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A comprehensive review on MoSe, nanostructures
with an overview of machine learning techniques
for supercapacitor applications

Robertson B,? Sapna R,” Vinod Hegde*? and Hareesh K & *2

In the past few decades, supercapacitors (SCs) have emerged as good and reliable energy storage devices
due to their impressive power density, better charge—discharge rates, and high cycling stability. The main
components of a supercapacitor are its electrode design and composition. Many compositions are
tested for electrode preparations, which can provide good performance. Still, research is widely
progressing in developing optimum high-performance electrodes. Metal chalcogenides have recently
gained a lot of interest for application in supercapacitors due to their intriguing physical and chemical
properties, unique crystal structures, tuneable interlayer spacings, broad oxidation states, etc. MoSe;,
belonging to the family of Transition Metal Dichalcogenides (TMDs), has also been well explored recently
for application in supercapacitors due to its similar properties to 2D materials. In this review, we briefly
discuss supercapacitors and their classification. Various available synthesis routes for MoSe, preparation
are summarized. A detailed assessment of the electrochemical performances of different MoSe;
composites, including cyclic voltammetry (CV) analysis and galvanostatic charge-discharge (GCD)
analysis, is given for symmetric and asymmetric supercapacitors. The limitations of MoSe, and its
composites are mentioned briefly. The use of machine learning methods and algorithms for
supercapacitor applications is discussed for forecasting valuable details. Finally, a summary is provided,
along with conclusions.

1. Introduction

The energy demands have been unboundedly increasing
recently due to the ever-growing population, urbanization,
industrialization and technological advancements. As a result,
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storage applications.
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rapidly. Excessive use of fossil fuels in automobiles has caused
many ecological problems such as air pollution. Other
conventional energy sources such as wind energy, solar energy,
and hydrothermal energy cannot provide continuous and
uninterrupted steady supply of energy. Therefore, there is
a need for the search of an alternative energy storage device that
is clean, efficient, and sustainable and that can store a consid-
erable amount of energy and provide this energy when
required.’” In this context, the development of electrochemical
energy storage devices such as capacitors, batteries, fuel cells,
and supercapacitors has gained a lot of interest from
researchers. Batteries have the disadvantages of poor power
density, shorter cycle life, poor power performance, and over-
heating problems. Conventional capacitors have limited energy
density, making them unsuitable for applications requiring
long-term energy. SCs, as modern energy storage devices, have
been developed to overcome these shortcomings. They are
filling the gap between batteries and capacitors because SCs
have 100 times better capacitance than normal capacitors. The
SCs have impressive power density, quick charging and dis-
charging rates, good cycling stability, and eco-friendliness.*”
The development of SCs is important since they can address the
future energy storage demands of small portable devices, elec-
tric vehicles, smart electronic equipment, hybrid systems, and
flexible and wearable device applications.'** A supercapacitor's
performance is majorly dependent on the materials of elec-
trodes. Hence, researchers are highly focusing on developing
new high-performance electrode materials for SCs for energy
storage applications.

Two-dimensional (2D) materials are highly explored for use
in supercapacitor electrodes owing to their large surface areas
and sheet-like morphologies, which enable the maximum
exposure of active sites.*® The 2D material family comprises
graphenes, silicene, germanene, borophene, black-
phosphorous, hexagonal boron-nitride, MXenes, TMDs, and
many others.” The evolution of 2D material-based super-
capacitor electrodes started from graphene, and later, many
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Fig.1 Three-dimensional view of layers of MoSe, (Green: Mo, Yellow:
Se). This figure has been reproduced from ref. 23 with permission from
Springer Nature, Copyright 2018.

