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Characterization and enhanced carbon dioxide
sensing performance of spin-coated Na- and Li-

doped and Co-doped cobalt oxide thin films¥

Rana Saad, © £*2 Khaled Abdelkarem, & $*2 Adel M. El Sayed,® Mohamed Shaban,*®
Inas A. Ahmed,® M. T. Tammam?® and Hany Hamdy®

Recognizing the substantial effects of carbon dioxide on human health and the environment, monitoring
CO;, levels has become increasingly vital. Owing to energy constraints and the widespread application of
CO, gas sensors, it is important to design cost-effective, more efficient, and faster response CO, gas
sensors that operate at room temperature and involve a low-cost technique. This study aims to develop

a cost-effective and efficient CO, gas detector that functions at room temperature and uses less power

than traditional high-temperature CO, sensors. In this study, we achieved this by employing innovative
Coz04 thin films with optimized spinel-structured p-type semiconductors through spin-coating,
facilitated by Li and Na doping as well as Li/Na codoping. Doping with 3% Li/Na reduced the crystallite
size from 92.4 to 8.03 nm and increased the band gap from 3.31 to 3.69 eV. At room temperature (30 °

C), the sensor response improved significantly, increasing from 50% to 345.01% for 3% Li-CozO4 upon

the addition of 3% Na at a concentration of 9990 ppm. This performance surpasses that of most metal-
oxide-based CO, sensors reported in the literature. Additionally, this optimized sensor demonstrated
a very short response time of 18.8 s and a recovery time of 16.4 s at a CO, concentration of 9990 ppm
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diluted with air. It outperformed other films in terms of sensitivity, stability, response and recovery times,

and performance across a wide range of relative humidity levels (43-90%). The sensor exhibited superior
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1. Introduction

Increasing rates of greenhouse gas emissions and their associ-
ated greenhouse effect, which play a major role in warming
Earth's atmosphere, are major issues in the global discussion
on environmental safety." Moreover, the world's population
desires clean air with low levels of greenhouse gases (GHGs)
such as ozone (Oj), fluorocarbons (F), methane (CH,), nitrous
oxide (N,0), and carbon dioxide (CO,).> Therefore, it is essential
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selectivity for CO, than for N,, Hy, and NHs. Overall, the 3% Li, Na-CozO4 sensor is well-suited for
climate change mitigation and industrial applications.

to detect the mentioned issues early to save human lives.’ In
this regard, gas sensors are essential for protecting the envi-
ronment.** Gas sensors can monitor emissions from a range of
sources, including transportation and industrial activities, to
ensure that environmental regulations are followed and to
lessen their impact on the ecosystem. CO, has begun to gain
attention, which is not only a major GHG but also a vital sign of
air quality, because increased levels of CO, may be harmful to
human health and cause heating, ventilation and air condi-
tioning (HVAC) system modifications. With the use of this
information, organizations may reduce CO, emissions and
support international efforts to combat climate change.® Several
types of CO, gas sensors have been discussed in previous
studies, such as infrared,” surface acoustic wave,® capacitive
type,” solid electrolyte,’ and resistive type''** sensors. It has
been shown that resistive gas sensors are great for detecting and
measuring chemicals and gases because they have a direct
electrical interface, respond quickly, and are very sensitive and
cheap to fabricate." ¢ Over the past few decades, a wide variety
of resistive gas-sensing materials have been identified, such as
conducting polymers,"” conducting carbon nanomaterials,®
and metal oxide semiconductors.”®** CO, sensors have been
constructed with metal oxides such as ZnO,* WO;,* CuO,*

