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of catalytic reactions†
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Catalytic reactions play a central role in many industrial processes, owing to their ability to enhance

efficiency and sustainability. However, complex interactions between the categorical and continuous

variables leads to non-smooth response surfaces, which traditional optimisation methods struggle to

navigate. Herein, we report the development and benchmarking of a new adaptive latent Bayesian

optimiser (ALaBO) algorithm for mixed variable chemical reactions. ALaBO was found to outperform other

open-source Bayesian optimisation toolboxes, when applied to a series of test problems based on

simulated kinetic data of catalytic reactions. Furthermore, through integration of ALaBO with a continuous

flow reactor, we achieved the rapid self-optimisation of an exemplar Suzuki–Miyaura cross-coupling

reaction involving six distinct ligands, identifying a 93% yield within a budget of just 25 experiments.

Introduction

The optimisation of chemical reactions plays a pivotal role in
addressing critical global challenges, such as reducing the
environmental impact of waste generated during
manufacturing processes.1 Significant steps towards achieving
a more sustainable future can be taken by maximising
resource efficiency and minimising the formation of
hazardous by-products.2 Moreover, within the pharmaceutical
industry, process optimisation can reduce the production
costs of essential medicines, enabling greater accessibility for
vulnerable populations in low-income countries.3

Reaction optimisation involves systematically fine-tuning
the various parameters of a chemical reaction to achieve the
desired product outcomes. One-variable-at-a-time (OVAT) is a
traditional optimisation approach, whereby individual
variables are altered while keeping others constant to observe
the effect on the reaction. Although simple to perform, this
method often fails to capture interactions between variables,
and is susceptible to bias from chemists' intuition.4 In
contrast, high-throughput screening (HTS) approaches
typically involve exhaustively exploring combinations of
reaction conditions to identify the global optimum. However,
chemical reactions are examples of expensive-to-evaluate
functions, as conducting experiments to evaluate

performance requires significant time and costly reagents.
Therefore, ongoing research is focused on the development
of more efficient optimisation strategies that reduce the
number of required experiments.5

Recently, there has been an increase in the development
and application of machine learning methods for
optimisation of chemical reactions.6–15 Self-optimising
platforms leverage automation and robotics to rapidly
conduct experiments suggested by optimisation algorithms,
thus accelerating process development.16,17 For example,
Taylor et al. explored the use of multi-task Bayesian
optimisation (MTBO) to efficiently optimise previously
unseen C–H activation reactions.18 Data from previous
optimisation campaigns of similar reactions was used to
inform and accelerate the optimisation of reactions with
differing substrates. However, this method becomes less
effective as the difference in reactivity of the substrates
increases, highlighting a need for efficient single task
optimisers when there is no suitable a priori information
available.19

Most examples of self-optimisation have focused on
continuous variables due to their ease of handling in
traditional mathematical formulae and algorithms. However,
this reveals a major limitation as categorical variables can
have a significant effect on the performance of a chemical
reaction. One approach to overcome this challenge is to
convert categorical variables into continuous representations.
For example, Lapkin et al. demonstrated optimum solvent
selection for an asymmetric hydrogenation reaction, where
the solvents were input as a set of molecular descriptors.20

Although this method can provide a model which describes
the relationship between categorical variables, it relies on the
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selection of appropriate molecular descriptors which can
require extensive preliminary data collection to deduce.

To remove this necessity, Bourne et al. reported the
development of a mixed variable multiobjective optimisation
(MVMOO) algorithm, where categorical variables were
retained in the optimisation domain by using novel distance
metrics based on Gower similarity.21 However, the target of
multiobjective optimisation techniques is the identification
of the trade-off curve between conflicting performance
criteria, which typically require up to four times the number
of experiments compared to their single objective
counterparts.22 Whilst this provides useful information in
late-stage process development, the additional expense
required can be undesirable in early-stage discovery where
yield is often the primary objective. Although Bayesian
optimisation toolboxes have been applied for single objective
mixed variable self-optimisation,7–9,13,14 the absence of a
systematic and chemically-motivated comparison of these
techniques makes algorithm selection a challenging task.23–26

Herein, we describe the development of a new single
objective adaptive latent Bayesian optimiser (ALaBO) for
reactions involving continuous and categorical variables. The
performance of the algorithm is benchmarked against
current state-of-the-art open-source Bayesian optimisation
packages, using five different case studies based on
simulated kinetic data of catalytic reactions. The self-
optimisation of a Pd-catalysed Suzuki–Miyaura cross-coupling
reaction is demonstrated by integration of ALaBO with an
automated continuous flow reactor platform.