other materials in this class were explored further. Recently,
TMDs (MoS,, MoSe,, WS,, WSe,, etc.) have attracted consider-
able attention from researchers to investigate as pseudocapa-
citive materials for SCs in energy storage and conversion
fields."” In 2D TMDs, two chalcogen layers (X = S and Se)
sandwich a metal layer (M = Mo and W) creating an MX,
structure.'®® Among them, MoSe, has received considerable
attention from researchers owing to its graphene-like layered
structure, weak van der Waals interactions between the layers,
and many other interesting properties. An analog of MoS,,
MoSe,, has a layered structure with two Se layers sandwiched by
a Mo layer at an interlayer spacing of about 6.5 A. MoSe, layers
are created by covalently joining the nearby atomic layers, and
van der Waals forces stack the adjacent MoSe, layers into bulk
structures.”>** Ion intercalation and de-intercalation can occur
easily due to the wide interlayer spacing between the layers of
MosSe,. Fig. 1 shows the three-dimensional view of MoSe, layers
with a gap of 0.647 nm. Fig. 2 gives the number of research
publications on MoSe, over the past few years. MoSe, has
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Fig. 2 Number of publications on MoSe; electrodes. Compiled from Google Scholar with search “MoSe,".

a better metallic character than MoS,, and its lower Gibbs free
energy promotes its electrochemical activity in catalytic appli-
cations.** MoSe, has a better intrinsic electrical conductivity
than that of MoS, due to the better metallic nature of Se than
that of S, making it an intriguing narrow-band-gap semi-
conductor with comparable layered structures. Electrolyte ion
intercalation is made simple by the wider layer gap (0.647 nm)
between two MoSe, layers compared to other counterparts (e.g.,
graphite has 0.335 nm, and for MoS,, its 0.615 nm). Low
internal resistance and high faradaic capacitance are made
possible by the unsaturated Se stable edge structure and the
ability to provide many electrochemically active sites.”® Two
distinct symmetry types are present in MoSe, (1T octahedral
and 2H trigonal prismatic). The 1T phase is metallic in contrast
to the semiconducting 2H phase. Because of its thermodynamic
instability, the 1T phase of MoSe, eventually changes into the
2H phase.**?¢ All these interesting properties have made MoSe,
gain research interests for SCs. Nevertheless, the specific
capacitance of MoSe, is still too low to be utilized in its pure
form for energy storage applications, and its electrical
conductivity is still lower than that of carbon materials such as
graphenes. Numerous researchers have created a variety of
MoSe,-based nanocomposites including graphenes, carbon
aerogels, carbon nanotubes, and polyaniline, to address these
shortcomings. Compared to pure MoSe,, electrochemical
experiments have shown that the MoSe,-based composites
provide outstanding cycling stability and a high specific
capacity.

Recently, with the advancement of Machine Learning (ML)
in the area of Artificial Intelligence (AI), it has become possible
to develop better high-performance electrodes for SCs.*”
Specifically, by using the ML methods, it is now possible to
accurately predict the capacitance of the electrode materials,*®
forecast the results without experimentations,* provide opti-
mized reaction parameters,’® estimate the reaction rate,*
explore new electrode materials,* determine remaining useful

37646 | RSC Adv, 2024, 14, 37644-37675

life,*® analyze the state of health,** estimate the state of charge®
and predict the cycling stability*® as well. This will save a lot of
time and effort for the researchers since a lot of details can be
gathered from the ML models without performing trial-and-
error experiments. For SCs, ML algorithms work on a large set
of input data from already published works and results. Using
suitable algorithms, the ML models are trained to gather and
analyze the extensive input data. The ML models learn to map
inputs to outputs by adjusting their parameters based on the
training data. After this, the ML model can make decisions
based on unseen future data. The ML models can update the
new data and work in real time. Various ML models such as
Neural Networks, Random Forest, XGBoost, Support Vector
Machines, Decision Trees, and Linear Regression are available.
By selecting an appropriate model, useful details can be accu-
rately derived for developing supercapacitor electrodes as per
the requirements.>®

Herein, we comprehensively review the MoSe, and MoSe,-
based composite electrodes for supercapacitor applications.
The different synthesis routes adopted for the development of
MoSe, are provided. Brief workings of implementing ML
models in the field of SC applications for capacitance predic-
tion, remaining useful life determination, etc., are also dis-
cussed. Finally, challenges faced by MoSe,-based electrodes and
future perspectives are provided along with conclusions.

