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Iridium-catalyzed reductive sulfonamidation of
alkoxy aryl alkynesf
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Sulfonamides are valuable structural building blocks, bioactives, and pharmaceuticals. While there have
been great achievements in the sulfonamidation of alkyl and alkenyl carbon, the sulfonamidation of
alkynyl carbon has not been studied. Herein, we report the synthesis of N-benzylated sulfonamides from
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alkoxy aryl alkynes and sulfonamides enabled by Ir-catalyzed reductive sulfonamidation using HCO,H as

a hydrogen donor. This process was performed under mild conditions, resulting in the transformation of
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Introduction

Sulfonamides are not only valuable structural building blocks
in synthetic intermediates, but are also commonly found in
biological and pharmaceutical fields." For instance, sulfon-
amides of almotriptan,” sulfamethoxazol,®> hydrochlorothia-
zide,* and naratriptan® have found applications in the
treatments of heavy migraine headache, urinary tract infec-
tions, and high blood pressure, respectively (Scheme 1). The
latest statistics show that over 8% active pharmaceutical
ingredients (APIs) contain sulfonamide skeletons, which have
special physicochemical properties of metabolic stability.®
Therefore, the extensive application of sulphonamides in
medicinal chemistry has attracted the attention of chemists in
the synthesis and functionalization of sulfonamides in recent
decades.”

Reactions of primary sulfonamides with aliphatic halides,®
alcohols,” and carbonyls' present classical strategies for the
synthesis of sulfonamides, in which the organic," inorganic,*
Ir, Ru," Rh,” and other metal* catalysts are employed.
Coupling of primary sulfonamides with aryl halides,"” boronic
acids,™ and diaryliodonium triflate’® constitutes another effi-
cient approach to sulphonamide synthesis, where Cu,** Pd,**
and Ni** metals are commonly utilized as catalysts. Direct sul-
fonamidation of alkyl carbon provides an atom- and step
economy strategy for sulfonamide synthesis, with commend-
able substrate scope and efficiency (Scheme 2a).>* However, the
inevitable use of hypervalent iodine reagents or strong oxida-
tion,> excessive equivalents of oxidants,” and poor
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a variety of substituted benzene, heteroaromatic, and aliphatic sulfonamides. Particularly, the structural
diversification of valdecoxib and zonisamide showcased the utility of this protocol.
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Scheme 1 Drugs containing sulfonamide motifs.
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regioselectivity’® limit the application of this strategy.
Approaches to sulfonamide synthesis based on the sulfonami-
dation of alkenyl carbon via classical hydroamination or
hydrogen atom transfer of alkenes are attractive alternatives
(Scheme 2b).>” Notably, asymmetric sulfonamidation of alkenyl
carbon for the synthesis of enantioenriched sulfonamides via
hydrogen atom transfer has also be established.”® While there
have been great achievements with regards to sulfonamidation
of alkyl and alkenyl carbon, the sulfonamidation of alkynyl
carbon has not been studied.