Results and discussion
Adaptive latent Bayesian optimiser (ALaBO)

Bayesian optimisation is a probabilistic approach for
efficiently optimising complex and costly problems. By
leveraging Bayesian inference and constructing a surrogate
model, samples are taken to iteratively guide the search
towards promising regions. This is achieved through
optimisation of an acquisition function, which balances the
exploration of areas of uncertainty with the exploitation of
available information. Traditional approaches require the
user to predefine the hyperparameter, ε, which controls the
trade-off between exploration and exploitation. In cases
where a priori information is inadequate, this often leads to
insufficient or excessive local searching.

For optimisations requiring physical experimentation, the
consequences of selecting a poor value for ε can be
significant. For example, this can result in the need to run
multiple optimisation campaigns which are time-consuming,
costly, and infeasible in cases where reagent supplies are
limited. Adaptive expected improvement (AEI) attempts to
overcome this limitation by dynamically controlling the
explore-exploit trade-off throughout the optimisation. This
disconnects the quality of the results from the setting of ε,
creating a ‘one shot’ technique.27 Indeed, AEI was found to
outperform most static ε models for the camelback

minimisation problem,27 and we have successfully applied it
to the Bayesian self-optimisation of continuous variables in a
telescoped flow process.10

To enable optimisation of systems with mixtures of
continuous and categorical variables, we have combined AEI
with latent variable Gaussian process modelling (LVGP) to
create ALaBo.28 In this approach, a 2D latent variable
representation of the space is created by mapping the levels
of each categorical variable to a set of numerical values. This
requires the estimation of 2mj − 3 parameters, where m is the
number of levels of each categorical variable, j. Optimisation
of these parameters is performed using maximum likelihood
estimation. Notably, this approach mimics the behaviour of
real physical systems, where the effect of categorical variables
on the response can be described by a set of underlying
quantitative variables. An advantage of LVGP is that the
different level combinations of categorical variables are
described by a single continuous response surface, enabling
them to be handled using standard numerical Gaussian
process (GP) modelling techniques with unmodified
covariance functions.

Mathematical details of the algorithm are provided in the
ESI,† and an open-source implementation of the algorithm is
available on GitHub (https://github.com/adamc1994/ALaBO).

Benchmarking performance

Traditionally, the performances of optimisation algorithms
are compared using test set libraries containing synthetic
functions with artificial landscapes of varying complexity.29

However, this performance does not always translate well to
real-world applications. For chemical reaction optimisation,
it would be more informative to test algorithm performance
on chemically-motivated virtual benchmarks.23–26 Therefore,
the performance of ALaBO for optimising mixed variable
catalytic reactions was evaluated using five in silico case
studies proposed by Jensen et al.30

The parameter space was equivalent for all case studies
(Scheme 1), consisting of three continuous variables
(residence time, catalyst mol%, temperature) and one
categorical variable (catalyst) with eight levels [eqn (1)]. Each
case study was designed to represent a catalytic reaction with
different characteristics, thus providing a diverse test set
(Table 1). This was achieved by varying the catalyst-specific
activation energies of a bimolecular reaction [eqn (2)], and
the introduction of a potential side reaction ([eqn (3)], case
3), product decomposition ([eqn (4)], case 4) and temperature
dependent catalyst deactivation (case 5). Values for the
kinetic parameters are provided in the ESI.†

In contrast to the original paper, the definition of the
optimisation objective was modified to remove the nonlinear
constraint on the product yield, as self-optimisations are
seldom performed in this fashion. Rather, a scalarised
objective function balancing the product yield with catalyst
turnover number (TON) was formulated [eqn (5)], where TON
was defined as the ratio between the desired product and

Reaction Chemistry & Engineering Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
6:

54
:5

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://github.com/adamc1994/ALaBO
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3re00476g


310 | React. Chem. Eng., 2024, 9, 308–316 This journal is © The Royal Society of Chemistry 2024

catalyst concentrations. The yield and TON with respect to
the desired product, R, were determined on each iteration by
solving the corresponding rate equations. The relative
weightings for yield and TON were selected to provide similar
response surfaces to the original case studies.30 This was
validated by performing separate global optimisations for
each catalyst across all five case studies (see ESI† for details).