© 2024 The Author(s). Published by the Royal Society of Chemistry
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In,03,%* TiO,,” SnO,,* Fe,03,”” and C030,.”® They are frequently
combined with metal ions, carbon compounds, or noble metals
to improve their performance. Of these metal oxides, cobalt
oxide exhibits catalytic activity in oxidation processes, making it
a potential material for gas-sensing applications.”® CoO and
Co;0, are the two primary forms of cobalt oxides. At RT and low
relative pressures of oxygen, cobalt oxide is most thermally
stable in its state as Co;0,4. Co;0, exhibits remarkable surface
response and efficiently adsorbs gas molecules. When it inter-
acts with target gases, the elevated surface response signifi-
cantly alters its electrical characteristics, making it highly
sensitive to a variety of gases including CO,, CO, H,S, and
NH;.** Also, Coz0,4 can be synthesized as nanostructured films
(nanoparticles, nanowires, or thin films), hence augmenting the
surface-to-volume ratio. An increased surface area leads to
a greater number of active sites for gas adsorption, thereby
enhancing both sensitivity and response time.*" In addition, the
spinel structure of Co;0, (CoC0,0,) is AB,0,, with Co>" ions
occupying the tetrahedral sites and Co®" ions occupying the
octahedral sites.** Previously published literature used cobalt
oxide to detect CO, gas; for example, D. Y. Kim et al. used cobalt
oxide mixed with barium carbonate to improve the sensor
response of pure Coz0, at 150 °C and 10 000 ppm CO, gas
concentration, which reached a 30% sensor response.** G. Joshi
et al. improved the sensor response of CozO, at RT and
500 mg L' CO, gas concentration with SnO,, which reached
13.68%.** L. Gomez et al. used Eu- and La-based cobaltites to
improve the sensor response of perovskite cobaltites LnBaCo,-
Os.5. Depending on the different amounts of oxygen on the
surfaces of cobaltite compounds, a 4% sensor response was
observed at 300 °C and 400 ppm CO, gas concentration.* Based
on these previous studies,*'*** there is a need to develop more
efficient and cost-effective Coz0,-based CO, sensors operating
at room temperature to meet industrial requirements. In busy
industrial environments, continuous machinery operation can
lead to unexpected CO, leaks from cylinders or production
lines, as well as incidents like malfunctioning of HVAC systems
or accidental CO, releases. Therefore, this study aims to design
a low-cost and efficient CO, gas sensor that operates at room
temperature and consumes less power than conventional high-
temperature CO, sensors.*® This study focuses on developing
more efficient CO, gas sensors at concentrations higher than
1000 ppm using innovative and cost-effective Co;0, thin films.
By optimizing spinel-structured p-type semiconductor Coz;0,
thin films through spin-coating, we enhance their performance
with Li and Na doping, as well as Li/Na codoping. This doping
and codoping usually raise the band gap of Co;0,. This alter-
ation increases the sensor's responsiveness to gas adsorption
and improves its capacity to detect gases at lower concentra-
tions. An expanded band gap facilitates the observation of
resistance variations during gas interactions, hence enhancing
the overall detection capability.’” The study examines the
improved electrical and optical properties, morphology, and
surface structure of the doped and co-doped Co3;0, sensors
using various analytical tools. Additionally, the dynamic
response is analyzed and the sensing performance indicators
are correlated.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2. Experimental work

2.1. Fabrication of thin films

The preparation process of the thin films is illustrated in
Fig. 1(a). Pure and doped 0.06 M solutions were made by dis-
solving cobalt acetate tetrahydrate ((CH;COO),Co-4H,0,
249.08 g mol ', Merck) in 7 ml of ethanol. The solution was
heated at 50 °C with magnetic stirring for two hours. After 10
minutes of stirring, a few drops of acetic acid were added to the
solution to obtain a clear and homogeneous solution. After
another 10 minutes of stirring the mixture, a few drops of pol-
yvinylpyrrolidone (PVP) solution as a chelating agent were
added. For doping with 3% Li and 3% Na, we added to the
solution 0.0005 g and 0.001 g of lithium chloride (LiCl, 42.394 g
mol ", Merck) and sodium chloride (NaCl, 58.44 g mol *,
Merck), respectively. The same ratios were added for codoping
with 3% Li and 3% Na. Then, all solutions were aged for 24
hours at RT. Before forming thin films, the cleaning process of
the glass substrates was done with the utmost care. This is
because the cleaning step is very important to get a smooth film
without pinholes that hold well to the material. First, the glass
substrates were washed in a soap solution and then cleaned
with deionized water. After that, they were immersed in ethanol
and then deionized water. At the end, an N, gun was used to dry
the glass substrates. Spin coating was done at a speed of
2000 rpm for a total of 25 s, with each layer being heated to 200 ©
C. The coating and drying process was repeated several times to
obtain films with the desired thickness. The last step was to put
all of the thin films in an air furnace at 500 °C for two hours.

2.2. Thin film characterization

Various techniques were used for analyzing the prepared thin
films. A scanning electron microscope was used to study the
thin film morphology (SEM Auriga Zeiss FIB, ZEISS Microscopy,
Munich, Germany). In addition, the SEM apparatus includes
a unit for performing energy-dispersive X-ray analysis (EDX;
Oxford Link ISIS 300, Concord, MA, USA). X-ray diffraction
(XRD) was carried out with a high-resolution PANalytical X’ Pert
Pro MPD at a scanning speed of 0.02° min ™" across the entire 26
range of 10-80°, using CuK, radiation with a wavelength of
0.15406 nm. Fourier transform infrared spectroscopy (FTIR,
Shimadzu, Kyoto, Japan) was performed to detect the functional
groups with the spectrophotometer model number Shimadzu
FTIR-340 Jasco. For optical studies, a double-beam spectro-
photometer (PerkinElmer, Lamba 990 UV/Vis/NIR, PerkinElmer
Inc., Waltham, MA, USA) was utilized.

2.3. Gas sensing measurements

Fig. 1(b) shows the standard commercial metal oxide gas
sensing measurement system. It has a 1.0 L three-neck round-
bottom flask with rubber O-rings at the top of its necks sepa-
rating into the gas inlet, gas outlet, and an electrical signal. A
100% CO, gas cylinder (supplied by the Beni-Suef Factory for
medical and industrial gases) with synthetic air in the flask was
used, and the gas flow was controlled with an Alicat MC-
500SCCM-D gas mass flow controller (Hethel, Norwich, UK).