Table 1 Optimization of the synthesis of sulfonamide 3aa“
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With our continuous research on transfer hydrogenation
with Cp*Ir complexes,” N-alkylation®" or para-Friedel-Crafts
alkylation®* were achieved from alkynes via hydration and
transfer hydrogenation. In a previous work, a relatively stable
benzyl carbocation was generated from alkynes via a hydration,
transfer hydrogenation, and successive dehydroxylation
process, which might be captured by primary or secondary
sulfonamides to deliver a variety of N-benzylated sulfonamides.
Using alkynes as substrates comes with various challenges: (a)
although hydration of alkynes had been developed in our
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1a (0.5mmol) ot e °© o | \ H"_w\:“ple“s C6: R=6-OMe
Entry Cat. Additive (equiv.) 2a (x equiv.) Solvent Yield 3aa” (%)
1 c3 TsOH (0.6) 1.0 H,0 38
2 c3 TsOH (0.6) 1.0 DMF N.D.
3 c3 TsOH (0.6) 1.0 TFEA N.D.
4 c3 TsOH (0.6) 1.0 MeCN N.D.
5 C3 TsOH (0.6) 1.0 p-Xylene N.D.
6 C3 TsOH (0.6) 1.0 Dioxane N.D.
7 c3 TsOH (0.6) 1.0 TFEA/H,0° 36
8 c3 TsOH (0.6) 1.0 TFEA/H,0? 42
9 c3 TsOH (0.6) 1.0 TFEA/H,0° 22
10 c3 TsOH (0.6) 1.0 TFEA/H,0O" Trace
11 c3 TsOH (0.6) 1.0 p-Xylene/H,0¢ 30
12 — TsOH (0.6) 1.0 TFEA/H,0? N.D.
13 c1 TsOH (0.6) 1.0 TFEA/H,0¢ 40
14 c2 TsOH (0.6) 1.0 TFEA/H,0? 37
15 c4 TsOH (0.6) 1.0 TFEA/H,0¢ 37
16 c5 TsOH (0.6) 1.0 TFEA/H,0 45
17 c6 TsOH (0.6) 1.0 TFEA/H,0¢ 41
18 c5 TsOH (0.6) 1.2 TFEA/H,0? 45
19 c5 TsOH (0.6) 1.4 TFEA/H,0¢ 46
20 c5 TsOH (0.6) 1.6 TFEA/H,0 46
21 c5 TsOH (0.6) 1.8 TFEA/H,0¢ 48
22 (ol TsOH (0.6) 2.0 TFEA/H,0? 77
23 c5 TsOH (0.6) 2.5 TFEA/H,0¢ 70
24 c5 TsOH (0.6) 3.0 TFEA/H,0? 76
25 C5 — 2.0 TFEA/H,0¢ N.D.
26 C5 PhSO;H (0.6) 2.0 TFEA/H,0? 52
27 c5 R'SO,H (0.6)° 2.0 TFEA/H,0¢ 44
28 (ol MSA (0.6) 2.0 TFEA/H,0¢ 59
29 c5 R%SO,H (0.6) 2.0 TFEA/H,0¢ 35
30 c5 TsOH (0.2) 2.0 TFEA/H,0 81 (79)
31 c5 TsOH (0.4) 2.0 TFEA/H,0¢ 80
32 (ol TsOH (0.8) 2.0 TFEA/H,0? 46
33 c5 TSOH (1.0) 2.0 TFEA/H,0¢ 43
34 c5 TsOH (1.5) 2.0 TFEA/H,0? 29
35 c5 TsOH (2.0) 2.0 TFEA/H,0? 18
36" c5 TsOH (0.2) 2.0 TFEA/H,0? 63
37 c5 TSOH (0.2) 2.0 TFEA/H,0¢ 42
38 c5 TsOH (0.2) 2.0 TFEA/H,0 N.D.

“ Reaction conditions: 1a (0.5 mmol), Cat. (1.0 mol%), HCO,H (10.0 equiv.), and solvent (1.5 mL) for 12 hours at 80 °C (under air). ? Yield was
determined by NMR with dimethyl terephthalate as the internal standard. ¢ The ratio of the mixed solvent was 1:8 (v/v). ¢ The ratio of the
mixed solvent was 1:4 (v/v). ° The ratio of the mixed solvent was 1:2 (v/v)./ The ratio of the mixed solvent was 1:1 (v/v). ¥ R, = 4-Cl-Ph; R, = 2-
naphthyl. " 60 °C. ¥ 100 °C.7 Without HCO,H.
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previous work,** there is a risk of deactivation of hydration
using primary or secondary sulfonamides as nucleophilic
reagents; (b) a similar outcome of poisoning subsequent
transfer hydrogenation is possible under these reaction condi-
tions; (c) a weaker nucleophilic property is noted while using
nitrogen atoms as a nucleophilic reagent under acidic condi-
tions, and using sulfonamides as nucleophilic agents will likely
have similar related issues, hindering the final cross nucleo-
philic coupling process. Despite these difficulties, through
protracted and unremitting efforts, herein, we realized the
reductive sulfonamidation of alkynes with primary and
secondary sulfonamides using metal catalysis, which provides
inspiration for the synthesis of diversified sulfonamides
(Scheme 2c).