The algorithm's performance was compared against two
Bayesian optimisation toolboxes: Dragonfly31 and
ProcessOptimizer.32 Under their default settings, both
Dragonfly and ProcessOptimizer use GPs as surrogate
models. ProcessOptimizer utilises expected improvement (EI)
as the acquisition function, which is optimised by computing
the function at randomly sampled points. In contrast,
Dragonfly uses an adaptive sampling strategy to choose
between different acquisition functions (UCB, EI, TS, TTEI)
on each iteration. The GP hyperparameters are then tuned in
a similar fashion, where either maximum likelihood or
posterior sampling is chosen at every iteration.

These algorithms were selected as they are open source
and can be operated in ask-tell mode, which enables
straightforward integration with automated experimental
platforms. Furthermore, both have recently been applied to

the self-optimisation of chemical reactions.6,7,9,11,13 Tuning
of the algorithm settings on a case-by-case basis is
impractical, and minimising the number of optimisation
campaigns required is highly desirable. Therefore, these
algorithms were operated under their recommended default
settings for the purpose of this comparison. In addition, as
catalysts cannot be ordered without knowing the relative
importance of their molecular descriptors, they were treated
as nominal categorical variables rather than discrete integers.

The starting point chosen for an optimisation can have a
profound effect on algorithm performance. In this case, Latin
hypercube (LHC) sampling was used to generate three data
points with respect to the continuous variables, which were
then evaluated for each of the eight catalysts for a total of 24
samples. Given the relatively low number of categorical
variable levels in these cases, initial samples were collected
for each level to prevent potential bias towards or against
specific levels arising from unbalanced data. However, it
should be noted that this can lead to a large initial cost when
there are multiple categorical variables with many levels in
the optimisation problem.21 To capture the effect of variation
in LHC sampling, a different LHC was generated for each
run. However, to ensure fair benchmarking, the same set of
LHCs were stored outside of the testing process and used for
all algorithms and case studies.29

For chemical reaction optimisation, there are two key
performance measures: (i) speed of convergence – the
number of experiments required to find the optimum; (ii)
robustness – the variance between repeat searches. To assess
these criteria, each algorithm was run 10 times per case study
with an experiment budget of 100, including initialisation.
The performance of each algorithm could then be visualised
and compared using optimisation progress plots, displaying
the average of the running maxima and 95% confidence
intervals across all runs (Fig. 1).

Notably, both ALaBO and Dragonfly were able to
consistently identify solutions within 1% of the true optima
across all five case studies. In contrast, ProcessOptimiser was
only able to achieve this for one out of the five test problems
(case 4) within the same experimental budget. This was due
to a significantly slower rate of improvement, which often
did not improve for many iterations. Scrutiny of the reaction
conditions explored revealed that ProcessOptimiser was
performing excessive local searches around the current best
point. Hence, only minor adjustments to the variables were

Scheme 1 Formulation of the general optimisation problem used for
the five catalytic case study simulations: parameter space, reaction
equations and objective function. tres = residence time, T =
temperature, Ccat = catalyst mol%, R = desired product; S1 & S2 =
undesired by-products.

