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Damnacanthus indicus is a widely used folk medicine in China, renowned for its various bioactivities. The
key active components, anthraquinones, have not been comprehensively profiled due to their complex
chemical nature. Establishing a high-throughput strategy to systematically characterize these
anthraquinones is essential. Additionally, the cultivation of D. indicus across various provinces results in
significant quality differences in the harvested herbs. Thus, developing an effective strategy to distinguish
herbs from different regions and identify characteristic chemical markers for quality evaluation and
control is crucial. In this study, a strategy based on ultra-high performance liquid chromatography-mass
spectrometry (UHPLC-MS) was employed to systematically characterize the chemical composition of D.
indicus. Mass spectrometry molecular networking was utilized to rapidly recognize and identify
anthraquinones. Principal component analysis (PCA) was applied to cluster the herbs from different
habitats, while partial least square discriminant analysis (PLS-DA) was used to screen for chemical
markers distinguishing herb origins. The result showed that a total of 112 anthraquinones and 66 non-
anthraguinone compounds were identified in D. indicus. The biosynthetic pathways of anthraquinones in
this herb were proposed. PCA grouped 15 batches of herbs from different origins into three clusters,
corresponding to the climate types of their habitats. PLS-DA identified 27 significant chemical markers
that could robustly distinguish the geographical origins of the herbs. This study provides a valuable
reference for the quality evaluation and control of D. indicus and offers a scientific basis for the
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diverse bioactivities, including anticancer,’ antioxidant,* anti-
bacterial," antiviral,’® antimalarial,”® antidiabetic,’* and neu-
roprotective'® effects. However, due to the complex chemical
composition of D. indicus, few investigations have comprehen-

1. Introduction

Damnacanthus indicus C. F. Gaertn. (Rubiaceae) is an evergreen
shrub that grows throughout eastern Asia. The whole plant has

been used as a folk medicine in China since ancient times, and
is known for its ability to relieve rheumatism, activate blood
circulation, and alleviate pain." Modern pharmacological
research has validated its anti-inflammatory,> antioxidant,* and
antibacterial® properties. To date, more than 90 compounds
have been isolated and identified from this herb.*® Among
these, anthraquinones are particularly significant due to their
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sively profiled its anthraquinone composition. Thus, estab-
lishing a high-throughput strategy to systematically
characterize the anthraquinones, along with other chemical
components in this plant is both meaningful and challenging.

Ultra-high performance liquid chromatography coupled
with mass spectrometry (UHPLC-MS) is a sophisticated analyt-
ical method extensively utilized for the characterization of plant
metabolites.'® This technique provides exceptional sensitivity
and selectivity and crucial structural insights, while circum-
venting the arduous and lengthy procedures associated with the
isolation and purification of individual compounds. Molecular
networking facilitated by mass spectrometry is an invaluable
approach for the identification of compounds, as it effectively
identifies and groups those compounds with analogous chem-
ical architectures.” For the current investigation, a compre-
hensive strategy was devised, leveraging UHPLC/QTOF-MS and
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molecular networking, to expedite the annotation process of
anthraquinones present in D. indicus.

Moreover, D. indicus is widely cultivated in many provinces in
China, including Hunan, Jiangxi, Zhejiang, Yunnan, Guangxi,
Guangdong, and Guizhou.' The differing natural conditions,
such as sunlight, temperature, humidity, and soil, across these
regions result in significant quality variations in the harvested
herbs. Untargeted metabolomics, capable of high-throughput
analysis of multicomponent and multisample compositions,
enables the identification of chemical components.’® Conse-
quently, a metabolomics-based strategy was employed to
discriminate herbs from different habitats and identify charac-
teristic chemical markers for quality evaluation and control.

As a result, 112 anthraquinones and 66 non-anthraquinone
compounds were identified or tentatively identified in D. indi-
cus. The identified anthraquinones were classified into three
types based on their structures: rubiadin-type, emodin-type,
and other type. The biosynthetic pathway of anthraquinones
was proposed based on the identified compounds. Regarding
herb discrimination, 15 batches of herbs were unambiguously
clustered into three groups by their chemical composition,
correlating well with the three climate types of their original
habitats. Additionally, 27 compounds were identified as
significant chemical markers for distinguishing the internal
quality of D. indicus. To our knowledge, this is the first study to
systematically characterize anthraquinones and analyze the
chemical composition of D. indicus. The findings provide
crucial data for its pharmacological research and serve as
a valuable reference for developing quality control and evalua-
tion methods for this herb.