RSC Adv, 2024, 14, 36852-36867 | 36853
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Fig. 1 The schematic of (a) spin-coating technique for the preparation of the thin films and (b) apparatus used for gas sensing measurement.
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An extremely thin layer of Ag was added on both ends of the thin
film to gather charges before it was connected via copper wires
to the Keithley source measure device (model 2450, Tektronix,
Beaverton, OR, USA). During data collection, the experimental
equipment was kept at room temperature (RT, 30 °C) and
relative humidity (RH, 43%). The sensor voltages were analyzed
at varying CO, concentrations: 1110, 3330, 5550, 7770, and
9990 ppm. The repeatability and stability of the 3% Li, Na-Co30,
thin film were measured at 9990 ppm, RT and 43% RH. For the
selectivity test at 9990 ppm, we used excellent-quality (99.999%)
cylinders (supplied by the Beni-Suef Factory for medical and
industrial gases) of CO,, nitrogen (N,), hydrogen (H,), and
ammonia (NH;) gases with synthetic air, and controlled the gas
concentration with an Alicat MC-500SCCM-D gas mass flow
controller (Hethel, Norwich, UK).

3. Results and discussion
3.1. XRD analysis

Fig. 2(a) shows the XRD spectra of pure C030,, 3% Li-C030,4, 3%
Na-Coz0,4, and 3% Li, Na-Co3;0, thin films, which indicate the

36854 | RSC Adv, 2024, 14, 36852-36867

(a) XRD and (b) FTIR spectra of pure Coz04, 3% Li-Co304, 3% Na-Cos04, and 3% Li, Na-CozO4 thin films.

polycrystalline nature of these thin films. From the provided
reference code 01-80-1542, the peaks at 26 positions of 31.39°,
37.27°, and 45.00° relate to the diffraction planes (220), (311),
and (400) of Co;0, with the cubic spinel crystal structure,
respectively. The mentioned structure belongs to the Fd3m
space group. The presence of peaks corresponding to Co;0, in
the data indicates the absence of contaminants arising from Li
or Na. The observed shifts in peak positions upon doping with
Li" and Na' can be explained by the disparity in ionic radii
among Co>* (0.67 A), Co*"* (0.74 A), Li* (0.60 nm), and Na* (0.102
nm).*** The observed considerable difference in peak values is
attributed to the ability of Li* and Na* ions to replace Co®" and
Co*" ions inside the crystal lattice of C0;0,.* Using XRD data,
the crystallite size was estimated by the Debye-Scherrer eqn (1)
and is recorded in Table 1:

kA
D=
G cos 0

(1)
where ‘k’ is the shape factor (k = 0.9), A is the wavelength of X-

rays, (8 is the full-width at half maximum (FWHM), and (6) is the
angle of incident radiation (in degrees). The crystallite size

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 XRD parameters of pure CozOg4, 3% Li-Coz04, 3% Na-Coz04, and 3% Li, Na-Coz0O4 thin films

Parameters samples e (x107%) 0 (x10" m™?) d311 (A) a(d) FWHM B311 (°) D (nm)
Pure Co;0,4 19.4 0.117 2.417 8.01 0.090 92.4
3% Li-Co30, 11.2 0.12 2.45 8.13 0.090 91.1
3% Na-Coz0,4 13.7 5.42 2.41 7.99 0.614 13.58
3% Li, Na-Co30,4 24.05 15.51 2.40 7.95 0.998 8.03

values are reduced upon doping with 3% Li, and 3% Na, and the
reduction of crystallite size increases upon codoping with 3% Li
and Na, as shown in Table 1. For measuring lattice parameters,
we use eqn (2):

a2

&= 2
W+ 12+ k2 2)
The variable d denotes the distance between lattice points,

a refers to the lattice parameter, and the symbols 4, k, and [ are

used to indicate Miller indices. The microstrain (&) of the

prepared Co;0, thin films was evaluated using the following

eqn (3):

. ,60:s0 3)

The length of dislocation lines per unit volume of the crystal
is known as the dislocation density (), calculated using eqn (4):

b= = (@

3.2. FTIR analysis

Fourier transform infrared spectroscopy (FTIR) was used to
determine the chemical structure of the functional groups
present on the surface of pure Coz0,, 3% Li-Co30,, 3% Na-
Co030,, and 3% Li, Na-Co30, thin films, as shown in Fig. 2(b).**>
Two peaks around 760 cm™ " and 900 cm ™' appeared due to the
stretching vibration modes associated with Co**-0 and Co>'-0,
respectively. These peaks originate from the spinel structure of
Co;30y, specifically the tetrahedral and octahedral regions.** The
asymmetric vibration (C=0) of CO, taken from the air during
the thermal treatment of metal oxides is shown by peaks at
around 2358 cm™ .*** As seen in Fig. 2(b), the CO, peaks were
at 2358, 2360, 2362, and 2364 cm ™" for pure Co30,4, 3% Li-
C0304, 3% Na-Coz0,, and 3% Li, Na-Co;0, thin films, respec-
tively. The doping and co-doping lead to a shift towards higher
wavenumbers and an increase in intensity. The increasing
intensity of this peak indicates that the interaction between CO,
and the thin film surface is developing as intended.***