Results and discussion

We initially examined the reductive sulfonamidation of alkynes
by employing 4-ethynylanisole 1a and benzene sulfonamide 2a
as model substrates, Cp*Ir complexes as catalyst,*> and HCO,H
as a hydrogen donor (Table 1). Interestingly, the desired
product 3aa was produced at a 38% yield using H,O as a solvent
and TsOH as an additive (Table 1, entry 1). Screening of further
reaction parameters indicated that the H,O and Cp*Ir catalyst
were essential for successful reductive sulfonamidation (Table
1, entries 2-11). Increasing the ratio of TFEA would decrease the
yield of 3aa (Table 1, entries 7-10). For instance, the yield of 3aa
was reduced to trace even though the ratio of TFEA and H,O was
loaded over 1:1 (Table 1, entry 10). Additionally, catalyst opti-
mization (Table 1, entries 12-17) showed that the Cp*Ir
complex C5 could slightly enhance the sulfonamidation process
leading to a 45% yield of the product 3aa (Table 1, entry 16).
Satisfyingly, increasing the loading of 2a would sharply improve
the yield of 3aa (Table 1, entries 18-24). Of note, the control
experiment demonstrated that a Lewis acid was crucial for this
reductive sulfonamidation process (Table 1, entries 25-35) and
decreasing the loading of TsOH to 0.2 equiv. resulted in the best
yield of 3aa (Table 1, entry 30). However, decreasing or
increasing the reaction temperature was harmful to the
production of 3aa (Table 1, entries 36 and 37). Control experi-
ment showed that HCO,H was the essential hydrogen donor in
this transformation, indicating that H,O only act as a reaction
media (Table 1, entry 38).

With the successfully optimized conditions, the substrate
scope with respect to aryl alkynes and aryl sulfonamides was
investigated (Table 2). As anticipated, aryl sulfonamides with
electron-donating groups at differential positions were well
tolerated, including methyl, ethyl, tert-butyl, hydroxyl, and
methoxy, delivering the corresponding products (3ab-3ag) in
good to excellent yields. Additionally, di-substituted aryl
sulfonamide (2h) also performed well in this system. Aryl
sulfonamides with electron-withdrawing groups, such as fluo-
rine (2i), chlorine (2j, 2n), nitrile (2k, 21), and trifluoromethyl
(2m), were also efficient substrates to afford similar yields of the
desired products (3ai-3an). However, significantly different
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Table 2 Substrate scope of aromatic sulfonamides and alkoxy aryl
alkynes®

<7 Q\S«P & G5 (1 moi%), TSOH (0.2 equiv) .0 i
I SN HCOOH (10.0 equiv.) NI,
RS g TFEAIM;0 (03 mLA.2mL) R! J/\/ L
80°C, 12 h, open air O
1 2 2 equiv) 3 i
(a) Scope of primary sulfonamide
<
20 ? o2 %
T QP /Q‘,,LN,‘S/’ P ,J\N,S A
T R I AJ N gzl sH
H = o ~F 0" N0 ~F £ Yo cl
3ah, 50% 3ai, 76% 3aj, 81%
3aa, 79%
i o Lag
» 3ac, 51% e 4 ANY P
Et, 3ad, 77% O NS NN o N
=4-1Bu,32e,78% . | _J H il J H o7~ -
R=4-OH, 3af, 57% o7 oN o7 ) 3
R = 4-OMe, 3ag, 78% 3ak, 53% 3al, 51% 3am, 50%
¥ e | op oP | of
/*:‘/“u’ A ‘N\ /\}‘/\N,S ‘ N U,/\\],,,\N,s ls
B H U J H H U
i A o PR N ANF
e No” NF Z 0" ~F el 07 NF
3an,52% CI 3ao, 26% 3ap, 15% 3aq, 77%
L Q\/P ‘ O\\ ,/0 (b) Scope of secondary sulfonamide
R R R RV DXL
o P ~o P ”/ :jf\,‘r B H/;\\T, 'l‘, B
3ar, 69% 3as, 77% No N 2 o -
3at, 52% 3au, 51%
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3ba, 61% 3dr, 35% 3av, 33%

¢ Reaction conditions: 1 (0.5 mmol), 2 (1.0 mmol), C5 (1.0 mol%),
HCO,H (10.0 equiv.), and TFEA (0.3 mL), H,O (1.2 mL) for 12 hours at
80 °C, and isolated yield.