Table 1 Summary of the specific characteristics for each catalytic case study simulation, including the optimal reaction conditions and responses

Reaction Properties Optimum

Case Catalyst effect kS1 kS2 tres T Ccat Cat. Yield TON f(x)

— — — — (min) (°C) (mol%) — (%) — —

1 Ea1 > Ea2–8 =0 =0 10.0 110.0 0.500 1 90.4 180.8 4.6775
2 Ea1 = Ea2 > Ea3–8 =0 =0 10.0 110.0 0.500 1, 2 90.4 180.8 4.6775
3 Ea1 > Ea2–8 >0 =0 10.0 81.9 1.522 1 54.9 36.1 3.9012
4 Ea1 > Ea2–8 =0 >0 2.2 110.0 1.380 1 36.8 26.6 3.5243
5 Ea1 > Ea2–8 if T < 80 °C =0 =0 10.0 80.0 0.500 1 93.8 187.5 4.7141
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made on each iteration, rather than exploring the design
space to find the global optimum. As this algorithm utilises
an EI acquisition function, this suggests that the default
value of the ε hyperparameter was set to strongly favour
exploitation. Indeed, this setting was found to be
unfavourable for reaction optimisation and highlights the
limitations of using acquisition functions which require
predefined hyperparameters.

Previous approaches using EI have suggested
incorporation of an ε changeover, where the algorithm
switches from an exploratory to an exploitative state after a
predefined number of experiments.9 In contrast, we generally
observed ALaBO to initially conduct a focused search over the
continuous design space using the best catalyst identified
from the LHC, followed by a more exploratory search over the
remaining levels of the categorical variable (see Fig. S2,† for

Fig. 1 Optimisation progress plots comparing algorithm performance for each of the catalytic case study simulations. Plots show the average
running maxima and 95% confidence intervals across 10 separate runs with different LHC initialisation conditions.
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example). The advantage of this is the ability to rapidly
identify solutions which would be satisfactory for most
applications, without having to collect extensive amounts of
preliminary data. Additional experiments can then be
conducted to further improve or validate the current best
point if required.

With the exception of case 4, ALaBO had a faster
convergence speed compared to Dragonfly, and is on average
1.4 times faster at identifying a solution within 1% of the
true optima. This observation could be explained by the
adaptive sampling strategy used by Dragonfly to choose
between different acquisition functions. This strategy initially
samples all acquisitions with equal probability, and
progressively favours those that are better performing.31

However, as the performance of each acquisition is problem
dependent, this selection process will often result in slower
progress during the initial iterations.

The relative robustness of the approaches was determined
by comparing the magnitude of the 95% confidence intervals
across all runs (Fig. S3†). Ideally, only one optimisation
campaign would be required for a chemical reaction,
therefore smaller values are desirable. Based on this, ALaBO
was found to have the greatest reliability over multiple runs
for all case studies. This can be further illustrated by the
results from case 5, where selection of the optimum catalyst
is significantly more challenging, due to its temperature-
dependent deactivation. In this case, ALaBO and Dragonfly
had 100% and 70% success rates for optimum catalyst
identification respectively.

It should be noted that there are likely other algorithmic
contributions beyond the acquisition functions which will
affect performance (e.g., covariance functions). Nevertheless,
the results of this study clearly indicate that ALaBO has
superior accuracy, convergence speed and reliability
compared to other open-source Bayesian algorithms currently
used for mixed variable chemical reaction optimisation. As a
result, we conducted further simulations using ALaBO to
investigate its performance using different initialisation
strategies and batch sizes.

Choosing initialisation strategies for Bayesian
optimisation is a non-trivial task, as it requires a balance
between efficiently using resources while gathering sufficient
data to create a robust model. To identify the most resource-
efficient strategy, we compared the use of different LHC sizes
(three or five sampling points per catalyst) against a single
centre-point (CP) per catalyst (Fig. S4†).33 Remarkably, the
size of the initial dataset had only a small effect on the
subsequent speed of convergence towards the optimum in
most cases. As a result, optimisations using CP initialisation
required on average 21 and 28 fewer total experiments
compared to LHC sizes of three and five respectively.

The batch size refers to the number of experiments
evaluated in each iteration. In the context of self-
optimisation, experimental efficiency can be improved by
increasing the batch size, which enables reactions to be
performed in parallel with analysis of the previous run.

However, larger batch sizes rely on less well-informed
predictions, as models are updated less frequently. Therefore,
batch size must be selected to strike a balance between
convergence speed and experimental efficiency. To assess the
effect of batch size on reaction optimisation, we compared
batch sizes ranging from one to four for each case study
using the CP initialisation strategy (Fig. S5†). When a batch
size of greater than one is used, the algorithm iteratively
generates single suggestions by updating the model with the
predicted responses, and then combines them to create the
batch. The batch of experiments are then evaluated, and the
actual values used to refit the model. For cases 1 and 2, the
expected trend was observed, where convergence speed
reduced with increasing batch size. However, for cases 3 to 5,
where the optima are not located at a boundary of the design
space, the effect of batch size on convergence speed was
much less significant, with no clearly observable trend.