1.1 Supercapacitor fundamentals

SCs primarily take the form of Electric Double Layer Capacitors
(EDLCs), pseudocapacitors and hybrids depending on energy
storage techniques. EDLC electrodes store charges electrostati-
cally and not via faradaic reactions or charge transfer. A double
layer of charges is accumulated on the electrode when voltage is
supplied. The diffusion of electrolyte ions occurs towards
oppositely charged electrodes. When double layers are formed,
this reduces the inter-separation distance, which contributes
directly to an increase in capacitance. Here, the recombination

© 2024 The Author(s). Published by the Royal Society of Chemistry
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of ions does not take place during double-layer formation.
EDLCs have good energy density due to the use of carbon-based
electrodes, which have large surface areas, and due to reduction
in charge separation distance. EDLCs have good power outputs,
fast and quick energy intake, and better energy distribution.
Moreover, energy storage mechanisms do not involve any
chemical reactions, and they are non-faradaic in nature.
Compared with batteries, which have the ability to withstand
only a few thousand cycles, EDLCs have the ability to continue
for millions of cycles. They have drawbacks of poor power
density. Conducting polymers, metal oxides and other pseu-
docapacitive materials are selected in the case of pseudocapa-
citors. Here, energy storage is mainly electrochemical in nature.
The mechanism of energy storage is dependent on faradaic
reactions that occur between electrodes and electrolytes. Fara-
daic reactions involve quick oxidation and reduction reactions.
In EDLCs, no charge transfer occurs, but in this case, charge
transfer occurs between electrolytes and electrodes. When
a potential is supplied, a faradaic current passes through the SC
cell. Compared to EDLCs, pseudocapacitors can store more
charges, provide better energy densities, and show increased
specific capacitances. They have the disadvantage of low cycla-
bility issues. Recently, hybrid capacitors have become a major
class of supercapacitors which include both EDLCs and pseu-
docapacitors. Here energy is stored both electrostatically (non-
faradaic) and electrochemically (faradaic). It combines the
best features of EDLCs and pseudocapacitors, overcoming the
drawbacks of both types, thereby providing more energy density
and better life cycles. Hybrid capacitors can further be grouped
into three types depending on the electrode materials and

Supercapacitors
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configuration: asymmetric hybrids, composite hybrids, and
battery-type hybrids. Composite hybrids consist of two or more
materials that are utilized for electrodes. Composites can be
binary, ternary, and quaternary. Several examples of composites
such as carbon-carbon composites, conducting polymer
composites, and carbon-metal oxide composites are available.
Utilizing two or more materials may produce a synergistic effect
that assists in charge transfer and energy storage. In asym-
metric hybrids, both EDLCs and pseudocapacitor materials are
used in combination. One electrode will be EDLC in nature, and
the other electrode will be pseudocapacitive in nature, thereby
utilizing both faradaic and non-faradaic processes. From the CV
curves, distinction can be made between -capacitive-type,
pseudocapacitive-type, EDLC-type, and battery-type behaviors
of electrodes. In the battery-type hybrid group, battery-type and
SC-type electrodes are used together, thereby bridging the gap
between the power density and the energy density.*”*® Fig. 3
gives the classification of SCs depending on possible materials
used. Fig. 4 shows the stages of development of SCs, models for
describing EDLC mechanisms, and Ragone plot for comparing
available energy storage devices.

The performance of lab-scale prepared electrodes can be
tested in three designs, namely three-electrode set-up,
symmetric set-up, and asymmetric set-up. The three-electrode
system comprises electrolyte, working electrode, reference
electrode, and standard electrode. The two-electrode setup
(symmetric and asymmetric) has two electrodes made up of
highly supercapacitive materials. For symmetric, both elec-
trodes will be based on the same material. For asymmetric, the
anode material will be different from the cathode material.

Graphene

Carbon

Carbon
Aerogels

CNTs

|
|
|
|
|
|
|
| Activated
|
|
|
|
|
|
|
|

Fig. 3 Supercapacitor classification with the possible materials used.
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Fig. 4 (a) Classification of supercapacitors. (b) Models for EDLCs. (c)
reproduced from ref. 47 with permission from MDPI, copyright 2024.