yields were achieved with heteroaromatic sulfonamides (20-2s)
as substrates. For instance, low yield (15-26%) of corresponding
products 3ao, 3ap were obtained using pyridine sulfonamides
as substrates, while 2-thiophene-sulfonamides delivered the
desired products 3aq-3as in good yields (69-77%). This differ-
ence could be attributed to the difference in the density of =
electrons. Interestingly, switching the primary aryl sulfon-
amides to secondary aryl sulfonamides also allowed the
formation of the desired products (3at-3av) in moderate yields.
Furthermore, other alkoxy-substituted aryl alkynes (2b-2d) were

Table 3 Substrate scope of alkyl sulfonamides®

80°C, 12 h, open air
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¢ Reaction conditions: 1a (0.5 mmol), 4 (1.0 mmol), C5 (1.0 mol%),
HCO,H (10.0 equiv.), and TFEA (0.3 mL), H,O (1.2 mL) for 12 hours at
80 °C, and isolated yield.
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also good substrates in the iridium catalyzed reductive sulfo-
namidation process.

Having established the conversion of aromatic sulfonamides
into diversified sulfonamides, this method was extended to
employ alkyl sulfonamides as substrates (Table 3). In compar-
ison with aryl sulfonamides, the corresponding products (5aa-
5ah, 5aj) were delivered in relatively lower yields using differ-
ential primary alkyl sulfonamides as substrates. Surprisingly,
a better yield (66%) of sulfonamide 5ai was delivered by using
secondary cyclic aliphatic sulfonamide of 1,3-propanesultam as
a substrate.

Following success in developing a broad range of sulfon-
amides, we then explored the synthetic applications of this
method. First, we investigated the derivatization of drugs con-
taining the sulfonamide scaffold, which are of interest in
medicinal chemistry. As shown in Scheme 3a, valdecoxib (COX-
2 inhibitor)* and zonisamide (used as an adjunctive therapy in
adults with partial-onset of seizures)* could be easily converted
into N-benzyl sulfonamides. Moreover, the model reaction was
scaled to a 10.0 mmol reaction and it delivered 2.5 g of the
sulfonamide 3aa in 86% yield, which exhibited potential
synthetic application in the organic chemistry industry (Scheme
3b).

To gain more insights into the reaction mechanism, control
experiments were performed. According to our previous work,*
hydration of alkynes proceeded smoothly under acidic condi-
tions to generate ketone and alcohol intermediates. Therefore,
the ketone 6a and sulfonamide 2a were employed as substrates
under standard conditions, resulting in a 70% yield of 3aa
(Scheme 4a). Moreover, subjecting alcohol 7a and sulfonamide
2a to the standard conditions in the absence of C5 resulted in
a 73% yield of 3aa (Scheme 4b).

(a) Synthetic utility of drugs

P P
“NH, °N
1a H P
S — =
Ph—( standard conditions  Ph— °

N-O N-O
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Scheme 3 Derivatization of drugs and gram-scale experiment.
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Scheme 4 Control experiments.
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Scheme 5 Proposed mechanism.

Based on the reaction result and control experiments
(Scheme 4), a possible mechanism was proposed (Scheme 5).
The mechanism is characterized by a catalytic cycle that
includes hydration and a transfer hydrogenation process that
was completed to generate the intermediate alcohol 7a. Subse-
quently, carbocation occurred by dehydroxylation of 7a under
acidic conditions, which was followed by cross-nucleophile
coupling with sulfonamide to produce the desired product 3aa.

Conclusions

In conclusion, we have shown the sulfonamidation of alkoxy
aryl alkynes with viable sulfonamides for the synthesis of
diverse N-benzylated sulfonamides. This modular Cp*Ir
complex-catalyzed reductive sulfonamidation synthesis was
achieved under mild conditions. The reaction can be conducted
at gram scale in air. Sulfonamide drugs of valdecoxib and
zonisamide could also be employed as substrates and converted
into N-benzyl sulfonamides. The good substrate suitability,
wide range of functional group tolerance, scale-up performance,
and mild reaction conditions provide evidence of the potential
for the application of this reductive sulfonamidation trans-
formation in rapid structural diversification of bioactive
molecules.
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