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Novel polycyclic “turn-on” and “turn-off”
pyrazoline and pyrazole fluorescent sensors for
selective real-world monitoring of Fe**/Fe?* in

aqueous environmentst

Alexander Ciupa & *

Seven novel polycyclic pyrazoline and pyrazole sensors were synthesised and screened for useful

photophysical properties with pyrazoline 2 and pyrazole 7, displaying an Fe

3t “turn-off” response in

aqueous environments with Fe>* limits of detection (LoD) of 2.12 pM and 3.41 uM, respectively. Both 2
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and 7 sensors functioned in aqueous environments with real-world examples of Fe** detection in tap

water and mineral water samples. 2 and 7 are suitable for the detection of Fe** at concentrations below

DOI: 10.1039/d4ra06457g

rsc.li/rsc-advances European Union (EU).

Introduction

Iron is the most abundant transition metal in the human body*
and is vital for a range of biological functions, including oxygen
transport via haemoglobin,” catalytic activity of iron oxy-
genases,® and DNA synthesis and repair.* Ferric (Fe**) iron and
ferrous (Fe>*) iron are the two predominant forms of iron in the
human body with the redox cycling between oxidation states
being pivotal to their biological functions.™ Excess iron is
linked to numerous medical problems,® including hemochro-
matosis,” Alzheimer's disease, and Parkinson's disease.*®
Therefore, regular monitoring of iron intake is of paramount
importance. The Environmental Protection Agency (EPA) in the
USA has set the iron limit in drinking water at 5.4 uM,* whereas
the European Union (EU) has set it at 3.5 uM."* Fluorescence
spectroscopy offers many advantages in monitoring iron levels
in drinking water, including a low limit of detection, high
specificity and the ability to fine-tune the fluorescence emission
wavelength (Aen).*>** Pyrazoline,* a five-membered heterocycle
with two adjacent nitrogen atoms (blue in Scheme 1 and Fig. 1),
has well-established fluorescent properties with sensors re-
ported for Zn>*,*® AI>*,** and Fe®".?° Pyrazole® (red in Scheme 1
and Fig. 1) is closely related to pyrazolines and displays useful
fluorescent properties.’®” Chalcones*?** are versatile precur-
sors enabling the generation of large libraries of pyrazolines
and pyrazoles via short (2-3 step) syntheses (Scheme 1) from
commercially available starting materials.
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the maximum iron limits for drinking water set by the Environmental Protection Agency (EPA) and

“Turn-on” sensors display an increased A, in the presence
of an analyte, for example, A with Zn>* and Cd>* (Fig. 1)." “Turn-
off” sensors display reductions in the A, with an analyte; for
example, B demonstrates a minor reduction in the A, with Zn**
and Cd*". Recent studies highlighted that the addition of an
acetyl side group adjacent to the chelation site greatly enhanced
analyte selectivity, for example, Zn**/Cd>" for C and Fe**/Fe** for
D.'*'7 A variety of mechanistic pathways can account for an
increased Aen, including blocking of photoinduced electron
transfer (PET)* and the chelation enhanced fluorescence effect
(CHEF).>® A decreased A, can result from the chelation
enhancement quenching effect (CHEQ)*® or fluorescence reso-
nance energy transfer (FRET).>”

While sensors A-D confirm that structural complexity is not
a prerequisite for complex functionality, their potential as
fluorescent sensors to date has been limited to organic
solvents.”™” A key requirement for real-world monitoring is
a fluorescent response in aqueous solutions. To address this
research need and further investigate how to fine-tune the
photophysical properties of these sensors, we developed seven
novel sensors incorporating phenyl, naphthalene and anthra-
cene units. Incorporation of one or more polycyclic component
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Scheme 1 Synthesis of pyrazoline and pyrazoles from chalcone
precursors.
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Fig.1 Recently reported pyrazoline and pyrazole fluorescent sensors;
images are reproduced from ref. 15-17.

into sensor design has been shown to confer favourable fluo-
rescent properties."***® The two lead sensors (2 and 7) were
analysed in aqueous solution, confirming that pyrazoline A and
pyrazole B can transition from purely organic solvent sensors to
sensors that are functional in mixed organic and aqueous
solutions with minor modifications. The lead sensors displayed
excellent selectivity for Fe**/Fe>", with the Fe’" limit of detec-
tions below the USA and EU iron drinking water limit, vali-
dating their application in real-world monitoring of iron
concentrations in drinking water.