2. Materials and methods
2.1. Materials and reagents

Fifteen batches of D. indicus samples with whole plant were
collected from seven provinces of China (Table 1). All the herb
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samples were authenticated with morphological and histolog-
ical methods by Prof. Yuan Yuan (Institute of Chinese Materia
Medica, China Academy of Chinese Medical Sciences). Voucher
were preserved at the authors' laboratory.

The chemical standards alizarin, lucidin, rubiadin and
physcion with purity =98% was purchased from Shanghai
Standard Technology Co., Ltd (Shanghai, China); 2-
hydroxymethyl-anthraquinone, rubiadin 1-methyl ether,
anthragallol, kaempferol and genistein-d, with purity =98%
was from Chengdu Chroma-Biotechnology Co., Ltd (Chengdu,
China). Acetonitrile and methanol (all MS grade) were bought
from Fisher Scientific (Fair Lawn, NJ, USA), formic acid (MS
grade) was from Merck (Rahway, NJ, USA), and dimethyl
sulphoxide (DMSO, AR grade) was from Solarbio (Beijing,
China). Ultra-pure water was prepared with a Millipore-Q water
purification system (Bedford, USA).

2.2. Sample preparation

Following the initial steps of weighing and grinding, 100 mg of
air-dried D. indicus herb powder were carefully weighed and
placed into 2 mL Eppendorf tubes. To each tube, 20 pL of
a genistein-d, solution, serving as the internal standard at
a concentration of 500 pg mL ™" and 980 uL of methanol were
added. The mixture was then subjected to vigorous vortexing for
a duration of 10 min to ensure thorough mixing. Subsequently,
the extraction process involved sonication for 30 min, followed
by centrifugation at a speed of 10000 rpm for 10 min at
a temperature of 4 °C. After centrifugation, the supernatant,
which is the upper, less dense liquid layer, was carefully
collected and transferred into fresh 2 mL tubes. To ensure the
integrity and clarity of the samples, they were filtered using
a 0.22 um nylon membrane syringe filter (Sterlitech, Kent, USA).
For the establishment of a quality control measure, a quality
control (QC) sample was created by pooling equal volumes of
the extracted solutions from all samples, allowing for a consis-
tent benchmark throughout the analysis.

Table 1 Habitat information of 15 batches of Damnacanthus indicus herb

Sample Source Regional division Climate type Collection time
HN1 Hunan Central-east China Subtropical humid monsoon climate 2023/11/25
HN2 Hunan Central-east China Subtropical humid monsoon climate 2023/11/30
HH3 Hunan Central-east China Subtropical humid monsoon climate 2023/11/28
HN4 Hunan Central-east China Subtropical humid monsoon climate 2023/11/20
JX1 Jiangxi Central-east China Subtropical humid monsoon climate 2023/12/20
X2 Jiangxi Central-east China Subtropical humid monsoon climate 2023/11/06
JX3 Jiangxi Central-east China Subtropical humid monsoon climate 2023/12/30
ZJ1 Zhejiang Central-east China Subtropical humid monsoon climate 2023/10/11
Z]2 Zhejiang Central-east China Subtropical humid monsoon climate 2023/10/26
YN1 Yunnan Southwest China Subtropical plateau monsoon 2023/09/17
climate
YN2 Yunnan Southwest China Subtropical plateau monsoon 2023/09/01
climate
GZ1 Guizhou Southwest China Subtropical plateau monsoon 2023/12/12
climate
GD1 Guangdong South China Subtropical monsoon climate 2023/10/23
GX1 Guangxi South China Subtropical monsoon climate 2023/11/16
GX2 Guangxi South China Subtropical monsoon climate 2023/11/18
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2.3. UHPLC/QTOF-MS analysis

The UHPLC separation was performed on a XionLC platform
(AB Sciex, Framingham, USA), using an ACQUITY UPLC BEH
Cys column (100 x 2.1 mm, 1.7 um; Waters, Milford, MA, USA)
at a temperature of 35 °C. The mobile phase comprised a 0.1%
formic acid aqueous solution (phase A) and 0.1% formic acid in
acetonitrile (phase B), with a gradient elution program: 15-30%
B from 0 to 8 min, 30-70% B from 8 to 23 min, and 70-100% B
from 23 to 30 min. The flow rate was maintained at 0.3
mL min ", and the injection volume was 2 pL.