3.3. UV-vis spectroscopy analysis

UV-vis spectroscopy was used to measure the optical absorption
spectra and band gap of pure Co;0,4, 3% Li-Co30,, 3% Na-
Co304, and 3% Li, Na-Coz0, thin films. Fig. 2(a) shows the
optical absorption spectra of the produced thin. These spectra
show two absorption peaks in the UV and visible regions.*®

© 2024 The Author(s). Published by the Royal Society of Chemistry

These peaks appear at 409 nm and 752 nm, 407 nm and 748 nm,
405 nm and 738 nm, and 400 nm and 736 nm for pure Co30,,
3% Li-C0304, 3% Na-Co30,4, and 3% Li, Na-Co30,, respectively.
The shift towards shorter wavelengths (blue shift) indicates an
increase in the band gaps, as seen in Fig. 3(b) and recorded in
Table 2. The nature and value of the optical band gap are
determined by the fundamental absorption, which corresponds
to the electron excitation from the valence band to the
conduction band.**** The Tauc plot was used to calculate the
band gap, based on eqn (5), which describes the relationship
between absorption coefficients («) and incident photon energy
(E = hv)>"

(ahv)* = A(E — Ey) (5)

where % is the Planck constant, which is equal to 6.626 x 10~>*
m®kg s, E,is the band gap energy, and A is a constant number
that doesn't depend on the frequency of the photon.

The E, values were obtained by extrapolating the linear
portions of (ahv)* vs. hv curves to zero absorption. As shown in
Table 2, the band gap increases with 3% Li and 3% Na doping
and with 3% Li, Na co-doping.** Fig. 3(c) shows the electrical
band structure of cobalt oxide, contributing to the existence of
two band gaps in this material. While the O, — Co** charge
transfer is related to the lower band gap (Eg;) because the Co®"
level is placed below the conduction band, the O, — Co*"
charge transfer process is associated with the larger band gap
(Eg2).>*** Although E,, is the true band gap in Co;0y, this dual-
band gap nature is reported for other materials.>

3.4. SEM, surface roughness, and EDX analysis

Scanning electron microscopy (SEM) was used to determine the
morphology of the Co;0, thin films, as it is the most common
technique for obtaining the nanostructural and surface char-
acteristics of prepared thin films.***” All films exhibit a similar
morphology. There are a large number of particles per unit area,
and the substrates are well covered by the Co;O, material. As
shown in Fig. 4(a), the SEM image of pure Co;0, reveals a large
number of tiny quite homogeneous cracks distributed
throughout the film surface.*® After doping with Li, as shown in
Fig. 4(b), Co30, nanoparticles agglomerate and comprise
a smaller grain size.” In addition, Fig. 4(c) shows that doping
with Na promotes crack formation, where the crack widens and
appears with larger lengths. Because the nucleation energy
barrier has decreased, there are more nucleation sites, which
may explain why the surface distribution of 3% Li-Co;0, and
3% Na-Coz0, thin films is better.®® Following co-doping with
3% Na and 3% Li, plenty of cracks are formed, as depicted in

RSC Adv, 2024, 14, 36852-36867 | 36855
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Fig.3
the band structure of CozO4.

Table 2 The band gaps (Eg; and Eg,) of pure CozOy, 3% Li-Coz04, 3%
Na-Coz04, and 3% Li, Na-Coz04

Thin film Egy (eV) Ey; (eV)
Pure C030, 1.96 3.31
3% Li-C030, 2.01 3.39
3% Na-C0;0, 2.05 3.58
3% Li, Na-C050, 2.09 3.69

Fig. 4(d), increasing the exposed area to the gas and enhancing
gas detection capability and sensitivity. Image] was used to
evaluate the roughness of the surfaces of pure Co;0,, 3% Li-
C030,, 3% Na-Co30,, and 3% Li, Na-Co;0,, shown in Fig. 4(e-
h). The surface roughness of the 3% Li-Co30,4 and 3% Na-C030,
thin films is higher than that of pure Co;0, (Fig. 4(f) and (g))
because there are more cracks due to doping. Along with cracks,
the nucleation rate is higher in 3% Li, Na-Co30, (Fig. 4(h)),
causing the surface to be rougher. As a result, the surface area
and the response of the 3% Li, Na-Co,;0, thin films to gases is
higher.** Gwyddion software showed that the root-mean-square
roughness (Ryms) of Co30, thin films was 1.84 for pure Co30y,,
2.03 for 3% Li-Co30,, and 2.55 for 3% Na-Co;0,. In contrast, the
RMS roughness increased to 3.21 nm for 3% Li, Na-Co30,.
According to the earlier work, the surface area can also be
increased by making the 3% Li, Na-Coz;0, surface rougher. The
reason is that the 3% Li, Na-Co;0, has a higher roughness level,

36856 | RSC Adv, 2024, 14, 36852-36867
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which means that it covers more surface area than the other
thin films. This means that the response of the 3% Li, Na-Co;0,
sensor for gases is better than those of other Co;0, thin films.*
The homogeneous distributions of cobalt (Co), oxygen (O),
sodium (Na), and lithium (Li) in 3% Li, Na-Co30, thin film
nanoparticles were identified using EDX elemental mapping
shown in Fig. 4(i-1).