Activated carbon (AC) has been majorly used as one of the
asymmetric electrodes in several works. The two-electrode setup
provides a better representation of the charge storage perfor-
mance of the material compared to the three-electrode setup.
The most frequently used one is the asymmetric and three-
electrode set-up. From the CV curves, for the asymmetric set-
up, the specific capacitance can be found using the following
equation:

I(V)dv
Y
where v stands for the scanning rate, m stands for the mass of
electroactive sample, AV stands for the voltage window and
integral represents the CV curve area.

From the GCD curves, for the asymmetric setup, the specific

capacitances can be determined using the following equation:

1A
g

mAV(
where At stands for the discharging time, AV stands for the
voltage window, and I/m stands for the current density.*®

C =
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Comparing available energy storage devices. This figure has been

2. Development of MoSe,
nanostructures for supercapacitor
applications

2.1 Liquid-phase exfoliation method

Liquid-phase exfoliation is a solution-processing method used
to produce two-dimensional nanosheets from layered materials
such as graphite in large quantities. This technique involves
dispersing layered crystals in a suitable solvent and applying
energy to separate the layers into individual nanosheets. The
most common energy sources include ultrasonication, high
shear mixing, and micro fluidization, which help overcome the
van der Waals forces holding the layers together. The exfoliation
of MoSe, into single-layer or few-layer structures using this
technique is made easier by the weak van der Waals forces
between MoSe, layers in bulk MoSe,, which are comparable to
those between the MoS, layers in bulk MoS,.*** Jiang et al.
employed a liquid-phase exfoliation technique to produce 2H
MoSe, nanosheets using a precursor of MoSe, powder and
a mixed solvent of water and ethanol.”® Bath sonicator was used

© 2024 The Author(s). Published by the Royal Society of Chemistry
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for the exfoliation process, and a centrifuge was used to sepa-
rate unexfoliated powders. The obtained products were further
processed to prepare a thin film and an electrode to investigate
their performance in SCs. In one of the reports, Rahul and Arora
used the same method to produce MoSe, nanosheets using bulk
MoSe, powder and isopropyl alcohol (IPA) as solvents. Sonica-
tion was done for 5 h at room temperature. The authors used
a temperature-controlled water bath during the sonication
process. The formation of exfoliated MoSe, nanosheets was
validated by peaks in the Raman measurements. According to
the FESEM result, the sample is made up of both large and
small flakes and sheets that are evenly dispersed throughout the
substrate surface. The structure displayed distinct crystal lattice
fringes of around 0.64 nm, which were attributed to d-spacing
for the (002) basal plane of 2H-MoSe,, according to the TEM
results. The electrode made from the obtained nanosheets was
further investigated by the authors for further electrochemical
analyses.® In another study, Mendoza-Sanchez et al. reported
MoSe, nanoplatelet preparation using the same method and
studied their charge storage properties (Fig. 5).*

2.2 Microwave-assisted synthesis method

Microwave synthesis is an innovative method that utilizes

View Article Online

RSC Advances

significantly enhancing the efficiency and speed of various
synthesis processes. This technique allows for rapid heating of
reaction mixtures, often reaching temperatures above the
boiling point of solvents, which can lead to improved reaction
kinetics and higher yields compared to conventional heating
methods. Leaf-like MoSe, with mesoporous structures was
synthesized by Vattikuti and co-workers using a microwave
irradiation technique. A solution containing a known amount
of sodium molybdate, Se powder, and PVP as surfactant was
vigorously stirred for 1 h in DI water and hydrazine hydrate.
Then, the solution was exposed to microwave irradiation at
160 °C for 25 min, and then finally, the precipitates were
collected for further studies. The Raman and XRD images
confirmed the formation of MoSe,. The authors reported that
the as-prepared MoSe, had a surface area of 64.63 m> g~ * and
mesopore sizes of 8 nm. Mesoporous MoSe, nanostructures
that resemble dry leaves are formed, as shown in SEM and
HRTEM images. For 5000 cycles, the mesoporous MoSe, elec-
trode demonstrated exceptional cycling stability while
achieving a capacitance of 257.38 Fg *at 1 Ag %

