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Safe drinking water and a clean living environment are essential for good health. However, the extensive and

growing use of hazardous chemicals, particularly carcinogenic dyes like methylene blue, methyl orange,

rhodamine B, and malachite green, in both domestic and industrial settings, has led to a scarcity of

potable water and environmental challenges. This trend poses a serious threat to human society,

sustainable global development, and marine ecosystems. Consequently, researchers are exploring more

advanced methods beyond traditional wastewater treatment to address the removal or degradation of

these toxic dyes. Conventional approaches are often inadequate for effectively removing dyes from

industrial wastewater. In this study, we investigated bimetallic metal–organic frameworks (BMOFs) as

a solution to these limitations. BMOFs demonstrated outstanding dye removal and degradation

capabilities due to their multifunctionality, water stability, large surface area, adjustable pore size, and

recyclability. This review provides a comprehensive overview of research on dye removal from

wastewater using BMOFs, including their synthesis methods, types of dyes, and processes involved in

dye removal, such as degradation and adsorption. Finally, the review discusses the future potential and

emerging opportunities for BMOFs in sustainable water treatment.
1. Introduction

Persistent organic pollutants are commonly found in the waste
products of the chemical, dyeing, pharmaceutical, and paper
industries, posing a signicant environmental pollution chal-
lenge. As a result, there is an urgent need for cost-effective and
efficient methods to manage and reduce these pollutants.1,2 The
rapid expansion of the global population, climate change, and
industrial progress have signicantly impacted water quality,
contributing to a growing global freshwater crisis. In this
context, various users and polluters of freshwater play a major
role in depleting this essential resource.3–5 Notably, fabric
dyeing is one of the primary contributors to water pollution,
with textile dyeing ranking as the second-largest source of water
contamination worldwide.6 Among the most frequently used
dyes, substances like MB,7 RhB,8 MO,9 CR,10 MR,11 and CV are
prominent industrial pollutants originating from diverse
sectors such as textiles,12,13 cosmetic,14 leather,15 food,16 phar-
maceutical,17 paint and varnish,18,19 and pulp20 and paper
industries.21 As shown in Fig. 1, a recent estimate indicates that
approximately 7 × 108 kg of dyes are produced each year.
However, due to inefficiencies in the dyeing processes, the
textile industry contributes up to 7 × 108 kg of these dyes to
ence, Charmo University, Chamchamal,
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the Royal Society of Chemistry
wastewater annually during dyeing and nishing operations.22

Therefore, it is crucial to remove dyes from wastewater.
Several methods have been employed to remove dye pollut-

ants to date, including ozonation,23 ltration,24 bio-
adsorption,25,26 biolm reactors,27,28 electrocoagulation,29 ion
Fig. 1 Different types of dyes and their potential industrial
applications.
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Fig. 2 Schematic diagram depicting BMOFs for dye removal.
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exchange removal,30,31 adsorption,32,33 catalytic reduction,34,35

photocatalytic degradation,36,37 and biological/aerobic.38,39 The
use of various advanced material applications is among the
most effective approaches for dye removal. Signicant progress
in nanomaterials, such as metal oxides,40–43 carbon dots,44–51

sulfur dots,52 and metal–organic framework (MOF)-based
nanoparticles,53–55 has been notable in the early 21st century.
These synthesized materials have proven successful in envi-
ronmental treatment and protection. Notably, MOF-based
materials are the most widely used in this domain due to
their cost-effectiveness, diverse congurations and structures,
high thermal and mechanical stability, adjustable pore prop-
erties, extensive surface area, and reusable metal sites.56–61

MOFs have recently attracted considerable attention for their
photocatalytic properties. These functional hybrid materials are
formed by connecting organic ligands with metal ions, and they
offer a variety of advantageous features, including high porosity,
large surface area, exposed metal sites, and the exibility to be
customized through various material combinations and
synthesis techniques.62–64 These qualities make MOFs highly
useful in a wide range of applications, including sensing,65,66

catalysis,67–70 drug delivery,71–73 pollutant removal from
water,74,75 and energy storage or conversion.76

BMOFs are created by linking two distinct metal ions with an
organic ligand.77 Although metal substitutions are commonly
Fig. 3 Categorization of dyes.

31778 | RSC Adv., 2024, 14, 31777–31796
used in the chemistry of oxides and intermetallic compounds,
this approach has been less frequently applied to MOF
production, likely because metallic centers are generally more
associated with purely inorganic materials than with hybrid
ones.78 Nonetheless, bimetallic MOFs have recently gained
widespread interest due to their outstanding structural and
chemical stability, signicant porosity, and potential applica-
tions in gas adsorption,79 separation,80 catalysis,81 sensing,82,83

and biochemistry.84 Thanks to their high porosity and
numerous adsorption sites, BMOFs have demonstrated advan-
tages over monometallic MOFs in various applications. They
also show promise as precursors or templates for the develop-
ment of BMOF-derived photocatalysts, which possess more
active sites and enhanced conductivity compared to their
monometallic counterparts.85 As a result, the use of BMOFs for
dye removal holds great promise and is highly signicant for
environmental applications.

Several research groups have investigated various methods
for addressing dye-contaminated wastewater using different
materials.86–91 This literature review provides an overview of the
use of BMOFs for removing dye pigments from wastewater,
emphasizing the effectiveness of BMOFs as adsorbents
compared to other materials in dye removal. Additionally, the
review explores the mechanisms of BMOF-dye adsorption and
the future prospects for using BMOFs in this application. To our
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Hazardous aspects of dyes.
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knowledge, no existing review paper offers a comprehensive
discussion on dye removal specically with BMOFs. Thus, this
review aims to present the latest information on the application
of BMOFs for dye removal from aqueous solutions, along with
future perspectives, as illustrated in Fig. 2.
Fig. 5 Schematic diagram of dye adsorption and degradation.