EDX analysis was used to determine the nanomaterial's
chemical purity and stoichiometry.* Fig. 5(a-d) depicts the EDX
spectra of the prepared pure Co30,, 3% Li-C030,, 3% Na-C030,,
and 3% Li, Na-Co;0,, respectively. The obtained result verified
the presence of a homogeneous distribution of Li" and Na* ions
within the Co;0, system. The peaks that appeared at around
0.8, 7.0, and 7.6 keV were related to the Co element, while
oxygen (O) was found to have a peak at 0.5 keV. Unfortunately,
because Li has a low atomic number, it can't be detected with
EDX, and there were no peaks related to it as previously
reported.® % According to the EDX spectrum, the peak at 1.04
keV confirms the presence of the Na element.*”

3.5. Current-voltage characteristics and dynamic response

Fig. 6(a—d) shows the current-voltage (I-V) characteristics of the
gas sensors over a voltage range of 0 to 10 V when the sensors
were exposed to synthetic air and a 5550 ppm concentration of
CO, at room temperature. The I-V curves depict the ideal ohmic
behavior of the sensors. Because the sensitivity of the gas sensor
is influenced by contact resistance, ohmic behavior is a very

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 SEM images for CozOy4 thin films: (a) pure CozOy,, (b) 3% Li-Co304, (c) 3% Na-CosO,4, and (d) 3% Li, Na-CozO,. Surface roughness for
Co304 thin films: (e) pure CozOy, (f) 3% Li-Co304, (g) 3% Na-Coz04, and (h) 3% Li, Na-CozO4. (i-1) EDX elemental mapping of 3% Li, Na-CozO4,.

important aspect of gas sensing.®*”° As shown in Fig. 6(a-d), the
presence of CO, increased the electrical resistance from 0.0049
to 0.0051 GQ, 0.34 to 0.4 GQ, 0.27 to 0.33 GQ, and 1.61 to 12.21
GQ for pure Co30,, 3% Li-C030,, 3% Na-Co30,4, and 3% Li, Na-
Co30,, respectively. Pure CozO, has a low sensitivity, almost
negligible, to CO,, while the responses of 3% Li-Co;0, and 3%
Na-Co;0,4 to CO, become obvious. The CO, response is further
enhanced in the case of 3% Li, Na-Co;0,, as seen in Fig. 4(d).
This confirms the gradient shown by the FTIR in the interaction
with CO,, where the 3% Li, Na-Coz;0, thin film surface showed
the highest interaction with CO,. During this study, the Co;0,
thin films were exposed to various concentrations of CO, gas
(1110, 3330, 5550, 7770, and 9990 ppm) balanced with air at
room temperature. Subsequently, the sensing parameters were
determined through an analysis of these figures. The observed
behaviors can be explained by the adsorption and desorption
processes occurring on the film's surface, which involve the
interaction between CO, molecules and adsorbed oxygen.
Depending on the nature of CO,, a non-polar gas, the resistance
of the sensor increases until it reaches a stable state. When the
supply of CO, gas is stopped and air is brought into the

© 2024 The Author(s). Published by the Royal Society of Chemistry

chamber system, the resistance of the sensor drops quickly until
it reaches its initial resistance. Fig. 6(e-g) shows that doping
with 3% Li and 3% Na, and co-doping with 3% Li, Na make the
sensor response better at a 9990 ppm gas concentration; the
resistance is much higher for 3% Li, Na-Co;0, than for 3% Na-
Co3;0,4 and 3% Li-Co;0,. So, the 3% Li, Na-Co;0, thin film is the
best CO, sensor compared to the 3% Na-Co;0, and 3% Li-C030,
thin films.

3.6. Sensor response, concentration sensitivity, and
response and recovery times

According to the dynamic response in Fig. 6(e-g), the sensor
response (R%) can be calculated using eqn (6) (ref. 71) and the
result recorded in Fig. 7(a).

Rco, — Rair

R% = Rair

% 100 (6)