The X500R QTOF mass spectrometer (AB Sciex) was interfaced
with the UHPLC via an electrospray ionization (ESI) source. The
optimized source and gas parameters included: nebulizing gas
and auxiliary gas at 55 psi, curtain gas at 35 psi, and source
temperature at 550 °C, with a CAD gas setting of 7. The experi-
ment utilized the information-dependent acquisition (IDA)
method in positive ion mode. MS parameters were set as follows:
spray voltage, 5500 V; declustering potential (DP), 60 V; DP spread,
0V; collision energy (CE), 10 V; CE spread, 0 V; accumulation time,
0.2 s; mass range, 100-1300 Da. The MS/MS experiment applied
dynamic background subtraction and excluded former candidate
ions for 6 s after 2 occurrences, with a maximum of 12 candidate
ions. MS/MS parameters were: DP, 60 V; DP spread, 0 V; CE, 30 V;
CE spread, 15 V; accumulation time, 0.05 s; mass range, 50—
1300 Da. Each sample was analyzed in triplicate.

2.4. Data processing and component identification

For the processing of nontargeted metabolomics data acquired
with UHPLC-MS, a combined workflow utilizing MS-DIAL'®
and MS-FINDER" (Tokyo University of Agriculture and Tech-
nology, Tokyo, Japan) was developed. Initially, the raw data
were deconvoluted using MS-DIAL v5.2. Data collection
parameters included an MS* tolerance of 0.01 Da and an MS?>
tolerance of 0.025 Da. Peak detection was applied with
a minimum peak height amplitude of 1000 and a mass slice
width of 0.1 Da. Deconvolution settings were: sigma window
value of 0.5 and an MS> abundance cutoff of 5 amplitudes. The
retention time tolerance was set at 0.1 min. The resulting .mgf
files were then exported to MS-FINDER v3.61 for compound
identification. The chemical formula for each peak was
determined based on the accurate mass of designated
protonated molecular ions or adduct ions using the built-in
formula predictor and their corresponding isobaric molec-
ular ions. The element composition was restricted to C, H, O,
and N. MS" and MS? tolerances were set to 5 ppm and 10 ppm,
respectively. Potential candidates for each compound were
identified by consulting a self-built plant-derived anthraqui-
nones database (383 compounds)**>* and the chemical
components database (80 compounds) of D. indicus. The
results were ranked by similarity scores, calculated by
comparing the experimental MS> spectra with those predicted
in silico. Top-ranked candidates were chosen based on expe-
rience; however, if key fragments could not be well explained
or if the scores were identical, the most plausible structure
among the candidates was manually selected. For peaks with
constitutional isomers, retention times were assigned based
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on C log Pvalues, with compounds having higher C log Pvalues
showing longer retention times on the reverse-phase column.

2.5. Mass spectrometry molecular networking

The molecular network for anthraquinones was meticulously
assembled using the data processed by MS-DIAL and the online
Feature-Based Molecular Networking (FBMN) tool available on
the Global Natural Products Social Molecular Networking (GNPS)
platform.?*** The MS> spectra were refined by applying a filter
that retained only the six most abundant fragment ions. Preci-
sion was ensured by setting the precursor ion mass tolerance to
0.005 Da and the MS” fragment ion tolerance to 0.01 Da. In
constructing the network, connections, or edges, were estab-
lished only if they had a cosine score exceeding 0.6 and matched
more than five peaks. Additionally, an edge was maintained
between two nodes only if each node was among the top 30 most
similar nodes to the other. To manage the complexity of the
network, the maximum size of a molecular family was capped at
200. The resulting spectra within the network were then cross-
referenced against the GNPS spectral libraries. From the
networks generated, only three were conclusively identified as
anthraquinone-related through multiple library-matched nodes.
These three networks were subsequently exported, consolidated,
and visualized using Cytoscape v3.10.2 (National Human
Genome Research Institute, Bethesda, USA).