© 2024 The Author(s). Published by the Royal Society of Chemistry
1.1 Categorization of dyes

Dyes are commonly classied based on their structural or
functional groups, color, and ionic charge when dissolved in
water.92 Since the ionic classication of dyes signicantly
impacts adsorption efficiency, this review adopts that classi-
cation. As illustrated in Fig. 3, dyes are divided into ionic and
non-ionic categories. Non-ionic dyes include vat and disperse
dyes, while ionic dyes are further categorized as cationic (basic)
and anionic (direct, acidic, and reactive).93

The components of dyes make them toxic. Typically, the
presence of dyes in water bodies can affect the photosynthesis
of aquatic life by blocking sunlight transmission. More con-
cerning is that many dyes are mutagenic, carcinogenic, or
teratogenic to both animals and humans. Dye molecules in
wastewater are known to cause dysfunction in multiple human
organs. Direct, cationic, acidic, and disperse dyes can all
contribute to the development of benign andmalignant tumors,
with direct dyes being linked to bladder cancer. Reactive dyes
can cause dermatitis, rhinitis, allergic conjunctivitis, and
occupational asthma. Additionally, many of the dyes discussed
are carcinogenic, highlighting the importance of effectively
treating dye-contaminated wastewater from dye manufacturing
plants.94 As shown in Fig. 4.
2. Mechanism for dye removal

The adsorption of molecules on the surface of an adsorbent can
occur in two distinct ways, depending on the interaction
between the solid surface (BMOFs) and the adsorbedmolecules:
RSC Adv., 2024, 14, 31777–31796 | 31779
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Fig. 6 Illustration of synthesis strategies for BMOFs using one-step and post-synthetic approaches.
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physical and chemical sorption. In physisorption, electrostatic
interactions and van der Waals forces are involved, making the
process reversible. A possible mechanism is illustrated in Fig. 5.
The adsorption mechanism on the adsorbent surface involves
three types of interactions: (1) electrostatic interactions, (2)
hydrogen bonding, and (3) p–p stacking interactions, all
contributing to the enhanced adsorption of dye molecules. In
contrast, chemisorption involves strong covalent bonds as the
primary interaction between the adsorbent and adsorbate,
leading to diffusion from the surface into the material's inte-
rior, typically forming a monolayer.

In recent years, the use of biological sources for dye degra-
dation has emerged as a promising and eco-friendly alternative to
traditional chemical methods for removing dyes from polluted
water and soil. This approach harnesses natural biological
processes, such as microbial activity and enzymatic reactions,
which can break down harmful dye compounds without gener-
ating toxic byproducts. Alongside biological methods,
researchers have focused on developing engineered BMOFs for
enhanced dye degradation. These BMOFs are synthesized from
various metal combinations and organic linkers, offering
Fig. 7 Diagram showing the synthesis of the composite and images illust
2020, Royal Society of Chemistry.

31780 | RSC Adv., 2024, 14, 31777–31796
a unique structure with high porosity and active sites that facil-
itate the breakdown of complex dye molecules.

One particularly promising method is the photocatalytic
degradation of dyes using BMOFs. Under light irradiation,
BMOFs can generate reactive species, such as hydroxyl radicals
and superoxide anions, which play a crucial role in oxidizing
and decomposing dye molecules. The presence of two different
metals in the BMOF structure enhances light absorption and
charge separation, making the photocatalytic process more
efficient. This process, referred to as dye degradation by BMOFs
in the presence of light, is illustrated in Fig. 5, showing how
these materials can harness light energy to degrade dyes into
less harmful compounds.

3. BMOF properties, and synthesis

Although single-metal MOFs offer a broad range of structural
compatibilities, using transition metals (Fe, Zn, Co, Ni) in
BMOFs can lower costs and improve catalytic performance.95,96

BMOFs can be categorized into two types based on their spatial
arrangement: different metals in separate secondary building
units (SBUs) or different metals within the same SBUs. The
rating the adsorption process. From ref. 139 with permission. Copyright

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Diagram of sample synthesis and photocatalytic mechanism. Form ref. 140 with permission. Copyright 2022, Elsevier.
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latter typically exhibits greater catalytic activity due to its denser
structure, improved stability, and enhanced electron transfer.97

Combining two metal cations can boost conductivity and
promote oxidation reactions between different metal sites
within the MOF, leading to higher catalytic efficiency. This
method of integrating functional components can create
multifunctional complexes with superior properties, enhancing
activity for redox reactions, supercapacitors, and other
processes.98 Although BMOFs are still under development,
increasing research highlights their promising potential for
various practical applications.
Table 1 Degradation of MB by BMOFs

Catalysts Method Catalyst dosage Initial con

Zn/Co MOFs Electrosorption — 2847 mg g
Zn/Co MOFs Degradation 0.01 g L−1 128 mg L−

Fe/CoMIL-88B Degradation 0.8 g L−1 0.1 mM
Al/Cu MOFs Adsorption 0.1 g L−1 381.68 mg
Zn/Mn MOFs Degradation 1 g L−1 10 mg L−1

Ni/Co MOF@MAC Adsorption 0.2 g 40 mg L−1

Co/Fe MOFs Adsorption 1 g L−1 1 mg L−1

Ni/Zn MOFs Degradation 40 mg 10 mg L−1

Cu/Co MOFs Degradation 0.6 g L−1 —
Cu/Co MOFs Degradation 50 mg L−1 0.2 mM
Fe/Cu MOFs Degradation 0.6 g L−1 0.2 mM
Co/Ni MOFs Degradation 0.16 g 10 mg L−1

