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B- and y-Amino alcohols are among the most significant structural motifs in pharmacologically active
molecules and pharmaceuticals. Herein, a protocol for the construction of - and y-amino alcohols via

R i 15th 2024 . N . ) ) . . . . .
eceived 15th October 20 reductive amination and transfer hydrogenation of diketones with aromatic amines is described. This

Accepted 15th November 2024
reaction is performed by utilizing iridium complexes as catalysts and HCO,H as a hydrogen donor to
DOI: 10.1039/d4ra07386] deliver a library of B- and y-amino alcohols under mild and operationally simple conditions. Successful
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B- and y-Amino alcohol backbones are extensively found in
pharmacologically active molecules and pharmaceutical
compounds. Amino alcohols also serve as key intermediates of
various pharmacophores in medicine, cosmetics, materials
science, organic synthesis and medicinal chemistry." For
instance, metaraminol is frequently employed as a rescue drug
in patients with shock, chloramphenicol shows potent anti-
bacterial activity against Gram-negative bacteria, and indinavir
and adrenaline are used to treat HIV-1 infections in adults and
children (Scheme 1).> Amino alcohols also serve as ligands in
the field of catalytic organic synthesis.® Therefore, it is of great
significance to develop a new universal, atomic and step-
economical strategy for the synthesis of amino alcohols in the
rapid development of innovative drugs.*

Ring-opening aminolysis of epoxides represents one of the
classical strategies for constructing B-amino alcohols. Scan-
dium,® niobium,® gadolinium,” chromium,® and organic mole-
cules® are employed as catalysts for the construction of f-amino
alcohols. In addition, the Ru-catalyzed hydrogenation of o-
amino ketones constitute an alternative effective strategy for -
amino alcohol synthesis.” In 2019, Zhong's group reported
a highly efficient Rh-catalyzed hydroxylation of alkenes to
access f-amino alcohol compounds.™ In addition, the radical
domino reaction™ and N-alkylation of amines with alcohols®
were employed for f-amino alcohol synthesis.

The hydrogenation of B-amino ketones' could also be
employed for y-amino alcohol synthesis.”® In 2015, Zhang's
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group successfully reported the ruthenium complex-catalyzed
hydrogenation of B-amino ketones to produce y-amino alco-
hols.* Furthermore, the hydroamination of allyl ketones' and
alcohols,*® ring-opening of epoxides with amines,” oxidative
amination of alkenes," addition or reduction of amino alde-
hydes or ketones,” addition of an amino-carbon anion to
a carbonyl compound,* and the amine-allylation of alcohols*
were utilized as effective strategies for the formation of y-amino
alcohols. Although many encouraging achievements have been
made in the synthesis of chiral B- and y-amino alcohols, there
are still some deficiencies in the substrate scope. Therefore,
employing the easily accessible materials as substrates is still
highly desirable for the production of - and y-amino alcohols.

In recent years, we have studied transfer hydrogenation
reactions using N,N-iridium complexes as catalysts.>® Recently,
Kuwata et al. developed an efficient asymmetric reductive ami-
nation of a-keto acids to access o-amino acids catalyzed by
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Scheme 1 B- and y-Amino alcohol motifs existing in biologically
active molecules.
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Cp*Ir catalysts bearing a chiral N-(2-picolyl)sulfonamidato
ligand.** Very recently, we also reported the protocol for N-aryl-
substituted pyrrolidine synthesis via Ir-catalyzed successive
reductive amination of diketones (Scheme 2a).* Based on the
successful formation of five-membered pyrrolidines with 2,5-
diketones as substrates, the construction of four-membered or
even the three-membered heterocyclic ring was also designed
using 2,4-diketones or 2,3-diketones as substrates. However,
this only produced B- and y-amino alcohols, and no desired
cyclic products were formed under standard conditions. Herein,
we report on an Ir-catalyzed reductive amination and transfer
hydrogenation of 2,4-diketones or 2,3-diketones to access - and
y-amino alcohols (Scheme 2b). Various 2,4-diketones or 2,3-
diketones and aromatic amines could be employed as
substrates in this catalytic system, delivering the desired amino
alcohols in moderate to excellent yields. This Ir-catalyzed
reductive amination and transfer hydrogenation process offers
an alternative protocol for B-and y-amino alcohol synthesis.

We initiated our attempts at this Ir-catalyzed reductive
amination and transfer hydrogenation of 2,3-butanedione (1a)
with aniline (2a) as model substrates (Table 1). Preliminary
reaction condition screens with TC-1-TC-6 as catalysts and 20.0
equivalent of HCO,H as the hydrogen donor in the presence of
toluene afforded the B-amino alcohol 3aa in low yields (Table 1,
entries 1-6). Based on our previous work*?> showing that the
reaction media would enhance the solubility of iridium
complexes, we then investigated the influence of solvents (Table
1, entries 7-12). As anticipated, an increased yield of 80% was
attained in the presence of H,O (Table 1, entry 12). To afford the
optimal conditions, different quantities of HCO,H and other
reaction times were further explored (Table 1, entries 13-19).
Indeed, increasing the loading of HCO,H and prolonging the
reaction time furnished the best yield of 93% (Table 1, entry 19).
Decreasing the reaction temperature showed reduced perfor-
mance (Table 1, entries 20-22). Control studies confirmed the
necessity of the iridium complex and HCO,H for this reductive
amination and transfer hydrogenation transformation (Table 1,
entries 23 and 24).