2.6. Statistical analysis

After data processing by MS-DIAL, a list of retention times with
corresponding peak areas for all the detected peaks from each
sample was exported for statistical analysis. Principal compo-
nent analysis (PCA) and partial least square discriminant
analysis (PLS-DA) were performed by SIMCA v17.0 (Sartorius
Stedim Data Analytics AB, Umed, Sweden) to illuminate the
variances in chemical composition among herb samples from
different habitats. All variables were standardized before
multivariate statistical analysis. The distinct cluster separation
in PCA score plots means they are differentiated. The method
repeatability was evaluated by investigating the clustering
degree of the QC samples of multiple replicates. To identify the
components which were significantly contributed to the
discrimination, the variables with variable importance in
projection (VIP) greater than 1 (p-value < 0.05) were kept as the
potential chemical markers. Univariate statistics were
completed by one-way analysis of variance (ANOVA) built in
SIMCA, and statistical differences were considered significant
at a p-value below 0.05. TBtools v2.106 was used to acquire the
heatmap to visualize the peak areas of chemical markers and
the dendrograms of cluster analysis of herbs from different
habitats.

3. Results

3.1. Mass spectrometry molecular network of
anthraquinones

As shown in Fig. 1, the mass spectrometry molecular network
was analyzed to illustrate the structural similarity and
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Fig. 1 Mass spectrometry molecular network of anthraquinones in Damnacanthus indicus. Each node represents a compound, and each

connecting line between nodes denotes an edge.

derivation relationships of compounds in D. indicus. The
molecular network incorporated a total of 20 760 nodes, form-
ing 182 molecular clusters and 17 548 unconnected nodes. The
recognized clusters could be categorized into three subnetworks
of anthraquinones: rubiadin-type, emodin-type, and other type.
Upon completion of the compound identification process, each
of these nodes was visually enhanced by being highlighted in
a variety of colors within the network. This color-coding
approach serves to provide a clearer and more distinct repre-
sentation of the different anthraquinone subtypes.

3.2 Identification of chemical components in D. indicus

The total ion current chromatogram (TIC) in positive mode with
annotated peaks are shown in Fig. 2. Through the molecular
network and high-resolution mass spectrometry (HR-MS)-based
systematic identification strategy, a total of 112 anthraquinones
were identified or tentatively identified. One of the representa-
tive rubiadin-type anthraquinones, lucidin, was selected as the
reference compound to investigate the MS”> fragmentation
patterns of this type of compound (Fig. 3). In the positive ion
mode, the [M + H|" quasi-molecular ion m/z 271.0611 of lucidin
(C15H1¢0s5) could be readily formed. The cleavage of the middle
ring of the parent ion led to the fragment ion m/z 105.0353,
which could also undergo dehydration (losing H,O) to produce
the fragment ion m/z 253.0506. Continuous decarboxylation

37914 | RSC Adv, 2024, 14, 379M-37924

(losing CO) of the latter formed fragment ions m/z 225.0568,
197.0618, 169.0669, and 141.0718. Further dehydration of
fragment m/z 225.0568 produced fragment m/z 207.0464. The
homolytic cleavage of fragments m/z 197.0618 and 141.0718 led
to the cleavage of methylene radicals, yielding fragments m/z
183.0452 and 127.0557, respectively. By elucidating the frag-
mentation pattern of lucidin, 50 other rubiadin-type anthra-
quinones were identified, with their chemical structures shown
in Table 2 and related information listed in Table S1.}

Physcion was selected as the reference compound to inves-
tigate the MS” fragmentation patterns of emodin-type anthra-
quinones (Fig. 4). In the positive ion mode, the [M + H]" quasi-
molecular ion m/z 285.0782 of physcion (C;¢H;,05) was readily
formed. Dehydration (losing H,0) produced the fragment ion
m/z 267.0680. Continuous decarboxylation (losing CO) of frag-
ment m/z 267.0680 formed the fragment ions m/z 239.0722,
211.0772, 183.0837, and 139.0563. Furthermore, cleavage of the
right ring and loss of a radical from the parent ion generated the
fragment m/z 242.0593, and its subsequent decarboxylation and
dehydration produced fragments m/z 214.0652 and 224.0503,
resp. Further decarboxylation of the latter yielded the fragment
m/z 196.0537. Based on the fragmentation pattern of physcion,
a total of 50 other emodin-type anthraquinones were identified,
with their chemical structures shown in Table 2 and related
information listed in Table S1.}