2.3 Sonochemical method

The sonochemical method basically involves exfoliating the

microwave radiation to accelerate chemical reactions, precursor material by applying high-intensity ultrasound energy
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for a certain period. The solvents used, sonication power and
sonication time play crucial roles in obtaining a necessary
number of layers. Fig. 11 shows the schematic of a typical
sonochemical synthesis route. Using H,O, as an intercalating
agent in isopropyl alcohol, Kirubasankar and colleagues devel-
oped a simple and efficient sonochemical method for fabri-
cating a few layers of MoSe, nanosheets. The optimization of
the synthesis process was done by testing the probe-sonicator
under ice-cold conditions for three distinct periods (15, 30,
and 45 minutes) at a constant power.** The suspensions of
MoSe, were collected after centrifugation and dried to obtain
final products. The authors reported that the sonication time
played a crucial role in determining the number of layers and
yield of the products. A distinct hexagonal phase (2H-MoSe,)
with a space group (Ps3/mmc) was confirmed from the XRD
patterns, and the absence of any impurity peaks suggests that
a pure hexagonal phase has formed. For the exfoliated MoSe,,
the surface areas were determined to be 68 m> g~'. Further
other characterizations were also carried out to confirm the
desired material formation. The authors examined the synthe-
sized nanosheets for further electrode performance analysis.

2.4 Electrodeposition method

Electrodeposition, also known as electroplating or electro-
chemical deposition, is a process used to deposit a layer of
materials, typically metal, onto a substrate through the reduc-
tion of cations from an electrolyte solution. This technique
involves immersing the substrate (acting as the cathode) in an
electrolyte containing metal salts. When a current is applied,
metal ions migrate to the cathode, where they gain electrons
and are reduced to form a solid metal layer.

A simple electrochemical deposition (ECD) method was used
by Mariappan et al. to create a binder-free electrode made of
MoSe, nanosheets directly grown on a Ni foam. Ammonium
molybdate and selenium dioxide were added to DI water to
make the growth solution. In this work, the ECD process was
carried out in a three-electrode configuration with Ag/AgCl as
the reference electrode, a Pt sheet as the counter electrode, and
a Ni foam as the working electrode. With varying deposition
times, the procedure was carried out using an applied voltage of
—1.1 V (against Ag/AgCl).>> More MoSe, nanosheets that were
arbitrarily orientated and aligned on the surface of Ni foam
grew as the deposition time increased. Raman characterization
was done to examine the vibration bands for the prepared
nanosheets. The authors concluded that the vibration bands
seen in the MoSe, nanosheets generated using ECD were in
good agreement with those found in earlier MoSe, research.
The nanosheets were further examined in electrochemical tests
for supercapacitor performance analysis.

2.5 Colloidal method

The colloidal technique involves the formation of nanoparticles
through a solution-based process, where precursor materials
undergo nucleation and growth in a colloidal medium. The
process typically follows the classical nucleation and growth
model, where the rapid formation of nuclei occurs, followed by