With the optimized reaction conditions in hand, we next
probed the generality of the substrate scope. As showed in Table
2, 2,3-butanedione (1a) was capable of reductive amination with
electron-withdrawing and electron-donating para-substituted
aromatic amines (2b-2f) and transfer hydrogenation under
standard conditions, furnishing the B-amino alcohol products
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Scheme 2 Ir-catalyzed difunctionalization of diketones.
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Table 1 Optimization of the reaction conditions®
o NH, y OH
)Y . TC (1.0 mol%), HCO,H ©/N
o Solvent, Temp. time
1a 2a 3aa
R? TC1:R'=H,R2=H
X + TC-2:R'= H,R?=CH,
. | \ B Tcar'=HR=cI
\ 0 )lcr Tc-4:R'=H,R?= OCH;
v TC-5:R'=F,R2=H
Cl TC-6: R'= OCHa, R2=H
TC
HCO,H
Entry Catalyst Solvent T (°C) (equiv.) Time (h) Yield® (%)
1 TC-1 Toluene 80 20 6 10
2 TC-2 Toluene 80 20 6 11
3 TC-3 Toluene 80 20 6 3
4 TC-4 Toluene 80 20 6 15
5 TC-5 Toluene 80 20 6 14
6 TC-6 Toluene 80 20 6 4
7 TC-4 DMF 80 20 6 27
8 TC-4 1,4-Dioxane 80 20 6 n.d.
9 TC-4 THF 80 20 6 n.d
10 TC-4 MeOH 80 20 6 54
11 TC-4 Acetone 80 20 6 n.d
12 TC-4 H,0 80 20 6 80
13 TC-4 H,0 80 5 6 45
14 TC-4 H,0 80 10 6 54
15 TC-4 H,O0 80 15 6 72
16 TC-4 H,0 80 25 6 83
17 TC-4 H,O0 80 30 6 83
18 TC-4 H,0 80 25 9 90
19 TC-4 H,O 80 25 12 99 (93%)6
20 TC-4 H,0 rt 25 12 87
21 TC-4 H,0 60 25 12 97
22 TC-4 H,0 100 25 12 99
23 — H,O0 80 25 12 —
24 TC-4 H,O 80 — 12 —

¢ Reaction conditions: a mixture of 1a (0.5 mmol, 1.0 equiv.), 2a
(0.6 mmol, 1.1 equiv.), TC catalyst (1.0 mol%), HCO,H, and solvent
(2.0 mL) was sealed in a 25.0 mL Schlenk tube under air. ? Yield was
determined by NMR with dimethyl terephthalate as internal standard.
¢ Parenthesis is isolated yield based on 1a.

3ba-3fa in moderate yields and stereoselectivities. Meta-, ortho-,
and di-substituted aromatic amines (2g-2i) also participated,
producing the corresponding B-amino alcohols 3ga-3ia in
similar moderate yields and stereoselectivities. Large block
amines such as naphthylamine (2j), 4-cyclohexyl aniline (2Kk),
and 5,6,7,8-tetrahydronaphthalen-2-amine (21) were also toler-
ated in this catalytic system, providing the desirable reductive
amination and transfer hydrogenation products of 3ja-3la. On
the other hand, the more steric hindrance of 2,3-hexanedione
(1b) gave same moderate yield and stereoselectivity of the cor-
responding product (3ab). Interestingly, aromatic diketone of 1-
phenylpropane-1,2-dione (1c) was also a successful substrate,
and showed improved stereoselectivity (anti/syn > 99:1) and
excellent regioselectivity.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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transfer hydrogenation of 2,3-diketones with aromatic amines®?¢
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Table 3 Substrate scope of Ir-catalyzed reductive amination and
transfer hydrogenation of 2,4-diketones with aromatic amines®?¢

H2  7¢.4.(1.0 mol%) H 9H
R1JS}/R2 ij HCO,H (equiv.) HOOHEquv) ot X N%Rz
80°C, H,0, 12 h Z
3

OH R =Me, 3ba (56%, 73:27)

©/ T/k /©/ TA R = OMe, 3ca (57%, 66:34)

R = F, 3da (82%, 65:35)
R = Cl, 3ea (74%, 83:17)
3aa (93%, 72:28) R = Br, 3fa (69%, 87: 13)

Reaaliceclifsen

3ga (73%, 80:20) 3ha (65%,85:15) 3ia (69%, 85: 15)

sonalifonaligsas

3]a (41%, 85:15) 3ka (60%,64:26) 3la (57%, 75:25)

Y %ph

3ac (64%, >99:1)

H OH

oh

3ab (60%, 75:25)

“ Reaction conditions: a mixture of 1 (0.5 mmol, 1.0 equiv.), 2
(0.6 mmol, 1.1 equiv.), TC-4 (1.0 mol%) HCO,H (12.5 mmol, 25.0
equiv.), and H,0 (2.0 mL) yere sealed in a 25.0 mL Schlenk tube
under air at 80 °C for 12 h. ? Isolated yield based on 1. ° The value of
the anti/syn ratio.