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2

Total ion current chromatogram (TIC) of Damnacanthus indicus extracts in positive mode with annotated peaks.
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2-Hydroxymethyl-anthraquinone, an anthraquinone of other
type, was selected to investigate the MS” fragmentation patterns
(Fig. 5). The [M + H]" quasi-molecular ion m/z 239.0721
(C15H1003) was readily formed. Dehydration (losing H,O) yiel-
ded the fragment ion m/z 221.0618, which was further decar-
boxylated to generate the fragment m/z 193.0666. The natural
loss of one molecule of formaldehyde (HCHO) led to the
production of the fragment ion m/z 209.0616, and further
cleavage of the middle ring generated the same fragment m/z
153.0718. Similarly, 12 additional anthraquinones of other type
were identified, with their chemical structures shown in Table 2
and related information listed in Table S1.}

© 2024 The Author(s). Published by the Royal Society of Chemistry

In addition to anthraquinones, 66 non-anthraquinone
compounds were also identified or tentatively identified.
These include 12 phenylpropanoids, 9 triterpenoids, 9 terpe-
noids, 5 sesquiterpenoids, 4 alkaloids, 5 fatty acids, 5 organic
acids, 3 steroids, 3 monoterpenoids, 2 flavonoids, 2 tetraterpe-
noids, 3 amino acids, and 4 esters. Their related information is
listed in Table S1.7

3.3 Proposed biosynthetic pathway of anthraquinones in D.
indicus

In plants, anthraquinones are primarily synthesized through
two distinct pathways: the shikimic acid (SA) pathway and the

RSC Adv, 2024, 14, 3791-37924 | 37915
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Fig. 4 Proposed fragmentation pattern in the positive-ion mode (a) and MS? spectrum (b) of physcion. The [M + H]* quasi-molecular ion is

shown in blue.

polyketone pathway. The SA pathway is responsible for the
production of rubiadin-type anthraquinones, whereas the pol-
yketone pathway generates emodin-type anthraquinones.>
Fig. 6 illustrates the proposed biosynthetic pathway of some
typical dihydrochalcones identified in D. indicus.

The SA pathway involves several metabolic modules,
including the tricarboxylic acid (TCA) cycle, the mevalonate
(MVA) pathway, and the methyl erythritol phosphate (MEP)
pathway. The first module of this pathway is the synthesis of 1,4-
dihydroxy-2-naphthoic acid (DHNA). Starting with phosphoenol
pyruvate (PEP) and erythrose-4-phosphate (E4P) as substrates,
a series of enzyme-catalyzed reactions produce isochorismic
acid (IA). IA, along with a-ketoglutarate from the TCA cycle, then

© 2024 The Author(s). Published by the Royal Society of Chemistry

participates in a three-step process to form DHNA, which
constructs the A and B rings of the anthraquinone nucleus. The
second module generates 3,3-dimethylallyl diphosphate
(DMAPP). DMAPP can be synthesized from isoprenyl diphos-
phate (IPP) via the MVA pathway or from 4-hydroxy-3-methyl-
butenyl-1-diphosphate (HMBPP) via the MEP pathway, both
involving multiple steps. DMAPP, a crucial precursor in
anthraquinone biosynthesis, is primarily produced through the
MVA pathway in the cytoplasm and the MEP pathway in the
plastid. The complete anthraquinone three-ring structure is
synthesized from DHNA and DMAPP through additional reac-
tions. Subsequently, various enzymes catalyze the production of

rubiadin-type anthraquinones. This includes alizarin,
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anthragallol, and xanthopurpurin via oxidation; lucidin, dam-
nacanthol, lucidin w-methyl ether, rubiadin, and rubiadin 1-
methyl ether via methylation; munjistin and nordamnacan-
thal through further oxidation; damnacanthal via additional
methylation; and rubiadin-3-O-glucoside through glycosylation.