As a batch size of one had either comparable or superior
convergence speed, this clearly represents the most reliable
method for identifying the optimum, particularly in cases
where the number of experiments is limited by reagent
availability. Furthermore, the higher convergence speed often
outweighed the theoretical increase in experimental
efficiency with respect to overall optimisation time. For
example, for case 1, batch sizes of one and four required 27
and 39 experiments respectively to locate a solution within
1% of the true optimum. Assuming an average reaction time
of 5 min and an analysis time of 10 min, this corresponds to
total optimisation times of 405 min and 439 min for batch
sizes of one and four.

Self-optimisation of a Suzuki–Miyaura cross-coupling

To demonstrate the application of ALaBO to real-world
problems, we integrated the algorithm with a continuous
flow reactor platform and performed an automated self-
optimisation of an exemplar catalytic reaction. Optimisation
in continuous flow has numerous benefits, including greater
control of reaction conditions, and access to an extended
operating window (e.g., higher temperatures) which enables
faster rates of reactions.34 We selected the Pd-catalysed
Suzuki–Miyaura cross-coupling as a case study, due to its
extensive use in the synthesis of pharmaceutical compounds,
agrochemicals, and various functional materials.35

The coupling of bromobenzene 1 and
4-methylphenylboronic acid 2 was chosen to allow the
desired cross-coupling and undesired homocoupling
pathways to be distinguished. The yield and TON with
respect to 4-methylbiphenyl 3 were optimised using the same
weighted objective function as the simulations [eqn (5)], and
a similar design space consisting of three continuous
variables (time, Pd mol%, temperature) and one categorical
variable (ligand) with six levels (Scheme 2). A variety of
dialkylbiaryl phosphine ligands (DavePhos, XPhos, SPhos,
CyJohnPhos) and bidentate phosphine ligands (dppp, dppf)
were selected to enable a comparison between different
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classes of ligand. All other reaction parameters, including the
solvent mixture, base, and reagent stoichiometries, were
selected and fixed according to previous studies of Suzuki–
Miyaura cross-couplings in flow.36

Informed by the results of the simulations, the
optimisation was initialised using the CP strategy and set to
a batch size of one. The budget for the optimisation was
predefined as 25 experiments to strike a balance between
optimisation time, resource utilisation, and achieving a
satisfactory solution. As the catalyst mol% was the same for
each ligand tested during initialisation, the response for
these experiments was solely dependent on the yield of 3
(Fig. 2a). The results suggest that dialkylbiaryl phosphine
ligands with minimal substitution, such as CyJohnPhos and
DavePhos, are the most effective for promoting this reaction.

The optimisation pathway taken by ALaBO resembled a
similar pattern to that observed in the simulations (Fig. S9†),
which started by testing different combinations of continuous
variables, using the best identified ligand (CyJohnPhos) from
the initial data. This approach identified the optimum
solution after just four iterations of the algorithm, which
corresponded to a yield of 93% (Fig. 2b) and a TON of 95
(Fig. 2c). Longer residence times and higher temperatures were
used to enhance the yield, and a catalyst mol% of 0.97 was
identified to achieve a high TON without compromise. The
algorithm then primarily explored the effect of different
temperatures at the upper and lower bounds of residence time
and catalyst mol%, and identified local optima at 1 and 10
min using 2.5 Pd mol%. For example, a 77% yield could be
obtained with a residence time of just 1 min, highlighting a
significant potential increase in productivity.

Despite SPhos giving the worst performance during
initialisation, this was the only other ligand except for
CyJohnPhos that was explored by the algorithm. Our

understanding is that SPhos was first selected for the
purpose of exploration on experiment 12, where it
outperformed all initial data points, making it the second
most viable option for subsequent exploitation. In general,
there was an inverse relationship between yield and TON for
both ligands i.e., increasing TON by reducing catalyst mol%
was outweighed by a significant reduction in yield. This
applied across the entire design space except for at high
temperatures using CyJohnPhos where, in contrast to SPhos,
high yields could be achieved at a lower mol% of catalyst. It
should also be noted that no protodeboronation or
homocoupling of 4-methylboronic acid 2 was observed at the
conditions explored during this optimisation.