where Rco, and Ry, are the measured resistances in CO, and air
environments, respectively. The value of R¢o, is calculated from
the dynamic response after a certain exposure time to CO,, and
the value of Ry;, is measured under the same conditions.”>”® As
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shown in Fig. 6, as the gas concentration increased, the sensi-
tivity and gas response of the Co;0, thin film also increased as
it was doped with 3% Li and 3% Na and codoped with 3% Li,
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Na. Specifically, the values remained low for the reaction of 3%
Na-Co;04 and 3% Li-Coz0, in Fig. 7(a). As the concentration
increased from 1110 ppm to 9990 ppm, the sensor response
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increased from 9.86% to 50% for 3% Li-Co3;0,4, whereas for 3%
Na-Co;0,, it increased from 32.3% to 58.3%. On the other hand,
the response values for 3% Li, Na-Coz;0, demonstrated an
enormous improvement, rising from 195.1% to 345.01%. This
enhancement is due to the increased sensitivity and surface
roughness.”*”® As illustrated in Fig. 7, the 3% Li, Na-Coz0,
sensor exhibited the most significant surface roughness, which
led to its superior ability to respond to CO, gas. Additionally, it
shows rapid response and recovery times. As shown in Fig. 7(b),
for the linearly fitted sensor response vs. CO, concentration
graph, the slope (concentration sensitivity) was computed to be
0.01668 ppm . The practical value of this linear relationship
extends to gas-sensing devices.” The relation between the gas
concentration and the estimated response time of the Co;0,
sensors is illustrated in Fig. 7(c). The response time is the
amount of time necessary for the change in relative resistance to
reach a point at 90% of its value adhering to exposure to CO,. In
addition, Fig. 7(d) shows the recovery time, indicating the
period required to acquire a resistance that is 10% greater than
its initial value.”” At a concentration of 9990 ppm, the response
times of 3% Li-Co;0, and 3% Na-Co;0, were 76 and 90.5 s,
respectively, whereas 3% Li, Na-Co;0, exhibited a response
time of 18.8 s. In the same way, the recovery times at a similar
concentration were 151 s and 92.6 s for 3% Li-Co;0, and 3% Na-
Co30y, respectively, and 16.4 s for 3% Li, Na-Co;0,. Based on

© 2024 The Author(s). Published by the Royal Society of Chemistry

the data gathered it can be concluded that codoping caused
a decrease in both the response and recovery times. The noticed
improvement is a result of the raised surface roughness of the
film. Surface roughness increases due to the formation of
cracks, which provide additional adsorption sites for gas
molecules.”® When CO, molecules come into contact with the
rough surface, they can chemisorb onto the active sites (such as
oxygen vacancies or defect sites).” Also, CO, molecules can
easily penetrate the crack structure, allowing for efficient
interaction with the sensor,* which has a beneficial impact on
the film's response to and recovery from CO, gas.**

3.7. Repeatability, and long-term stability

The repeatability of sensor responses is important for practical
application. Fig. 8(a) shows high repeatability for the 3% Li, Na-
Co30, sensor's response, which nearly remains constant after
exposure to CO, for 10 cycles at RT and 43% RH. Fig. 8(b) shows
the 3% Li, Na-Co;0, sensor's long-term stability for 30 days. It
maintains a sensor response of around 345.01% despite daily
exposure to 9990 ppm CO, at RT and 43% RH. This demon-
strated that the sensor was reliable and able to be used for
a long time. Overall, the results showed that the 3% Li, Na-
Co30, sensor is highly stable and repeatable when exposed to
CO, gas.
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and (c) sensor response under various relative humidity levels at RT.

3.8. CO, selectivity and relative humidity effect

A significant area of concern for metal oxide-based gas sensors
is selectivity. So selectivity is one of the most important factors
to take into consideration while assessing the features of gas
sensors. The selectivity of a sensor is determined by testing the
device with a range of gases and calculating the sensor response
ratio for each gas using eqn (7).

Rmher gas

Selectivity(n%) = x 100 (7)

target gas

To investigate the selectivity of the 3% Li, Na-Co;0, sensor,
we expose it to various gases such as N,, H,, and NH;. We then
analyze the sensor's dynamic response, calculate the sensor's
response for each gas, and finally calculate the ratio of the
sensor's response to the target gas, CO,. According to Fig. 9(a),
the 3% Li, Na-Co;0, sensor was the most sensitive to CO,
compared to all the gases that were tested (Rco, > R, > Ry, >
Ryy,). Fig. 9(b) shows the selectivity for different gases along
with CO,, with the percentages for N,, H,, and NH; being
69.25%, 58.4%, and 32.05%, respectively.

To study the impact of humidity, the sensing test of the 3% Li,
Na-Coz0, sensor was carried out under relative humidity levels
ranging from 43% to 90%. It emerged that the gas response
decreased with relative humidity, as seen in Fig. 9(c). There have

36860 | RSC Adv, 2024, 14, 36852-36867

(a) The sensor response and (b) selectivity of the 3% Li, Na-CozO4 sensor for several gases at 9990 ppm concentration, RT and 43% RH,

also been many studies reporting an identical influence of
humidity on gas detection.®* Surface-sensitive Co;0, sites were
decreased by the reaction with water molecules.®* Consequently,
3% Li, Na-Co30, showed low gas reactivity to CO, as the humidity
increased. Therefore, significant work needs to be done in the
future to lessen the impact of humidity on the sensing capabilities
of 3% Li, Na-Co30, sensors.