Results and discussion

Chalcone precursors C1 with naphthalene (X = Nap) and C2
with anthracene (X = An) units were prepared (ESI S1t) via
literature methods®>*® in excellent yield (75-93%) (Scheme 2).
The pyrazoline series 1-4 was synthesised by adapting previ-
ously used methods'>'” in acceptable yields. The pyrazole series
5-7 were synthesised using a direct chalcone-to-pyrazole one-
pot method.'® With seven novel sensors in hand, we investi-
gated their photophysical properties initially in MeCN. MeCN
was selected to allow direct comparison with three previous
studies on the structurally related sensors A-D, which was also
performed in MeCN. The lead sensors were then investigated in
a mixed organic aqueous solution of 7:3 MeCN:H,0. Well
established protocols for screening fluorescent sensors in
organic solvents were followed throughout the study.*®

UV/vis spectroscopy was used to confirm that 1-7 undergo
chelation. We initially used the group 12 metals (Zn**, Cd** and
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o
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Scheme 2 Synthesis of seven novel sensors from shared chalcone
precursors: (i) 2.0 equivalent hydrazine (H,NNHMe or H,NNHPhe),
MeOH, 60 °C, and 24 h (ref. 15) (ii) is the same as (i) + 1.0 equivalent
CuCl,.*®
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Fig. 2 UV/vis study for 1 (20 pM, MeCN) with 0-20 equivalents of
Zn?*,

Hg™"), as structurally similar sensors A and B are known to
chelate this metal group (Fig. 2 for 1+ Zn>*, and ESI S4 for 2-7).
Upon increasing equivalents of Zn>*, the initial absorbance
band at 315 nm decreased with the formation of a new absor-
bance band at 350 nm up to 5.0 equivalents of Zn** (Fig. 2).
Further additions resulted in a plateau at 350 nm. A similar
trend was observed with the pyrazole series (see ESI S47 for 2-7).

'H NMR studies with and without Zn*" were performed to
confirm that 1-4 underwent chelation, with the results from 1
representative of all pyrazolines (Fig. 3 for 1, ESI S3t for 2-4).
Upon addition of 2.0 equivalents of Zn>", the pyridine protons
demonstrated broadening and downfield movement in the
chemical shift; for example, H* from 8.57 ppm to 8.63 ppm, H?
from 7.97 ppm to 8.02 ppm, and H® from 7.70 ppm to 7.90 ppm
(Fig. 3A and B). This is characteristic of chelation, and has been
reported previously for A (ref. 15) and other sensors.2*28®e31ade

A further "H NMR study was conducted for pyrazole 7 with
a similar trend upon the addition of 2.0 equivalents of Zn**
(Fig. 4). The chemical shift of pyridine protons H? increased
from 8.73 ppm to 8.77 ppm, while that of the anthracene singlet
H® increased from 8.55 ppm to 8.68 ppm and pyridine H” from
7.31 ppm to 7.45 ppm. Broadening of all signals was also
observed upon the addition of Zn**, confirming chelation and
agrees with a similar study conducted on C."” These results
indicate that the chelate site is centred about the pyridine ring,
and chelation occurs with either a pyrazoline or pyrazole
heterocycle, or a naphthalene or anthracene side unit.

The fluorescence response of pyrazoline 1 with a range of
metals was investigated in MeCN with increased A.,, 460 nm
with Cd*" and Zn** (Fig. 5A), analogous to that of pyrazoline A,

Ha W N N—N, Hd o HC H®

Fig. 3 Partial 'H NMR spectra: (A) is 1 (20 uM, CDCls) and (B) is 1 + 2.0
equivalents of Zn?*.