Scheme 2 Optimisation parameters for the exemplar Suzuki–Miyaura
cross-coupling reaction between bromobenzene 1 and
4-methylphenylboronic acid 2.

Fig. 2 Suzuki–Miyaura self-optimisation results: a) responses for the six
centre point initialisation experiments; b) reaction profile with respect to
the yield of 3; c) reaction profile with respect to catalyst TON.

Reaction Chemistry & Engineering Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

7 
O

ct
ob

er
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

0/
30

/2
02

5 
6:

54
:5

4 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3re00476g


314 | React. Chem. Eng., 2024, 9, 308–316 This journal is © The Royal Society of Chemistry 2024

Based on the previous simulations, we predict that the
algorithm would have continued to explore the remaining
ligands if given a larger experimental budget. Nevertheless,
given that ALaBO successfully identified a solution within 1%
of the true optima in an average of just 23 experiments across
the five simulated case studies (when using CP initialisation
and a batch size of one), we are confident that a near-optimal
solution has been found. In this study, our experimental
budget was set partly based on reagent availability, as
continuous flow operation requires significant quantities of
material to reach steady state. In the future, we envisage that
integration of ALaBO with recently reported droplet flow
reactors will result in a significant increase in experimental
efficiency,7,37,38 as well as the capability to rapidly optimise
design spaces with multiple categorical variables.

Conclusion

In conclusion, we have introduced a new optimisation
strategy for the autonomous development of mixed variable
catalytic reactions. Our approach combines latent variable
Gaussian process modelling with an adaptive expected
improvement acquisition function. This provides a robust
‘one shot’ technique for the concurrent optimisation of
categorical and continuous variables without any a priori
information. Simulations on several chemically-motivated
test problems (each with eight discrete catalysts and three
continuous variables) demonstrated the superior convergence
speed of ALaBO compared to other open-source Bayesian
optimisers. On average across five different case studies,
ALaBO successfully identified a close-to-optimal solution 1.4
times faster than the next best algorithm.

Different initialisation strategies and batch sizes were also
evaluated, which informed the subsequent self-optimisation
of a Suzuki–Miyaura cross-coupling reaction in continuous
flow (with six discrete ligands and three continuous
variables). In agreement with our simulations, ALaBO
required an experimental budget of only 25 experiments, and
located an optimal solution with a yield greater than 90% in
just 10 experiments. We envisage that this increase in
efficiency will enable automated optimisation to be used for
reactions with limited material availability in the future, such
as late-stage functionalisation of high-value precursors.

Experimental
General information

All of the following chemicals were purchased from
commercial sources and used as received: bromobenzene
(98.0%, Fluorochem); 4-methylphenylboronic acid (>97%,
Apollo Scientific); DBU (98.0%, Fluorochem); palladium(II)
acetate (≥99.9%, Sigma-Aldrich); DavePhos (98.0%,
Fluorochem); XPhos (98.0%, Fluorochem); SPhos (98.0%,
Fluorochem); CyJohnPhos (99.0%, Fluorochem); dppp
(95.0%, Fluorochem); dppf (97%, Sigma-Aldrich);
4-methylbiphenyl (98.0%, Fluorochem); 4,4′-dimethylbiphenyl

(98%, Activate Scientific); toluene (≥99.8%, Fisher Scientific);
biphenyl (99.5%, Sigma-Aldrich); tetrahydrofuran (≥99.8%,
Fisher Scientific); acetonitrile (≥99.9%, Sigma-Aldrich). HPLC
method development and analytical calibrations were
performed using the products from commercial sources and
biphenyl as internal standard.