3.9. Sensor detection and quantification limits, and signal to
noise ratio

The limit of detection (DL) of the sensor was calculated using
the standard deviation (SD) and the slope of the figure depicting
sensor response percentage relative to gas concentration,
Fig. 7(a), using eqn (8).**

_ 3xS8D

DL
slope

(8)

The DL for 3% Li-Coz0, was 2.899 ppm as the slope was
0.00475 ppm ™" and the SD was 0.00459, but for 3% Na-Co;0,
the DL was determined to be 1.83 ppm as the slope was 0.01621
ppm " and the SD was 0.00989. On the other hand, with great
performance, the detection limit for 3% Li, Na-Co;0, was
determined to be 1.638 ppm, as the slope was 0.00295 ppm "
and the SD was 0.00161.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Comparison of CO, gas detection from earlier research investigations utilizing nanostructured semiconductor metal oxide sensors and

the current work

Sensor Operating temperature (°C) Concentration (ppm) Sensor response (R%) References
Co,0, 150 10 000 ppm 30 33
Sn0,-Co30,4 RT 500 ppm 13.68 34
LnBaCo,05,5 300 400 ppm 4 35
ZnO/CNTs RT 16 650 ppm 22.4 72
Ba-CuO RT 11100 ppm 9.4 73
ZnO: 4.0 at% La RT 22200 ppm 114.22 75
p-Si/MoO; 250 100 ppm 12.08 88
GO RT 50 ppm 29 89
BaTiO,-CuO 300 5000 ppm 9 90
Au-La,03/Sn0O, 300 100 ppm 10.1 91
Pure SnO, RT — 78.57 92
CuO/ZnO (C/Z) 375 2500 ppm 47 93
3% Li, Na-C030,4 RT 9990 ppm 345.01 This work

Also, we have determined the sensor's limit of quantification
(QL), which refers to the minimum number of CO, molecules
that the sensor can detect and can be measured using eqn (9).%°

QL — 10 x SD ©)

slope

The QL for 3% Li-Co30, was 9.66 ppm, while the QL for 3% Na-
Co30, was determined to be 6.101 ppm. However, the QL for 3%
Li, Na-Co30, was determined to be 5.46 ppm. The DL and QL
results indicate that the 3% Li, Na-Co;0, film is the most effective
one since it has the lowest detection and quantification limits.

The signal-to-noise ratio (S/N) was determined by applying
eqn (10), involving the peak height (H) at the lowest concen-
tration and the full width at half maximum (FWHM) (h).*”

S 2H

N 7 (10)

The S/N for 3% Li-Co;0, was 2 as the & was 7 cm and the H
was 7.01 cm, but for 3% Na-Co;0,, the S/N was determined to be
2.54 as the 4 was 10 cm and the H was 12.53 c¢cm, while the S/N
for 3% Li, Na-Co;0, was determined to be 1.85 as the z was
12.4 cm and the H was 11.51 cm.

The results obtained for DL, QL, and S/N show that the
sensor with 3% Li, Na-Co3;0, is the most effective, as indicated
by its better results, possessing the lowest detection and
quantification limits in addition to the lowest signal-to-noise
ratio. Moreover, Table 3 compares the data of previous
research on sensors used for CO, gas, confirming the enhanced
sensing abilities of our improved sensor,??-3%727%75,88-93

3.10. Gas sensing and relative humidity effect mechanism

The change in electrical resistance of the sensing material plays
an important role in the chemiresistive gas sensing process of
metal oxide semiconductors (MOX). When gases react with the
surface of MOX, charge carriers move between the gas and
MOX. This changes the electrical conductance based on the type
of majority carriers of MOX and the type of gas the MOX is

© 2024 The Author(s). Published by the Royal Society of Chemistry

exposed to (oxidizing or reducing). When reducing gases react
with p-type semiconductors, sensor resistance increases.”

Doping with Li and Na shifts the band gap of the Co;0, thin
film from 1.96 to 2.09 eV, thereby decreasing the inherent
carrier concentration.”® The enlarged band gap increases the
sensor's sensitivity by intensifying the impact of gas adsorption
on the surface. Because there are fewer free carriers, the base-
line conductivity goes down. This makes the sensor more
sensitive to changes in surface charge, which makes gas
response easier.”® Furthermore, co-doping induces defects,
including oxygen vacancies, which significantly influence the
material's electrical conductivity. These defects increase the
number of active sites for gas adsorption, subsequently
changing conductivity. When gas molecules interact with these
active sites, they change the resistance of the thin film and the
way charges move through it. This results in an observable
sensing response.”” This is clearly confirmed from Fig. 6, where
the sensor's resistance increased from 0.0049 to 1.61 GQ in air
and from 0.0051 to 12.21 GQ in a CO, environment with the
codoping of 3% Li and Na.

When Co;0, as a p-type semiconductor is exposed to air,
oxygen is adsorbed at the surface. The oxygen molecules capture
free electrons from the conduction band of Co;0, and form
ionized oxygen species (O, O, , and O, ) depending on the
operating temperature as shown in eqn (11)—(13), resulting in
a positively charged surface leading to an increased hole accu-
mulation layer thickness, which results in decreased resistance
of Co30,, depicted in Fig. 10(b).*®

Onads) T € = Onaas)” for temperature <100 °C (11)
Osadasy t e — 2045 for a temperature range of
100-300 °C (12)

Opdasy te — O(ads)z’ for temperatures higher than 300 °C

(13)

As shown in Fig. 6(e-g), the resistance quickly increased after
the interaction between CO, and the Co;0, sensor, which was