We next investigated the substrate scope with respect to the
1,3-diketones with aromatic amines (Table 3). The y-amino
alcohol of 4-(phenylamino)pentan-2-ol could also be prepared
through this method (75% yield) using pentane-2,4-dione (4a)
as the substrate. Moreover, para-substituted aromatic amines
(2b-2f) could also be used in the reaction. However, products of
5da-5fa were formed in lower yields (32-42%) when the para-
substituted aromatic amines bearing electron-withdrawing
groups were used (2d-2f). A low yield was also observed for
a meta-benzyl substituted aniline (2m). Pleasingly, 62% yield
and moderate stereoselectivity of reductive amination and
transfer hydrogenation product 5na were provided when 2,3-
dihydro-1H-inden-5-amine (2n) was used in this reaction. Other
aromatic and sterically more hindered diketones were also
tolerated to produce 5ab and 5ac in moderate yields and
excellent stereoselectivity (>99: 1).

The robustness of this Ir-catalyzed reductive amination and
transfer hydrogenation transformation was documented by
performing the model reaction on a larger scale. As showcased
in Scheme 3, 1.37 g of the product 3aa was afforded in 83% yield
when 2,3-butanedione (1a) was loaded at a 10.0 mmol scale
under standard conditions. With this successful large-scale
performance, the follow-up asymmetric studies using chiral
iridium complexes are underway and will be reported soon. In
addition, the asymmetric Ir-catalyzed reduction amination of
ketones with the model reaction was investigated under the

© 2024 The Author(s). Published by the Royal Society of Chemistry

NHz  1C4 (1.0 mol%) H
o o - N OH
M . R3—-:~ Xy HCO,H (25.0 equiv.) RaLl XN Y\I,w
R! R? Z  80°C, H,0, 12 h S R R
4 2 5

R® = Me, 5ba (61%, 65:35)
OH R® = OMe, 5ca (68%, 60:40)

R3 = F, 5da (42%, 60:40)

R® = Cl, 5ea (33%, 80:20)

R3 = Bu, 5fa (32%, 66:34)

H
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H
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T Q‘W

5aa (75%, 60:40)

Tﬁj‘ﬁ”

5ma (20%, 60:40)

@NmOH

5ab (65%, 50:50)

¢ Reaction conditions: a mixture of 4 (0.5 mmol, 1.0 equiv.), 2
(0.6 mmol, 1.1 equiv.), TC-4 (1.0 mol%) HCO,H (12.5 mmol, 25.0
equiv.), and H,O (2.0 mL) were sealed in a 25.0 mL Schlenk tube
under air at 80 °C for 12 h. ? Isolated yield based on 4. © The value of
the anti/syn ratio.

0 NH2 74 (1.0 molo) OH

)H( . HCO,H (25.0 equiv.) HTA
HCOH (25.0 equiv.)

5 80°C, H,0, 12 h ©/

1a, 10 mmol 2a, 12mmol

3aa, 83%, 1.37 g

Scheme 3 Large-scale synthesis of 3aa.

optimized conditions (Scheme S1, ESIt). The desired reductive
product 3aa was obtained using the chiral iridium complexes
C1-C6 as catalysts, while a low enantioselectivity of the product
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was observed. The design and synthesis of more chiral iridium
complexes are underway, and will be further applied in the
asymmetric synthesis.

The proposed catalytic cycle of this Ir-catalyzed reductive
amination and transfer hydrogenation is showcased in Scheme
4. On the one hand, the active Ir-H intermediate of Int-II was
formed under the conditions of the iridium complex and
HCO,H. On the other hand, the intermediate of imidone 6 was
generated, which was subsequently reduced by Int-II to form the
amino ketone 7. A more similar reduction of carbonyl by the
active Ir-H was performed to furnish the desired product 5 and
finish the catalytic cycle. Of note, it is possible that the transfer
hydrogenation of the carbonyl group took place first, followed
by the reductive amination process.

Conclusions

In summary, we report the reductive amination and transfer
hydrogenation of diketones enabled by iridium complexes,
facilitating access to diverse B- and y-amino alcohols in
moderate yields and stereoselectivities. The 2,3-diketones, 2,4-
diketones and various substituted aromatic amines could be
successfully employed in this system. The synthetic potential of
this protocol was solidified by the large-scale performance.
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