Cu/Zn MOFs Adsorption 5 g L−1 200 mg L−

Ti/Zr MOFs Degradation 10 mg 20 mg L−1

Co/Ni MOFs Degradation 150 mg L−1 20 mg L−1

Co/Ni-MOFs@BiOI Degradation 0.3 g L−1 20 mg L−1

Ni/Co MOFs Degradation 8 mg 10 mg L−1

Zn/Co ZIFs Degradation 1 mg 10 mg L−1

Fe/Co MOFs Degradation 20 mg 20 mg L−1

Tb/Eu MOFs Adsorption 20 mg 5 × 10−5 M

© 2024 The Author(s). Published by the Royal Society of Chemistry
BMOF-based composites offer several benets compared to
monometallic MOFs: (i) they combine different metallic
elements, organic ligands, and structures from monometallic
MOFs, leading to a wide range of compositions and functions;
(ii) they enhance pore development, with their synthesis being
relatively simple and gentle; (iii) their structured arrangement
of metal ions and ligands improves the xation, dispersion,
stability, and catalytic activity of the materials.99,100 Considering
these benets, numerous studies have documented nano-
materials based on BMOFs with diverse compositions and
structural properties that are extensively employed in environ-
mental pollution management.101,102
centration Temperature °C pH Performance% Ref.

−1 — — 90 142
1 — — 40 143

70 10 100 144
g−1 25 4–6 84 145

90 — 91.23 146
25 6 — 147
90 4 90 53
— — 97.4 148
45 6.2 93.29 149
150 7.15 100 150
25 9.05 100 151
— 5 99 152

1 25 7 98 153
— — 93.2 154
20 6.23 99.4 155
— 5 81.3 156
— — 100 58
— Neutral 45 157
— — — 158
— — 99 159

RSC Adv., 2024, 14, 31777–31796 | 31781
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Fig. 9 The schematic shows the synthesis of MIL-101(Fe,Co) and its dye degradationmechanism. From ref. 163with permission. Copyright 2023,
Elsevier.
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3.1 Advantages of bimetallic MOFs over monometallic MOFs

Bimetallic MOFs present numerous advantages over their
monometallic counterparts, particularly in terms of enhanced
stability. The interaction between two distinct metal ions in
BMOFs leads to improved structural integrity. As a result, they
typically exhibit superior thermal, chemical, and mechanical
stability compared to monometallic MOFs, which is crucial for
withstanding extreme conditions such as high temperatures,
acidic or basic environments, and varying pressures.99,103,104

Characterized by their high porosity and abundance of
adsorptive sites, BMOFs outperform monometallic MOFs in
several applications.105 They also hold promise as precursors or
templates for developing BMOF-derived photocatalysts, which
offer a larger number of active sites and greater conductivity
than their monometallic-derived counterparts.106

Moreover, the inclusion of two metals allows for more precise
tuning of a MOF's properties, such as pore size, electronic
structure, and adsorption capabilities. This ability to customize
these properties enhances performance.107 The synergistic effects
between the metals can result in improved redox behavior, better
conductivity, and increased adsorption capacity. The dual-metal
system also facilitates the adjustment of electronic, magnetic,
and optical properties, making BMOFs highly versatile and
suitable for a wider range of applications.108–110
Table 2 Degradation of RhB by BMOFs

Catalysts Method Catalyst dosage Initial conce

Fe/Al MOFs Degradation 0.10 g/100 mL 10−4 M
Zn/Ru MOFs Reduction 2 mg mL−1 5.0 mM
La/Fe MOFs Degradation 1 g L−1 10 mg L−1

Fe/Co MOFs Degradation 0.3 g L−1 20 mg L−1

Co/Fe MIL88/MCC Degradation 60 mg L−1 5 mg L−1

Fe/Ni MOFs Degradation 5 mg 20 mg L−1

Fe/Cu MOFs Degradation 1.19 g L−1 10 mg L−1

Bi/Zn MOFs Degradation 0.5 g L−1 10 mg L−1

Ni/Co-MOF@GNS Degradation 0.05 mg mL−1 25 mg L−1

Cu/Fe MOFs Degradation 0.25 g L−1 10 mg L−1

M/Fe MOFs Degradation 5 mg 3 10−5 M
M/Fe MOFs Degradation 9 mg 3 10−5 mol

31782 | RSC Adv., 2024, 14, 31777–31796
3.2 Synthesis of BMOFs

Various methods have been developed for the synthesis of
MOFs, including hydrothermal,111 solvothermal,112 micro-
wave,113 electrochemical,114 sonochemical,115 and reux tech-
niques.116 Several of these techniques can also be used to
synthesize bimetallic MOFs. Typically, synthesis methods fall
into two main categories: one-pot synthesis and post-synthetic
modication117 (Fig. 6). Unlike the synthesis of monometallic
MOFs, the synthesis of BMOFs requires strict control of nucle-
ation rates and growth kinetics due to the differing reaction
kinetics of the two types of metal ions or clusters.

3.2.1 Direct, and solution based synthesis. BMOFs can be
created by combining metal salts using a solvothermal process.
However, simply mixing different metal salts does not guarantee
the formation of BMOFs.118 To avoid the formation of mixed
phases and achieve a specic structure, it is important to control
factors such as solubility, molar ratios of metal ions, and pH. One
promising approach for creating BMOFs with a dened compo-
sition involves synthesizing predened secondary building units
(SBUs) as precursors for the metal nodes.119

Several bimetallic or bi-ligand MOFs are solid solutions with
adjustable ratios of ligands or metals. These BMOFs can be
created directly by employing multiple ligands or metals, or
through post-synthetic modication. The term “solid solution”
ntration Temperature °C pH Performance% Ref.