RSC Adv, 2024, 14, 34918-34924 | 34919


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra06457g

Open Access Article. Published on 31 October 2024. Downloaded on 11/8/2025 11:47:48 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

He He HPb

“(’\—\,/ L NN W

I 1l " %
U | )JL‘ N w‘»@d“f(‘y}g‘h W J\

Fig. 4 Partial *H NMR spectra: (A) is 7 (15 pM, CDCls) and (B) is 7 + 2.0
equivalents Zn?*.
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Fig. 5 Photophysical properties of 1 (20 uM, MeCN). (Panel A) Metal
screen at Aex 280 nm with 5.0 equivalents of the indicated metal.
(Panels B—D) Titration studies for Cd®*, Zn®* and Fe**, respectively;
cps is counts per second. Cuvette images were taken under the irra-
diation of a 100 W A, 365 nm lamp.

which was previously reported. A linear response of up to 5.0
equivalents of both Cd*>" and Zn**, reaching a plateau on further
addition, was observed (Fig. 5B and C). An unexpected “turn-on”
response for Fe** at A., 535 nm suggested that 1 could function
as a multi-analyte sensor, as observed in previous studies.** This
response was not observed in sensor A, suggesting that the
naphthalene unit was responsible for this additional feature.
The increase at Aey, 535 nm upon addition of Fe** peaked at 5.0
equivalents of Fe**, with further addition reducing the fluores-
cence, which may be possibly due to paramagnetic quenching
of the excited state (Fig. 5D).

Repeating the Cd*" titration study for pyrazoline 1 ina 7:3
MeCN : H,O solution resulted in an approx. 90% reduction in
the “turn-on” response (see ESI S5%), greatly hindering the
potential of 1 in aqueous environments. Previous sensors A-D
and pyrazoline 1 all had a methyl substituent on the nitrogen
ring. In pyrazoline 2, this was replaced by a phenyl unit and
unexpectedly reversed the fluorescence response from “turn-
on” to “turn-off”, which was most noticeable for Fe** (Fig. 6A).
The A at 470 nm for 2 only (¢ 0.74) decreased with up to 5.0
equivalents Fe** (¢ < 0.01), and further addition resulted in
complete quenching of the fluorescence (Fig. 6B). A Fe*
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Fig. 6 Photophysical properties of 2 (20 uM, MeCN). (Panel A) is the
metal screen at Aex 280 nm with 5.0 equivalents of the indicated metal.
(Panels B and C) are titration studies for Fe3* and Fe** in MeCN,
respectively. (Panel D) is the Fe®* titration in 7:3 MeCN : H,O; cps is
counts per second. Cuvette images were taken under the irradiation of
a 100 W A¢x 365 nm lamp.

titration study demonstrated no significant change in A,
470 nm with up to 20.0 equivalents (Fig. 5C), suggesting that
pyrazoline 2 could selectively detect iron in the +3 oxidation
state over iron in the +2 oxidation state (Fe*'/Fe®*). A Fe®*
titration study in 7 : 3 MeCN : H,O was conducted to determine
if this “turn-off” response remained in aqueous samples (see
Fig. 6D for Fe*', and ESI S51 for the full metal screen). The
presence of water reduced A.,, by approximately 30% (¢¢ 0.83),
but retained a linear (R*> = 0.984) reduction in Ay, (¢f 0.07) in
the concentration range between 20-100 uM Fe®*, suggesting
that pyrazoline 2 could be utilised for the selective quantifica-
tion of Fe** in aqueous samples (Fig. 6D). A slight increase of
20 nm in Aey, from 470 nm in 100% MeCN to 490 nm in 7:3
MeCN : H,O was observed (Fig. 5D).

Our focus shifted to the anthracene pyrazolines 3-4 to
determine if a third aromatic ring would confer beneficial
properties. Pyrazoline 3 displayed a “turn-off” response for Fe*'/
Fe®" at 420 nm. However, several other metals produced a “turn-
off” response that was equal to or greater than that of Fe*"; for
example, Co”" and Cu®* (Fig. 7A). The A, of 3 only was
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Fig. 7 Photophysical properties of 3 (20 uM, MeCN) (Panel A) and 4
(Panel B) metal screen at As, 250 nm with 5.0 equivalents of the
indicated metal; cps is counts per second. Cuvette images were taken
under the irradiation of a 100 W A, 365 nm lamp.
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significantly less than that of 2, further limiting the application
of this pyrazoline as a sensor.

Pyrazoline 4 contained a phenyl instead of a methyl group.
This change significantly altered the photophysical properties
of 1 and 2. Pyrazoline 4 was also analysed, and displayed very
weak fluorescence at 420 nm with insignificant differences
observed on addition of a range of metals (Fig. 7B). The Ay, of 4
was approximately a third of the value for 3, suggesting that 4
was also unsuitable for sensing. In summary, the two anthra-
cene pyrazolines did not display improved fluorescence prop-
erties over the naphthalene sensors. A summary of the
pyrazoline series is displayed in Fig. 8.