37650 | RSC Adv, 2024, 14, 37644-37675
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their growth into larger particles. Colloidal synthesis helps for
precise control over particle size, shape, and composition by
manipulating various parameters such as precursor concen-
tration, temperature, and the use of stabilizing ligands.
Colloidal routes to MoSe, need suitable reactive precursors to
accommodate the highly anisotropic crystal growth. This
method has been instrumental in producing various nano-
materials including metals and semiconductors, which find
applications in energy storage, catalysis, electronics, medical
diagnostics, and photovoltaics. Substrate-free MoSe, nano-
structures with a consistent flower-like shape and tuneable
average diameters ranging from roughly 50 to 250 nm were
synthesized colloidally by Sun and coworkers. Precursors
included 1-octylamine, oleic acid, and sodium molybdate. For
the nanoflowers, a number of highly crystalline few-layer
nanosheets protruded from the central core. The authors
showed that by varying the reaction time, the nanoflower sizes
could be adjusted. Using XRD and TEM, the authors high-
lighted the formation of nanoflowers contained with nano-
sheets. The average crystallite size by Scherrer analysis (10 nm)
was found to be smaller than that observed by TEM (50-150
nm), due to which the authors emphasized that the nanosheets
are laterally polycrystalline. The distinctive first-order A;z-like,
and E,g-like Raman active modes are detected at around 241
and 285 cm ™, respectively, based on the Raman analysis. The
authors confirmed that these are in perfect agreement with
previous Raman experiments in MoSe,.** Guo et al. utilized
colloidal synthesis to produce MoSe, nanonetworks and nano-
flowers such as morphologies. Mo(CO)s, selenium (Se), 1-octa-
decene (ODE), oleylamine (OAm) and oleic acid (OA) were used
as reactants. The authors emphasized that the ratio of OAm to
OA determines the shape of MoSe, nanostructures. When OAm
is not present, the synthesized products are nano-networks
made up of ultrathin nanosheets that are continuously
coupled in a comparatively flat pattern. The MoSe, ultrathin
nanosheets tend to create random configurations in various
directions as the amount of OA in the reaction increases. They
can also form porous nanonetworks or discrete nanoflowers.
Such morphology tuning can be further investigated for devel-
oping better surface for electrodes.”” Wang et al. synthesized
high-quality MoSe, nanospheres from the same route.*® The
microstructure consisted of uniform nanosphere agglomerates
in the range of 200 to 450 nm. BET surface areas for the
nanospheres were recorded to be 62.3 m> g~ '. This can be
beneficial for developing high-surface area electrodes for SCs.

2.6 Hydrothermal/solvothermal method

The hydrothermal process refers to a chemical synthesis tech-
nique that employs aqueous solutions or organic-based
solvents. In the hydrothermal/solvothermal process,
a prepared and agitated solution is poured into an autoclave
and heated in a high-pressure reactor for a predetermined
amount of time at a set temperature. The desired sample is
eventually produced by this process, which takes place in
a high-temperature sealed enclosure within the hydrothermal/
solvent system.** This approach provides cost-effectiveness,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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ease of control over response conditions, and simplicity in
operation. The size and morphology of 2D materials can be
efficiently controlled by varying the hydrothermal process
parameters, including substrate selection, temperature, addi-
tives, and precursor choice.®® A schematic of hydrothermal
preparation is shown in Fig. 6. Balasingam and coworkers fol-
lowed a hydrothermal route to prepare a few-layered MoSe,
nanosheet as an electrode material for SCs.** The precursors
used for the hydrothermal reaction were sodium molybdate,
selenium powder (Se), and NaBH,. XRD and Raman results
confirmed the successful synthesis of MoSe, nanosheets. The
HRTEM images and Raman spectrum confirmed the formation
of few-layered nanosheets. The HR-TEM pictures showed
a layered crystal structure with distinct crystal lattice fringes
that measure roughly 0.62 nm, which is the usual d-spacing for
the structure (002) basal plane of the hexagonal crystal struc-
ture. Notably, a large surface area for the electrochemical
processes is provided by the porous nature of the MoSe,
nanosheet. Using an aqueous electrolyte, the authors tested the
supercapacitive performance of the prepared nanosheets in
a two-electrode configuration. Using a simple hydrothermal
method, Qiu et al. synthesized MoSe, nanoflakes and nano-
rods.” The desired material formation was confirmed by XRD,
TEM, and SEM results. According to the authors, the meso-
porous structure of the nanoflakes resulted in a large BET
specific surface area of 46 m> g~ and a high porosity of 0.06

| NaBH, + Se + Na,MoO,

Low ratio of 1T phase
incorporated MoSe,
L i i i i e i AR e

cm?® g7'. The authors further developed a solid-state symmet-
rical SC device of MoSe, nanoflakes/MoSe, nanorods, showing
excellent energy storage capabilities. Ultrathin 1T MoSe,
nanosheets with an impressive interlayer spacing of =1.17 nm
were prepared by Jiang et al. using a straightforward sol-
vothermal technique.® The spacing reported was = 81% wider
than that of pure MoSe, (0.65 nm). Xia et al. prepared nano-
sheets of 1”T@2H MoSe, via a two-step solvothermal process, as
described in Fig. 7. The crystallinity of the samples was
confirmed by various structural characterizations. This work
incorporated the 1T phase with 2H MoSe, nanosheets.*

2.7 Chemical vapor deposition method

The CVD process produces pure and high-crystallinity solid
films by depositing gaseous precursors on the substrates. The
precursor reacts or decomposes on the surface of the substrate
material under high-temperature and -vacuum conditions. To
prepare a high-quality film having an adjustable thickness,
deposition parameters such as temperature, gas flow, and
pressure can be changed.*® The precursor selection also plays
avital role in the CVD growth process. The shortcomings of this
method are low yield and requirement for complex
instruments.