— — 99.61 165
— — 99 166
— — 96 167
— 4.7 98.7 168
— 5.5 87 169
— 7 100 170
— Neutral 80.92 171
— — 99 172
— 11 94 173

Neutral 92 174
— — 85–92 175

L−1 — 5 96 176

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Possible mechanism for CR. From ref. 191 with permission. Copyright 2024, Springer.
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is used because these MOFs do not have a completely random
arrangement of ligands or metals.120,121

3.2.2 One pot synthesis (OPS). The OPS method, also
known as ‘one-pot’ synthesis, has signicantly improved the
process of integrating secondary metal centers into MOFs for
various applications.122 BMOFs can be created by mixing both
metal salts in the same reaction mixture, leading to structures
that contain two metal species. This method simplies the
synthesis process and reduces the need for intermediate steps.
MOFs with these additional metal nodes oen exhibit complex
and delicate networks, enhancing their potential applications
due to unique synergistic effects. The success of this synthesis
relies on selecting the right precursors, optimizing reaction
conditions, and carefully adjusting parameters to produce high-
quality BMOFs.103,123

3.2.3 Post synthetic modication method (PSM). Another
effective method for fabricating BMOFs is post-synthetic
modication (PSM). This approach allows for either the
exchange of pre-synthesized metal clusters or organic ligands in
a MOF or for altering the MOF structure to introduce secondary
metal nodes. The success of PSM depends on the stability,
Table 3 Degradation of CR by BMOFs

Catalysts Method Catalyst dosage Initial con

Lac@Co/Cu MOFs Adsorption 10 mg 100 mg L−

Ni/Co MOFs Adsorption 0.6 g L−1 0.4 g L−1

Fe/Al MOFs Adsorption 0.167 mg mL−1 500 mg m
ZIF Zn/Co Degradation 20.0 mg 5 mg L−1

Ni/Zn MOFs Adsorption 20 mg 200 mg L−

Co/Cu MOFs Degradation — 100 mg L−

© 2024 The Author(s). Published by the Royal Society of Chemistry
porosity, and crystallinity of the initial structure. PSM mainly
involves the exchange of metal ions and the elimination–addi-
tion of metals.103 One of the main challenges is to precisely
control the ratio of the two types of metal sites in BMOFs across
a broad range.

The rst approach, metal ion exchange, is a highly effective
method for synthesizing BMOFs. In this method, monometallic
(M) MOFs are typically placed into a solution containing
secondary metal ions with similar properties, facilitating ion
exchange with the metal nodes in the framework. The degree of
exchange can be controlled by adjusting experimental param-
eters.124 In summary, BMOFs can be synthesized via ion
exchange using two types of metal ions with similar properties.

The second strategy, metal elimination–addition, involves
the sequential removal of some metal sites in monometallic
MOFs to create vacancies, which are then lled with different
metal ions. The new metal ions should have a similar charge
and coordinationmode to those of the ions being replaced.125,126

3.2.4 Template method. A method involving templates can
effectively regulate the composition of metal ions in BMOFs.
Furthermore, this synthesis approach can be used to create
centration Temperature °C pH Performance% Ref.

1 40 7 95 193
4 85 194

L−1 25 5 96.7 195
— — 100 196

1 30 3 — 197
1 50 3.5 95 198

RSC Adv., 2024, 14, 31777–31796 | 31783
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Table 4 Other anionic dye removal

Catalysts Dye Method Catalyst dosage Initial concentration Temperature °C pH Performance% Ref.

Cu/Co MOFs Orange G Degradation 50 mg L−1 0.2 mM 25 Neutral 96.4 199
NH2–MIL-101(Fe/Co) Orange G Degradation 50 mg L−1 0.2 mM 25 7 100 199
Fe/Ni MOFs MO Degradation — 10 mg L−1 — 7 99 200
Ag/Zn MOFs Reactive yellow 145 Degradation — 0.4 g L−1 — — 100 201
La/Ag-MOFs Sunset yellow Adsorption 0.02 g 0.02 g — 4 — 202
Cu/Sn MOFs Acid-blue 92 Degradation 0.03 g 7 × 10−5 M 30 — 86.9 203
La/Sn@MOF Tartrazine Adsorption 0.02 g 1.06 × 10−3 mmol L−1 25 6.41 98.3 204
Ag/Cu-MOFs PES Reactive black 5

and reactive red 120
Rejections — — — — 96.4, 98.4 205

Cu/Zn ZIFs RG, RB and CR Degradation — 50 mg L−1 — — 68.3% 206
Fe/Ni MIL-88 Eosin-Y Degradation 5 mg 20 mg — — — 207
Cu/Fe MOFs Eosin-Y Adsorption 0.005 g 4 mg L−1 — — — 208
Mn/Al MOFs EBT Degradation 5.0 mg 10 mg L−1 — — 84.9–100 209
Fe/Ti MOFs Orange II Degradation 100 mg L−1 50 mg L−1 25 5 100 210
Cu/Co ZIFs Acid orange II Degradation 5 mg 100 mg L−1 25 7 95.3 211
Zn/Co ZIFs Acid violet 7 Reduction 0.2 g L−1 20 mg L−1 25 3.7 — 212
GCN/M–FeBTC RR-195 Degradation 0.5 g L−1 0.6 g L−1 — 9 99.37 213
Ni/Co MOFs Reactive red Adsorption — 100 mg L−1 25 — — 214
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hollow BMOFs, offering benets such as increased active sites
and improved mass transport. There are two main approaches
to this synthesis method: the self-template method and the
exterior-template method. The self-template method is
a straightforward way to produce hollow BMOFs, as there is no
need to remove the template; the process involves dissolution-
regrowth. In contrast, the exterior-template method utilizes
a sacricial template that must be removed aer synthesis.119