In the polyketone pathway, acetyl-CoA and malonyl-CoA
serve as substrates for a series of condensation reactions
mediated by chalcone synthase, resulting in the elongation of
the carbon chain and ultimately forming an octa-ketide
compound. This octa-ketide undergoes aldolization, dehydra-
tion, enolization, and/or reduction to yield intermediates, fol-
lowed by multi-step reactions to produce endocrocin anthrone
and chrysophanol anthrone. Subsequent oxidation leads to the
formation of endocrocin, chrysophanol, and aloe-emodin-2-
hydroxyl, while physcion-2-acety is produced through dehydra-
tion and methylation. Decarboxylation yields emodin and
physcion, further oxidation produces xanthorin, and glycosyla-
tion results in emodin-1-O-glucoside, franguloside, and phys-
cion-1-O-glucoside.

3.4 Herb discrimination and chemical marker discovery

The multivariate statistical analysis, based on the characterized
chemical components, was utilized to elucidate the differences
between the D. indicus herb samples. As illustrated in the PCA
score plot (Fig. 7a), the three replicates of the QC samples
clustered closely together near the origin, indicating the high
repeatability of the analytical method and the reliability of the
acquired data. The points representing the seven herb samples
were distinctly grouped into three clusters. Notably, the

View Article Online

RSC Advances

clustering results corresponded well with the geographic
regions of the herb origins, including Hunan-Jiangxi-Zhejiang,
Guangdong-Guangxi, and Yunnan-Guizhou.

The PLS-DA score plot (Fig. 7b) further clarified the clus-
tering of the 15 herb samples into three distinct groups
according to their habitats, showing greater separation between
the groups compared to the PCA results. The validity of the PLS-
DA model was confirmed by a cross-validation with 200
permutations (R* < 0.33, Q* < —0.537) (Fig. 7c). Key chemical
components contributing to the differentiation of the herb
samples were identified based on their significant VIP values
and substantial between-group variance (VIP > 1 and p-value <
0.05). These 27 robust components include 1-O-glucoside-2,6,8-
trihydroxyl-3-methyl-anthraquinone (4), xanthopurpurin (37),
norjuzunal (40), franguloside (45), 3,6-dihydroxyl-1-methoxyl-2-
hydroxymethyl-anthraquinone (47), ophiohayatone A (51), dig-
iferruginol (58), 1,6-dihydroxyl-2,5-dimethoxyl-anthraquinone
(61), 1,5-dihydroxyl-3-carboxy-anthraquinone (79), 1-for-
mylanthraquinone (86), 2,7,8-trihydroxyl-1-methoxyl-3-methyl-
anthraquinone, obtusifolin-6-hydroxyl (95), rubiadin 1-methyl
ether (97), 1-hydroxyl-2-carbaldehyde-anthraquinone (102), 1,5-

dihydroxy-2-methoxy-9,10-anthracenedione (105), munjistin
(119), 1,5-dimethoxyl-2-methyl-anthraquinone  (123), 1,3-
dihydroxyl-5,6-dimethoxyl-2-methyl-anthraquinone (126),

rubiadin (128), 7-methoxyanthra[1,2-d]-1,3-dioxole-6,11-dione
(138), 1-hydroxy-8-methoxyl-2-methyl-anthraquinone (151),
deacetylasperuloside (3), p-coumaric acid (17), 4-oxo-B-ionone
(21), methyl ferulate (34), 13-HOTE (152), and botulin (159). The
majority of these compounds, specifically the first 21, are
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Fig. 7 Herb discrimination of Damnacanthus indicus from different habitats based on characterized chemical components and screening for
chemical markers. PCA (a) and PLS-DA (b) score plots of herbs collected from 15 different habitats; (c) permutation test for PLS-DA model; (d)
receiver operating characteristic (ROC) curves and area under the curves (AUCs) of chemical markers for validating effectiveness in distinguishing

herbs from various habitats.
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Fig. 8 Heatmaps visualizing comparison of contents of significant
chemical markers with cluster dendrograms for Damnacanthus indi-
cus from different habitats. Asterisks denote anthraquinones.

anthraquinones. The effectiveness of them in distinguishing
samples from various habitats was further corroborated by
receiver operating characteristic (ROC) curve analysis, with all
compounds displaying an area under the curve (AUC) greater
than 0.8 (Fig. 7d).