With the initial studies on the pyrazoline series complete
and pyrazoline 2 selected for further investigation, we per-
formed a similar analysis on the pyrazole series 5-7. To our
surprise, pyrazole 5 displayed a “turn-on” response at 310 nm
(Fig. 9A), whereas pyrazole 6 with an additional aryl ring dis-
played a “turn-off” response to a variety of metals (Fig. 7B).
Unfortunately, no selectively to Fe*" was observed. Therefore,
these pyrazoles were not selected for further investigation.

Pyrazole 7 with a phenyl unit on the pyrazole nitrogen dis-
played significant A, intensity at 420 nm in the absence of
metals (¢f 0.33), and this was diminished only in the presence of
a small number of metals, most noticeably Fe**, Co>* and Cu>*
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Fig. 9 (Panel A) Metal screen for 5 (20 uM, MeCN) at A, 280 nm with
5.0 equivalents of the indicated metal. (Panel B) Metal screen for 6 at
Aex 250 nm in MeCN; cps is counts per second. Cuvette images were
taken under the irradiation of a 100 W A¢x 365 nm lamp.
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Fig. 10 Photophysical properties of 7 (20 pM, MeCN). (Panel A) Metal
screen at Aex 280 nm with 5.0 equivalents of the indicated metal.
(Panels B and C) Titration studies for Fe>" and Fe®' in MeCN,
respectively. (Panel D) Fe3* titration in 7: 3 MeCN : H,O; cps is counts
per second. Cuvette images were taken under the irradiation of
a 100 W ey 365 nm lamp.

(Fig. 10A). Significant reduction in 2., at 420 nm was observed
upon the addition of 4.0 equivalents of Fe** (¢¢ < 0.01). Further
addition of Fe’" resulted in complete quenching of the fluo-
rescence intensity (Fig. 10B). A similar study with Fe** demon-
strated no reduction, showing excellent Fe**/Fe*" selectivity
(Fig. 10C). Repeating the Fe®" titration in a 7:3 MeCN: H,O
solution demonstrated an excellent “turn-off” response with
a linear reduction in Ay, (R* = 0.978) (¢ 0.43 to ¢y 0.18), sug-
gesting this would be a suitable sensor for Fe** in aqueous
environments (see Fig. 10D for Fe*", and ESI{ for the full metal
screen). A summary of the pyrazole series is displayed in Fig. 11
and pyrazole 7 was selected for further investigation.

With two lead sensors selected, one pyrazoline and one
pyrazole, we performed a range of competition assays to
determine if the Fe**-triggered fluorescence “turn-off” response
is retained in the presence of competing cations. Pyrazoline 2

4
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Fig. 11 Summary of the pyrazole series; 7 (inset) was selected for
further investigation.
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was the most affected by competition across the range of cations
screened, except for Ru*" (Fig. 12A). Pyrazole 7 was similarly
impacted by the presence of competing cations, except for Ru**
and Cu®" (Fig. 12B). This result suggests that neither naphtha-
lene or anthracene, nor pyrazoline or pyrazole, are responsible
for the high competition observed. It is highly possible that the
large open chelation site, as demonstrated from a previous X-ray
crystal structure for the pyrazole analogue of A,* is responsible.
Restricting the chelation site (for example, by the addition of an
acetyl group) should be further explored in future analogues of
2 and 7, as this was shown to be highly effective for C and D."”