3.2.5 Core–shell (CS) BMOFs. In core–shell (CS) BMOFs,
the outer shell and inner core are constructed using different
metal centers. Seed-induced growth has been proven to be an
effective method for producing core–shell nanomaterials.
Through epitaxial growth, two MOFs with similar lattice
parameters can be combined to form CS MOFs.127 Another
method, post-synthetic selective exchange of metal ions within
the framework, can also be utilized to create CS BMOFs. This is
possible because the metal sites in the core and near the surface
of the MOF exhibit different exibilities and, consequently,
Table 5 Degradation of multiple dye by BMOFs

Catalysts Dyes Method Catalyst dosa

Cu/Ni–BTC@SiO2 MO, MB Degradation 10 mg L−1

10 mg L−1

Zr/Cu MOFs RhB, MB Degradation —
Co/Zn MOFs MB, MG RhB, MV-2B, CR Reduction 20 mg

Zn/Co MOFs MB, RR Adsorption —
Cu/Zr MOFs MO, MB Adsorption —
Fe/Ni MOFs MB, MO Adsorption 10 mg
Ni/Zn MOFs MG, CR Adsorption 0.25 g L−1

Fe/Cu MOFs MO, MB Reduction 1 mg
Co/Ni MOFs MB, CR, NR Adsorption —
Co/Fe MOFs MB, MO Adsorption 0.01 g L−1

Co/Ni MOFs AB92, MO, and MB Adsorption —
Zn/Cu MOFs MG Degradation —

31784 | RSC Adv., 2024, 14, 31777–31796
distinct reactivities. Therefore, by carefully controlling the post-
synthetic metal exchange process, CS BMOFs can be produced
through selective transmetalation.108
4. Dye removal by BMOFs

Rapid industrial expansion is a signicant contributor to water
pollution.128 Among the various pollutants present in water
bodies, organic dyes are particularly problematic, as they pose
serious risks to both humans and animals. A substantial
portion of industrial wastewater consists of dye-contaminated
effluents.129 Globally, approximately 800 000 tons of dye are
produced each year, with nearly 20% of these effluents being
released into the environment regularly without adequate
public or environmental awareness.130 Therefore, it is crucial to
handle these corrosive dyes with care. Numerous porous
adsorbents have been investigated for their effectiveness in
removing dyes from water.131–135 Among these, BMOF-based
ge Initial concentration pH Performance% Ref.

20 mg L−1 7 98, 71 215

— 7 96, 96 216
0.04 mM, 0.0125, 0.0125, 0.038
and 0.02 mM

— — 217

— — 92, 91 217
— — — 218
20 mg L−1 6.5, 6.9 84.8 219
20 mg L−1 — — 220
0.05 mM — 52, 66 221
— 5–10 98.34, 93.95, 94.42 222
200 mg L−1 10, 4 70, 81 223
20 mg L−1 5 — 224
10 mg L−1 4 89.7 225

© 2024 The Author(s). Published by the Royal Society of Chemistry
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porous materials exhibit remarkable capabilities for dye
removal in aqueous environments.

The following sections will explore recent advancements in
BMOFs for the removal of both cationic (C) and anionic (A) dyes
from water samples. Dyes can be categorized into three groups:
cationic (C), anionic (A), and nonionic, each encompassing
numerous types of dyes. Anionic dyes include direct, reactive,
and acid dyes, while basic dyes represent cationic dyes, and
dispersed dyes represent nonionic dyes.136 For greater effi-
ciency, the effect of pH must be considered. The initial pH of
the dye solution signicantly inuences factors such as ioni-
zation levels, surface charge density, and the adsorption
capacity of the adsorbent, playing a crucial role in the overall
adsorption process. The adsorption rate uctuates with changes
in the pH of the medium. At low pH levels, the removal effi-
ciency of cationic dyes decreases, while for anionic dyes, it
increases due to the highly protonated surface of the adsorbent,
which favors the adsorption of anionic groups and enhances the
overall process. However, at high pH levels, the opposite effect
is observed.137
4.1 Removal of cationic (C) dyes

Cationic (C) dyes in water carry a positive charge, are highly
soluble, and exhibit strong coloration even at low concentra-
tions. These dyes can be readily and effectively adsorbed onto
the negatively charged surfaces of adsorbents through electro-
static attraction. However, the efficiency of removal can vary
based on the surface area and the functional groups available
on the adsorbent's surface.

4.1.1 Methylene blue removal. Methylene blue (MB) is
frequently utilized as a benchmark dye in microltration and
adsorption research due to its molecular characteristics, which
make it suitable for various applications, particularly in the
medical eld. Nevertheless, if not properly treated before
disposal, it can pose environmental risks. Studies have shown
that overexposure to MB can lead to methemoglobinemia by
directly oxidizing hemoglobin. Additionally, it has the potential
to induce issues related to hemolysis, particularly in newborns.
Prolonged exposure to methylene blue may ultimately result in
signicant anemia.138 Hence, the hazardous and highly pig-
mentedMB dye needs to be eliminated from wastewater prior to
its release into the environment.

This study by Eltaweil et al.139 introduces a new composite as
an effective adsorbent for cationic MB dye. The UiO-66/MIL-
101(Fe) BMOF was created using a solvothermal method. The
adsorption capability of the UiO-66/MIL-101(Fe)–GOCOOH
composite was evaluated using a batch technique, showing that
it had a higher adsorption capacity compared to the BMOF
alone. Adsorption isotherms and kinetic studies indicated that
MB dye adsorption on the composite follows the Langmuir
isotherm model and both pseudo-rst-order and pseudo-
second-order kinetic models. Additionally, thermodynamic
data suggested that the adsorption process is endothermic,
spontaneous, and involves both physisorption and chemisorp-
tion. The newly developed composite also demonstrated good
reusability, making it a highly promising adsorbent for
© 2024 The Author(s). Published by the Royal Society of Chemistry
efficiently treating dye-containing industrial effluents. As
shown in Fig. 7.