Computational study

The five catalytic case studies described by Jensen et al. were
formulated in MATLAB R2023a, where the differential rate
equations (see ESI†) were solved using ordinary differential
equation (ODE) solver ODE45. The performance of different
optimisation settings and algorithms for each case study was
determined by comparing the running max average and 95%
confidence intervals across 10 runs with 100 function evaluations
each. All algorithms were used with their recommended default
settings, with catalysts expressed as nominal categorical
variables. The ALaBO algorithm was written in MATLAB and
therefore applied directly. Dragonfly and ProcessOptimizer are
open access Bayesian optimisation toolboxes available on GitHub
and written in Python. Hence, these algorithms were installed
using Python 3.10 and operated in ask-tell mode, where MATLAB
would call the algorithm in Python, and provide the past results
of the optimisation to generate the next recommendation for
evaluation. Simulations were run using a Stone desktop PC with
a Microsoft Windows 11 operating system, 12th Gen Intel 6-Core
i5-12400 processor and 16.0 GB of RAM.

Self-optimising reactor set-up

A schematic of the self-optimising reactor is shown in
Scheme 3. Ligand selection was achieved using a Knauer Azura
16-port multiposition valve connected to a pre-prepared array of
catalyst/ligand stock solutions stored under nitrogen. Reagents
were pumped using a combination of JASCO (PU-4580) and
Knauer Azura (P 4.1S) HPLC pumps and mixed using Swagelok
SS-100-3 tee pieces. A 5 mL reactor was made from stainless
steel tubing (1/16″ OD, 1/32″ ID), which was fitted to an
aluminium cylinder and heated with a Eurotherm 3200
temperature controller. The reactor was maintained under 250
psi using an Upchurch Scientific back pressure regulator. Online
HPLC sampling was achieved using a VICI Valco EUHA-CI4W
sample loop (4-port) with 0.1 μL direct injection volume.
Quantitative analysis was performed on an Agilent 1100 series
HPLC instrument fitted with a Supelco Ascentis Express C18
reverse phase column (5 cm length, 4.6 mm ID and 2.7 μm
particle size) and an Agilent EC-C18 (4.6 × 5 mm, 2.7 μm) guard
column. The platform was controlled and automated using a
custom written MATLAB program.

Automated flow experiments

Reservoir solutions were prepared by dissolving the desired
reagents in solvent under nitrogen, and were replenished as
required throughout the optimisation. Reagent pump (150
mL): bromobenzene 1 (7.85 mL, 0.075 mol, 0.50 M),
4-methylphenylboronic acid 2 (15.30 g, 0.113 mol, 0.75 M),
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DBU (22.43 mL, 0.150 mol, 1.00 M) and biphenyl (1.39 g, 0.009
mol, 0.06 M) in THF/H2O (5 : 1). Catalyst pump (25 mL):
Pd(OAc)2 (42.1 mg, 0.0002 mol, 0.0075 M) and ligand (0.0002
mol, 0.0075 M) in THF/H2O (5 : 1). Solvent pump: THF/H2O (5 :
1). The catalyst pump was connected to a multiposition valve,
enabling selection of six different ligands (DavePhos, XPhos,
SPhos, CyJohnPhos, dppp, dppf) from separate reservoir
solutions. The solvent pump was necessary to enable residence
time and catalyst mol% to be varied independently whilst
holding the concentration of the limiting reactant
(bromobenzene 1) fixed at 0.167 M within the reactor.

A custom written MATLAB program controlled the pump
flow rates, valve positions, reactor temperature and sampling.
Each iteration adhered to the following sequence: (i)
multiposition valve was set to the corresponding ligand; (ii)
reactor was allowed to stabilise at the desired operating
temperature (iii) pumps were set to the required flow rates
and left for three reactor volumes to reach steady state; (iv)
sampling valve was triggered alongside HPLC analysis. The
response was calculated from the HPLC chromatograms at
the end of each iteration, and the results used to update the
surrogate models and generate the next recommended
reaction conditions. The optimisation was performed using
the same weighted objective function for yield and TON as
the computational benchmarking study.

The ALaBO algorithm was initialised using one centre
point experiment with respect to the quantitative variables
per ligand, equalling six total experiments. The optimisation
was performed with a batch size of one, therefore the reactor
was set to minimum conditions for the duration of the
analytical method to reduce material consumption. This
process was repeated iteratively with a total experimental
budget (including initialisation) of 25, after which point the
optimisation was terminated.
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