A study was conducted to determine the real-world potential
for 2 and 7 at detecting Fe*" in two types of samples: tap water
and mineral water. Both 2 and 7 demonstrated measurable
reductions in Ay, at 420 nm in the presence of 50 pM and 100
uM Fe** (Fig. 13 for 7 and ESI Sé6t for 2).
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Fig. 13 Fe®*-triggered “turn-off' response for 7 in tap water (Panel A).
Fe**-triggered “turn-off" response for 7 in mineral water (Panel B), Aey
250 nm. Solvent was 7: 3 MeCN : H,O; cps is counts per second.
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This study indicated that despite the reduction in the “turn-
off” response observed in the competition assays (Fig. 12), the
“turn-off” response was detectable in real world samples. Limit
of detection (LoD) studies were performed in a 7 : 3 MeCN : H,O
solution, and confirmed that 2 and 7 had LoD values of 2.12 uM
and 3.41 uM, respectively (see ESI S8f). This confirmed that
both pyrazoline 2 and pyrazole 7 can detect Fe*" below the iron
drinking water limit of the EPA and EU, and validates their
application in real-world monitoring. These LoD are compa-
rable with other Fe**-specific fluorescence sensors. For
example, Chattopadhyay et al. reported on a Fe**-specific “turn-
off” sensor with a LoD value of 3.5 uM,** Goswami et al. reported
on a Fe** “turn-on” sensor with a LoD of 2.9 uM,* and Wang
et al. reported on a Fe**-specific colorimetric sensor with a LoD
value of 1.0 pM* (see ESI S87 for further Fe** LoD examples). An
additional study was conducted with 7 using pond (Fig. 14A)
and river (Fig. 14B) water samples with a measurable “turn-off”
response with 50 pM and 100 uM Fe*", respectively (see ESI S7+
for similar study with 2). This confirmed that both 2 and 7 can
operate in external water sources containing a range of inter-
ferences beyond the cations screened in the competition studies
(Fig. 12), such as sediment and bacteria present in natural water
sources.

A reversibility study was conducted with 2 and 7 in the
presence of several cycles of Fe*", followed by EDTA, confirming
that both sensors can be used multiple times for Fe*" detection
(Fig. 15A for 2 and Fig. 15B for 7).

A proposed 1:1 binding mechanism of Fe** with sensors 2
and 7 is shown in Fig. 16, and agrees with the Job plot for 7 with
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Fig. 15 Repeatability study of the addition of 5.0 equivalents of Fe>*,
followed by 5.0 equivalents of EDTA, repeated for 5 cyclesina 7:3
MeCN : H,O solution. (Panel A) is 2 Aex 280 nm and (Panel B) is 7 Aqy
250 nm; cps is counts per second.
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Fig. 16 Proposed 1:1 binding mechanism of 2 and 7 with Fe3* with
the calculated limit of detection for Fe** in 7 : 3 MeCN : H,O solution.
Pyrazoline 2 was selected as the lead compound from this study.

Fe®* (see ESI S111) and the previously reported X-ray crystal

structure complex of the pyrazole A analogue with Zn>*.*®

Conclusions

Seven novel polycyclic pyrazoline and pyrazoles were syn-
thesised to determine how phenyl, naphthalene and anthracene
units influence photophysical properties. Small modifications
(for example, substitution of a methyl in 1 for a phenyl in 2)
reversed the photophysical properties from “turn-on” to “turn-
off”. 2 retained a good “turn-off” response in 7:3 MeCN: H,O
solutions, and was selected for further analysis. The addition of
a third aromatic ring to 2, resulting in 3, significantly disrupted
Aem and was detrimental to sensing. Pyrazoline 4 displayed
minimum A..,, and was unsuitable for sensing applications. For
the pyrazole series, 5 demonstrated a “turn-on” response at Aem,
310 nm to a variety of metals, whereas 6 displayed a “turn-off”
response at A, 420 nm to a range of metals. Neither showed
selectively to Fe*", and were not suitable for sensing. 7 was the
most useful pyrazole with complete quenching of A., at 420 nm
on addition of 4.0 equivalents of Fe** in organic solutions. Lead
sensors 2 and 7 were confirmed to display a Fe*'-triggered
“turn-off” response in aqueous samples with the Fe** limit of
detection values of 2.12 pM and 3.41 pM, respectively. Real-
world analysis confirmed that 2 and 7 could detect Fe** in
both tap water and mineral waters, and be useful for the
industrial scale monitoring of Fe*" in drinking water. 2 and 7
were also confirmed to display a “turn-off” response in pond
and river waters, suggesting these sensors could be used for
environmental monitoring of Fe®" in external water sources.
Further work is required to mitigate competing cations from
influencing the fluorescence response. The introduction of
additional chelation groups around the pyridine is a promising
solution, as it has been shown to be highly beneficial for C and
D."” These results set a firm foundation for the development of
future generations of improved phenyl substituted pyrazoline
and pyrazole Fe**-specific “turn-off” sensors that are purposely
designed to operate in aqueous environments.
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