Shan et al.140 synthesized a series of MOF materials using
a solvothermal method, with trimellitic acid and terephthalic
acid reacting with nickel and cobalt metal salts for the photo-
degradation of MB under xenon light irradiation. Among these,
ML-3, a bimetallic mixed-ligand MOF material with a specic
ratio and a tight-ower structure based on the solid block
structure NC-3, exhibited outstanding degradation performance
against MB. While NC-3 achieved a degradation efficiency of
80.6% in 120 minutes, ML-3 reached 97.8% in the same time-
frame. Radical trapping experiments and Mott–Schottky anal-
ysis revealed that h+ and cO2

− were the primary active
substances in the photocatalytic degradation mechanism. The
study found that the redox potential of MB (1.77 eV) was lower
than the valence band (VB) potential of ML-3 (2.01 eV), allowing
h+ to directly oxidize MB. Consequently, the materials synthe-
sized in this study are effective for wastewater treatment and
show signicant potential for environmental applications, as
shown in Fig. 8.

Ma et al.141 synthesized Ce/Co BMOFs. The photocatalytic
activity was tested under Xe lamp irradiation with MB as
a model pollutant. Among the samples, DT-3, with a Ce/Co ratio
of 4 : 1 and an H2bdc/H3btc ratio of 1 : 2, demonstrated the
highest photocatalytic performance, achieving a 97.6% degra-
dation efficiency of MB within 120 minutes. Analysis revealed
that DT-3 had a bandgap energy of 3.20 eV, with a conduction
band potential of −0.75 eV, which is more negative than the
standard redox potential of O2/cO2

−, and a VB potential of
2.45 eV, exceeding the redox potential of MB. Overall, the results
indicate that the synthesized bimetallic photocatalyst with
mixed ligands is effective in degrading the MB dye in waste-
water. Table 1 summarizes studies that utilized BMOFs for the
removal of MB.

4.1.2 Rhodamine B (RhB) removal. RhB is a water-soluble
organic dye commonly used to color wool, cotton, silk, paper,
and fabrics.160 However, RhB contamination in water can be
toxic to plants and carcinogenic to living organisms due to its
aromatic structures.161 Therefore, removing RhB from indus-
trial wastewater before it is released into the environment is
essential.

RhB dyes were effectively removed using a new bimetallic Co/
Fe-MOF developed by Hu et al.162 This innovative MOF exhibits
photocatalytic activity for degrading RhB. With a catalyst dosage
of 200 mg L−1, a degradation efficiency of 99.7% was achieved
within 30 minutes at a temperature of 25 °C under visible light
irradiation.

Xiao et al.163 synthesized cobalt-doped MIL-101(Fe) to
enhance the catalytic performance of MIL-101. By optimizing
the cobalt doping ratio, MIL-101(Fe,Co) was identied as having
the highest catalytic activity. The activation performance of
BMOFs for peroxymonosulfate (PMS) was tested using RhB as
a model pollutant under the following conditions: [RhB] =

10 mg L−1, [catalyst] = 0.2 g L−1, and [PMS] = 0.4 g L−1, with
a reaction time of 15 minutes. The results demonstrated that
more than 99% of RhB was degraded within 15 minutes, and
the catalyst maintained effective degradation across a broad pH
RSC Adv., 2024, 14, 31777–31796 | 31785
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range of 3–11. Additionally, MIL-101(Fe,Co) exhibited excellent
stability, retaining over 90% degradation efficiency even aer
ve cycles. As shown in Fig. 9.

A new Cd/Zr-MOF was successfully synthesized. The study
examined how the Cd/Zr molar ratio and temperature inuence
the structure of the Cd/Zr-MOF and its photocatalytic efficiency
in degrading RhB under simulated sunlight. The ndings
revealed that the Cd/Zr-MOF with a 5 : 1 Cd/Zr molar ratio,
synthesized at 160 °C, demonstrated the highest photocatalytic
performance, achieving a 95.82% degradation efficiency aer
105 minutes of irradiation, signicantly surpassing the effi-
ciency of pure Cd-MOF.164

Table 2 summarizes studies that utilized BMOFs for the
removal of RhB.

4.1.3 Other cationic dye
Crystal violet (CV). The CV dye is a vibrant triphenylmethane

dye commonly utilized in the textile, dyeing, leather production,
printing, and food sectors. It poses health risks, as it is carci-
nogenic, teratogenic, and mutagenic, even in minimal
concentrations.177 Jais et al. introduced a new material, NiFe-
MOF@AHC, designed to effectively remove large-sized pollut-
ants, such as CV dye. The composite showed rapid removal of
CV, primarily through chemisorption. The maximum adsorp-
tion removal (Qmax) of the composite for CV dye (395.9 mg g−1)
was 1.5 times lower than that of AHC. Regeneration studies
indicated that the removal efficiency decreased aer the rst
cycle but remained consistent until the fourth cycle, suggesting
that the solvothermal growth of NiFe-MOF on AHC successfully
produced a stable and reusable adsorbent.178

Methyl violet (MV). Methyl violet (MV) holds signicant
importance due to its wide-ranging applications in textiles,
paints, and printing inks. It is commonly used for dyeing
materials.179 In the biomedical eld, MV serves as the active
ingredient in Gram's stain, which is used for bacterial classi-
cation. Additionally, it can be employed as a moderate-level
disinfectant, although it has been found to be toxic to most
animals. Inhalation of MV may irritate the respiratory tract,
while ingestion typically leads to gastrointestinal irritation.180

Prolonged or repeated exposure to methyl violet (2B) may cause
damage to specic organs.181,182 Hence, it is crucial to eliminate
this dye from wastewater before releasing it into water bodies.