RSC Adv, 2024, 14, 36852-36867 | 36861
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Fig. 10 The energy band structure of the CosO,4 surface (a) before any reaction, (b) when exposed to oxygen, and (c) when CO, gas is injected
into the chamber. The term “Ec" denotes the location of the conduction band, “Er" denotes the location of the Fermi level, “Ey" denotes the
location of the valence band, “g” denotes the charge of the electron, and “qVs” denotes the potential barrier.

attributed to an adsorption/desorption mechanism of CO, on
the surface of the Co;O, sensor. When CO, gas enters the
chamber, it gets adsorbed onto the Co;0, sensor's surface. This
CO, then reacts with ionized oxygen species present on the
surface, as illustrated in eqn (14) and (15). This reaction releases
free electrons back to the sensor surface, where they recombine
with holes, leading to a reduction in the hole accumulation
layer (HAL) thickness. Consequently, this increases the resis-
tance of the Co;0, sensor, as shown in Fig. 10(c).*

COZ(gas) - Coz(ads) (14)

(15)

COsads) T Oz(ads) = COgas) + 205(gas) + 26~

After the CO;0, sensor reacts with oxygen molecules and
forms oxygen species at room temperature, H, gas is injected
into the chamber. H, gas reacts with oxygen species, and the
produced free electrons recombine with holes, as described by
eqn (16) and (17):

H2 + O(ads)7

— ¢ +H,0 (16)

H2 + O(ads)27 — 2 + HQO (17)

As a result of this process, the concentration of holes and the
thickness of the HAL decrease, leading to an increase in sensor
resistance.'”

When the CO;0, sensor encounters NH; gas, NH; reacts
with oxygen species as shown in eqn (18), which produces N,
H,O0, and free electrons, and these electrons migrate back to the
sensor's surface, causing an increase in resistance due to elec-
tron-hole recombination.'”

4NH; + 3045~ — 2N, + 6H,0 + 3¢~ (18)

when the Co;0, sensor encounters N, gas, N, interacts with the
oxygen species adsorbed on the sensor's surface, resulting in

36862 | RSC Adv, 2024, 14, 36852-36867

the formation of NO and the release of free electrons, as
depicted in eqn (19). These free electrons migrate to the sensor's
surface, leading to a reduction in the hole accumulation layer
(HAL) thickness and an increase in the sensor's resistance.'*

N, + 2045y — 2¢ + 2NO (19)

Owing to humidity in gas sensing mechanisms, water
molecules (H,0) split into hydroxyl ions (OH ™) and protons (H")
when they interact with the metal-oxide surface. The adsorbed
H,O0 influences the active sites of the adsorption mechanism. At
low humidity levels, H,O ions chemisorb at the active sites of
the CO;0, surface, forming OH~ and H'. These hydroxyl ions
react with oxygen and form root hydroxyl groups; on the other
hand, protons react with oxygen and form secondary hydroxyl
ions (OH").2* At high humidity levels, water molecules interact
with gas molecules, which decreases the amount of adsorbed
oxygen species and gas molecules.'*

4. Conclusion

The spin-coating approach effectively generated thin films of
3% Li-C030,4, 3% Na-Co3;0,, and 3% Li, Na-Co;0, at lower
temperatures. We utilized XRD, SEM, EDX, FTIR, and UV-vis
optical absorption spectroscopy techniques to investigate the
impact of doping and codoping on the surface morphology,
phase purity, and band gap energy of the thin films. The
prepared Co;0, thin films were used as CO, sensors at RT. The
sensor response increased from 50% for 3% Li-Co3O, and
58.3% for 3% Na-Co;0, to 345.01% for 3% Li, Na-Co;0, for
a 9990 ppm concentration at RT and RH, which is higher than
those of most metal-oxide-based sensors. By codoping with 3%
Li and 3% Na, the response and recovery times of the Co;0,
sensor were significantly reduced to 18.8 s and 16.4 s, respec-
tively. The 3% Li, Na-Co;0, sensor exhibited excellent respon-
siveness with a detection limit of 1.638 ppm, a quantification

© 2024 The Author(s). Published by the Royal Society of Chemistry
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limit of 5.46 ppm, and a signal-to-noise ratio of 1.85. The sensor
operated efficiently at a relative humidity of 43% and an
ambient temperature of 30 °C. Additionally, this sensor
exhibited superior selectivity for CO, over gases like N,, H,, and
NH;. Overall, our research demonstrates that 3% Li, Na-Co30,
thin films have superior sensor response and selectivity as CO,
gas sensors, giving an attractive option for real-time indoor air
quality monitoring at RT and therefore helping the global effort
to combat climate change. While our study demonstrates
effective CO, sensing, practical applications have some limita-
tions. Further testing under diverse environmental conditions
is necessary to validate sensor robustness. Ensuring long-term
stability and durability is crucial, as continuous operation
may lead to degradation. Additionally, the precise control
required for thin film fabrication may pose challenges for large-
scale manufacturing. Developing scalable techniques and
exploring cost-reduction strategies are essential for broader
adoption.
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