalized errors. Ideally at high sample sizes the histogram should match the standard normal density function.
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all methods underpredict uncertainties in this family the SIDT
uncertainty model underpredicts by significantly less than the
heuristics from Gao et al. 2020.45

A histogram of the expected correlated and uncorrelated
errors for oxygen substitution reactions is shown in Fig. 12.
As one might expect for a tree-based estimator, some of the
errors are correlated and some uncorrelated.

The normalized error results for SIDT for the other
reaction classes are available in Table 3 and Fig. 13. All of the
reaction classes have normalized standard deviations under
1.5, however, the larger families (radical addition and
hydrogen abstraction) achieve values much closer to 1.0. The
cumulative histograms for SIDT for the other reaction classes
are available in Fig. 14. While the error estimates for intra-
molecular hydrogen transfer and bimolecular hydrogen
abstraction reactions are close to ideal the SIDT often
underestimates the true uncertainties for bimolecular radical
addition and intramolecular endocyclic radical addition
reactions.

4 Conclusions

We have presented a machine learning based estimator
automatically trainable from an arbitrary set of reactions.

This estimator is highly scalable from very small to large
dataset sizes and is easy to update. In spite of the use of
machine learning the estimator is equally human readable
and human manipulable as the RR scheme it is compared
against. It can naturally embed qualitative chemical
knowledge from experts to improve estimation. Additionally,
it incorporates accurate uncertainty estimation and provides
properties of the uncertainty distribution that enable the
information to be used in many contexts. The SIDT estimator
has demonstrated significant accuracy improvements over
the state of the art in most cases and measures and has been
demonstrated to approach the accuracy limits of the dataset
in some cases.

While the presented technique learns reaction rates that
occur as a function of specific sites on a molecule, the SIDT
approach is relatively easy to extend to whole molecule
properties. One simply needs to define an appropriate
summation scheme and interpolant, a new objective
function, and a technique for picking which nodes to extend
first (as unlike in the current scheme the order in which
nodes are extended may matter). The remaining machinery
remains the same.

As we look forward to the future of kinetics and other
property estimators it is important to keep in mind the needs

Fig. 14 Cumulative histogram of the probability that the uncertainty estimate from SIDT is less than the actual leave-one-out error.

Reaction Chemistry & EngineeringPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 6
:5

8:
53

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3re00684k


React. Chem. Eng., 2024, 9, 1364–1380 | 1379This journal is © The Royal Society of Chemistry 2024

of mechanism builders and the kinetics community as a
whole. Having high accuracy today is convenient, but even
more important is the ability to easily improve and extend
the estimator in the future. The method presented here
provides the user with uncertainty estimates to help
determine what can be and needs to be improved, human
readability to determine how to improve the estimator, and
scalability and automatic training to easily update the
estimator. We hope to provide a new standard for what
mechanism builders should expect from their property
estimators.
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