Thu and colleagues developed BMOFs (FeZn-ZIFs) that were
utilized as a heterogeneous catalyst to remove methyl violet 2B
dye from an aqueous solution. Under the catalytic conditions of
a catalyst dosage of 0.3 g L−1, an initial dye concentration of
20 mg L−1, and at room temperature, the FeZn-ZIFs demon-
strated a 95% removal efficiency of MV.183
4.2 Anionic (A) dyes

A dyes rely on a negative ion. This category encompasses various
dye compounds from different classes, including azoic,
anthraquinone, triphenylmethane, and nitro dyes. Despite their
structural differences, these dyes share water-solubilizing ionic
substituents. Direct dyes are also part of the A dye category, with
a signicant portion of reactive dyes falling under the group of A
azo dyes from a chemical perspective.137
31786 | RSC Adv., 2024, 14, 31777–31796
4.2.1 Methyl orange (MO). MO is classied as an A dye that
nds widespread application as a pH indicator and is also
utilized in industries related to paper and dyeing.184 Like other
dyes, methyl orange is considered toxic and potentially carci-
nogenic.185 Contact with this dye can lead to symptoms such as
diarrhea and vomiting.186 Researchers have explored the use of
various agricultural waste materials for the removal of methyl
orange dye.

Tang et al. introduced a series of low-crystalline Fe/Ce-MOFs
synthesized using DBD plasma technology as promising pho-
tocatalysts. These materials demonstrated outstanding photo-
catalytic performance, achieving a 93% degradation rate of MO
(20 mg L−1) within 30 minutes under visible light. This cost-
effective and straightforward approach offers potential advan-
tages for the development of other low-crystalline BMOFs with
superior performance.187

A different study assessed the effectiveness of the Mn/
Zn@ZIF-8 nanocomposite in adsorbing MO dye from water.
The adsorption isotherm analysis indicated that MO adsorption
on Mn@ZIF-8 follows a monolayer pattern, aligning with the
Langmuir isotherm. The Mn@ZIF-8 nanocomposite achieved
a remarkable qmax of 406 mg g−1, which is notably higher than
that of pure ZIF-8. Furthermore, the synthesized Mn@ZIF-8
material demonstrated strong reusability, maintaining up to
92% of its adsorption efficiency aer four cycles compared to
the initial cycle. Overall, the Mn/Zn@ZIF-8 nanocomposite is
a promising candidate for treating industrial wastewater
contaminated with MO.188

Finally, ZIF-67 and Ni-doped ZIF-67 were selected for their
high stability in aqueous environments, porosity, and ease of
synthesis. A porous Ni-doped ZIF-67 nanocomposite was
created by incorporating nickel (Ni) into the ZIF-67 structure.
The resulting Ni@ZIF-67 exhibited excellent adsorption effi-
ciency for removing MO from water. The adsorption perfor-
mance of Ni-doped ZIF-67 was evaluated under different pH
levels, contact times, and dye concentrations. The results
showed that Ni@ZIF-67 adsorbed more dye in mildly acidic
conditions (qe = 24.24 mg g−1 at pH 6) compared to acidic (qe =
17.69 mg g−1 at pH 2) and basic conditions (qe= 15.74 mg g−1 at
pH 10). The adsorption data t best with the Langmuir isotherm
model, indicating a monolayer adsorption process. The
maximum adsorption capacity achieved was 151.74 mg g−1,
with excellent recyclability up to the h cycle. Additionally,
within a 180 minute contact time, ZIF-67 and Ni-doped ZIF-67
nanocomposites adsorbed 68.5% and 82.9% of MO,
respectively.189

4.2.2 Congo red (CR). CR is used in industries such as solar
cells, pharmaceuticals, textiles, plastics, and papermaking. CR
contains six aromatic rings and two azo functional groups,
contributing to its toxicity. It can contaminate water, posing
serious risks to humans and marine life, including plants and
aquatic organisms. In humans, exposure to CR can lead to
toxicity and health issues, such as mutations and respiratory
problems. The contamination of water by CR is a signicant
environmental concern.190
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Abd El-Monaem et al.191 developed a bimetallic MOF
composite lm, Fe/ZnMOF-@CTS, for the removal of CR using
an adsorption method. Remarkably, the Qmax of CR on Fe/MOF-
5@CTS reached 219.78 mg g−1. In addition, the composite lm
retained 81.46% of its capacity aer more than nine cycles. The
selectivity tests revealed that the positively charged composite
lm exhibited higher selectivity for CR compared to C dyes.
Based on practical experiments and analysis, the adsorption
mechanism of CR on Fe/MOF-5@CTS is thought to involve
electrostatic interactions, host–guest interactions, p–p inter-
actions, and coordination bonds, as illustrated in Fig. 10.

Liu et al.192 synthesized a bimetallic CoFe-MOF and tested its
effectiveness in removing CR from aqueous solutions, demon-
strating its potential for treating wastewater containing organic
dyes. The CoFe-MOF exhibited an impressive adsorption
capacity of 1935.68 mg g−1 for CR, signicantly higher than the
capacities of monometallic Fe and Co MOFs, which were
775.19 mg g−1 and 628.93 mg g−1, respectively. This suggests
that the CoFe-MOF has more defects, leading to enhanced
adsorption efficiency. The results indicate that the synthesized
MOF materials could be promising candidates for treating
organic dye pollution, particularly A dyes, in wastewater.

Table 3 summarizes studies that utilized BMOFs for the
removal of CR.