3.5 Content variance of chemical markers identified in D.
indicus for herb discrimination

To further quantitatively evaluate the contribution of each
potential chemical marker, a heatmap were generated based on
the peak areas of each compound (Fig. 8). These metric colors
revealed distinct differences in the content of these compounds
among herbs derived from different habitats. Additionally, the
hierarchical dendrograms from cluster analysis further
corroborated the results of PCA and PLS-DA. Consequently, the
above-mentioned 27 compounds could be regarded as the most
critical chemical markers for discriminating the internal quality
of D. indicus.

4 Discussion

Quality control of herbs is essential for ensuring their clinical
efficacy and forms the bedrock of modern traditional Chinese
medicine (TCM) research. This domain encompasses a multi-
dimensional, multi-faceted, rigorous, and systematic analyt-
ical framework.>*** From the collection, processing, and storage
of herbs to the precise identification and quantitative analysis
of active ingredients, quality control guarantees the safety,
efficacy, and stability of TCM.>?

D. indicus, a historically significant and widely used folk
medicine, requires meticulous quality control research. This
plant comprises a variety of bioactive compounds, with
anthraquinones being of particular interest due to their notable
pharmacological properties. This class of anthraquinone
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compounds exhibits anti-inflammatory, antioxidant, anti-
tumor, antiviral and other potential. Therefore, comprehensive
chemical constituent analysis, particularly the qualitative and
quantitative assessments of anthraquinones in D. indicus, is
crucial for evaluating its efficacy and safety. As a modern
analytical tool, UHPLC-MS, known for its high resolution,
sensitivity, and rapid analysis capabilities, can provide robust
tools for analyzing anthraquinones and accurately profile and
identify various anthraquinones in D. indicus. Mass spectrom-
etry molecular networking (MSMN), an advanced technique,
enhances the efficiency of recognizing and classifying anthra-
quinones by clustering structurally similar compounds.
Compared to traditional chemical analysis methods, MSMN
offers superior data processing efficiency, enabling rapid iden-
tification numerous of compounds with a specific structural
type.>® This technique provides new perspectives and method-
ologies for studying TCM chemical constituents. By construct-
ing a molecular network, in-depth comparative analyses of
anthraquinones in D. indicus can be conducted, revealing their
unique chemical characteristics and pharmacological
properties.

Geographical origin discrimination, another critical aspect
of quality control for medicinal materials, significantly impacts
the quality and efficacy of TCM.** The climatic, soil, and
ecological variations of different regions lead to differences in
chemical constituents, influencing their pharmacological
effects. Thus, geographical origin identification ensures the
traceability of D. indicus, maintaining consistency and stability
in its quality. Additionally, this identification aids in under-
standing the biodiversity of D. indicus, providing valuable
scientific guidance for cultivation and resource conservation.

The investigation of the biosynthetic pathways of anthra-
quinones, the primary pharmacological components of D.
indicus, is crucial for obtaining specific compounds and
understanding the pharmacological mechanisms of the
medicinal material. Research on biosynthetic pathways can
elucidate the formation mechanisms of anthraquinones,
providing theoretical support for optimizing cultivation and
processing techniques. Additionally, this research may lead to
the discovery of new active ingredients, expanding the appli-
cation scope and clinical prospects of D. indicus.

This study is mainly focused on the characterization of
chemical constituents, biosynthetic pathway deduction of
anthraquinones, geographical origin discrimination and
screening of chemical quality markers to establish a quality
control system for D. indicus. However, due to the lack of
preliminary chemical research, no reference substance was
obtained through isolation and purification for active compo-
nent evaluation. Consequently, the quality markers could not be
determined based on activity data, and the gap would be
addressed in subsequent research.

5 Conclusions

In this study, a UHPLC-MS-based strategy was utilized for the
first time to comprehensively characterize the chemical
composition of D. indicus. Through MSMN, 112 anthraquinones

© 2024 The Author(s). Published by the Royal Society of Chemistry
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and 66 non-anthraquinone compounds were identified, and
their biosynthetic pathways in this herb were proposed. PCA
grouped 15 batches of herbs from different origins into three
clusters, corresponding with the climate types of their habitats.
Additionally, PLS-DA identified 27 significant chemical markers
that could robustly distinguish the geographical origins of the
herbs. This study provides a valuable reference for the quality
evaluation and control of D. indicus and offers a scientific basis
for its pharmacological research and rational utilization of
these medicinal resources.
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