Additionally, another type of dye is summarized in Table 4.
4.3 Multiple dye removal

BMOFs feature two distinct metal ions within their structure,
which can signicantly enhance their properties compared to
monometallic MOFs. These improvements oen include
greater stability, larger surface areas, and superior adsorption
or catalytic activities. As a result, BMOFs are highly effective for
a range of applications, including dye removal. Table 5
summarizes studies that utilized BMOFs for the removal of
multiple dyes.
5. Conclusions and prospects

A newmaterial that functions as both an adsorbent and catalyst,
with a high capacity for removing dyes, is eagerly anticipated.
Recently, porous structured materials based on BMOFs have
demonstrated potential in removing toxic dyes. This review
focuses on the removal of both cationic (C) and anionic (A) dyes
by various BMOFs. Based on the literature, it can be concluded
that BMOFs can serve as superior adsorbents for removing A
and C dyes from water compared to other nanomaterials, such
as carbon dots (CDs), MOFs, metal oxides, and other materials,
due to their higher surface area, pore geometries, ease of
functionalization, and the presence of two metal nodes. BMOFs
can also be useful in real-time applications.

The review highlights the importance of developing low-cost
synthesis methods with minimal time requirements and
suggests that more effort be put into real sample analysis using
BMOFs. It stresses the need to consider the disposal of spent
BMOFs and unremoved dyes aer adsorption and degradation.
Additionally, it outlines several challenges to be overcome, such
© 2024 The Author(s). Published by the Royal Society of Chemistry
as production and regeneration expenses, synthesis methods,
stability, and practical real-time applications.

The potential of BMOFs as adsorbents or catalysts in water
treatment is emphasized, with a recommendation for research
focused on developing smart and straightforward BMOFs
through green synthesis methods. Key areas of focus include
large-scale production, achieving ultra-high surface area,
increasing active sites, enhancing stability and selectivity,
enabling ultra-fast removal rates, maximizing adsorption
capacity, improving reusability, and facilitating real-time
applications. The review suggests the possibility of synthe-
sizing BMOFs using a simple, low-cost method and highlights
the crucial role of environmental researchers in advancing
research and development in this eld.
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pharmaceutical industry, in CMBEBIH 2019: Proceedings of
the International Conference on Medical and Biological
Engineering, 16–18 May 2019, Banja Luka, Bosnia and
Herzegovina, Springer, 2020, pp. 581–587.

18 D. Yadav and J. Dutta, Advancing environmental
sustainability: recent trends and developments in
treatment methods for paint industry wastewater, J. Water
Process Eng., 2024, 61, 105290.

19 S. Nair, B. Manu and A. Azhoni, Sustainable treatment of
paint industry wastewater: current techniques and
challenges, J. Environ. Manage., 2021, 296, 113105.

20 M. Yadav and H. S. Yadav, Applications of ligninolytic
enzymes to pollutants, wastewater, dyes, soil, coal, paper
and polymers, Environ. Chem. Lett., 2015, 13, 309–318.

21 C. Ram, P. Rani, K. A. Gebru and M. G. M. Abrha, Pulp and
paper industry wastewater treatment: use of microbes and
their enzymes, Phys. Sci. Rev., 2020, 5(10), 20190050.

22 P. Singh, N. Rani, S. Kumar, P. Kumar, B. Mohan,
V. Bhankar, et al., Assessing the biomass-based carbon
dots and their composites for photocatalytic treatment of
wastewater, J. Clean. Prod., 2023, 413, 137474.
31788 | RSC Adv., 2024, 14, 31777–31796
23 P. O. Oladoye, T. O. Ajiboye, W. C. Wanyonyi, E. O. Omotola
and M. E. Oladipo, Ozonation, electrochemical, and
biological methods for the remediation of malachite
green dye wastewaters: a mini review, Sustainable
Chemistry for the Environment, 2023, 100033.

24 U. Chadha, S. K. Selvaraj, S. V. Thanu, V. Cholapadath,
A. M. Abraham, M. Manoharan, et al., A review of the
function of using carbon nanomaterials in membrane
ltration for contaminant removal from wastewater,
Mater. Res. Express, 2022, 9(1), 12003.

25 A. M. Elgarahy, K. Z. Elwakeel, S. H. Mohammad and
G. A. Elshoubaky, A critical review of biosorption of dyes,
heavy metals and metalloids from wastewater as an
efficient and green process, Clean. Eng. Technol., 2021, 4,
100209.

26 S. Mishra, L. Cheng and A. Maiti, The utilization of agro-
biomass/byproducts for effective bio-removal of dyes from
dyeing wastewater: a comprehensive review, J. Environ.
Chem. Eng., 2021, 9(1), 104901.

27 A. H. Jagaba, I. Abdulazeez, D. U. Lawal, A. C. Affam,
N. D. Mu'azu, U. B. Soja, et al., A review on the
application of biochar as an innovative and sustainable
biocarrier material in moving bed biolm reactors for dye
removal from environmental matrices, Environ. Geochem.
Health, 2024, 46(9), 1–32.

28 S. Murshid, A. Antonysamy, G. Dhakshinamoorthy,
A. Jayaseelan and A. Pugazhendhi, A review on biolm-
based reactors for wastewater treatment: recent
advancements in biolm carriers, kinetics, reactors,
economics, and future perspectives, Sci. Total Environ.,
2023, 892, 164796.

29 Z. Al-Qodah, M. Tawalbeh, M. Al-Shannag, Z. Al-Anber and
K. Bani-Melhem, Combined electrocoagulation processes
as a novel approach for enhanced pollutants removal:
a state-of-the-art review, Sci. Total Environ., 2020, 744,
140806.

30 H. Zhu, S. Chen and Y. Luo, Adsorption mechanisms of
hydrogels for heavy metal and organic dyes removal:
a short review, J. Agric. Food Res., 2023, 12, 100552.

31 H. M. Solayman, M. A. Hossen, A. A. Aziz, N. Y. Yahya,
K. H. Leong, L. C. Sim, et al., Performance evaluation of
dye wastewater treatment technologies: a review, J.
Environ. Chem. Eng., 2023, 11(3), 109610.

32 M. Harja, G. Buema and D. Bucur, Recent advances in
removal of Congo red dye by adsorption using an
industrial waste, Sci. Rep., 2022, 12(1), 6087.
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