Using Se and MoO; as the chemical vapor supply in
a mixture of H, and Ar gases in a horizontal tube furnace, Shaw
et al. reported the first CVD development of single- and few-layer

.
©
<

High ratio of 1T phase
incorporated MoSe,
hanosheets,

[
[
[
|
[
[
[

e = -

Fig. 7 Solvothermal synthesis of MoSe,. This figure has been reproduced from ref. 64 with the permission from Nature, copyright 2017.
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MoSe, nanosheets. It was discovered that H, was essential to
the reaction because it promoted the reduction of MoO; with Se
to form MoSe,. The authors showed that the SiO,/Si substrates
may be used to directly generate extremely crystalline MoSe,.*> A
lot of reports are available for the CVD growth of MoSe, films
and nanosheets. CVD-grown MoSe, finds applications in
photodetectors, flexible electronics and electrocatalysis.
However, the preparation of supercapacitor electrodes from
CVD-grown MoSe, has not yet been reported. This can be
investigated in future to develop pure and crystalline MoSe, for
energy storage applications.

2.8 Other methods

Upadhyay and Pandey successfully prepared layered 2H-MoSe,
nanosheets with a stacked nanoplate morphology having
a hexagonal crystal structure using an in situ selenization
process for the first time. Reaction parameters had a significant
effect on the phase formation. Stacked plates with porous
nanostructures were reported.®® Various characterization
results for the structural analysis of the prepared nanosheets
are shown in Fig. (8-10).

3. SC performance of various MoSe,
composites
3.1 Asymmetric set-up

MoSe,/rGO composites for high-performance SCs were devel-
oped employing a hydrothermal route. The effect of graphene
content was studied by preparing different samples with
different rGO concentrations. With the increase in rGO content,

MoSe, nanospheres were uniformly dispersed on rGO
et
y o —
I SEl  15kV WD11mm SS3§ x10,000 1pm

Fig. 8

Copyright 2020.
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nanosheets. The composites were checked in a three-electrode
setup showing optimal electrode MoSe,-rGO-25, which was
prepared keeping 25 mg GO initially. The rGO nanosheets hel-
ped in increasing the electrical conductivity of the sample.
Moreover, by using rGO, we get contributions both from EDLC
and pseudocapacitive processes. When the rGO content was
increased, the diffusion of ions became slow, thereby
decreasing performance.”” Three-dimensional CoNi,S,-gra-
phene-2D-MoSe, composites having sphere-sheet-like struc-
tures were produced by combining hydrothermal and simple
ultrasonication for SC applications. Large amounts of MoSe,
nanosheets and graphenes were first prepared using a liquid
exfoliation technique. For comparison, various composites of
CoNi,S, such as CoNi,S;-MoSe,, CoNi,S;-G, and CoNi,S,-G-
MoSe, were further synthesized by the same method. The
energy storage analysis revealed that the composite exhibited
a maximum Cg, of 1141 F g~ " with a mass loading of 5 mg em 2.
The retention of 108% was found after completion of 2000
cycles during the CV and GCD tests. Further, a symmetric device
is also built showing a specific capacitance of 109 F g~ '.*® Vid-
hya and coworkers synthesized ZnSe@MoSe, composites via
a hydrothermal method having a flower-like morphology. The
authors concluded that the flower-like structure increases
electrochemical performance by offering electron mobility and
additional electrolyte ions. During the CV and GCD tests, the
binary electrode delivered high C,, of 450 F g~ ' at 1 Ag " and
retained 99.6% after completion of 2000 cycles.* The Nij gs-
Se@MoSe, nanosheets were produced by the hydrothermal
method on the framework of MoSe, using Nickel foam precur-
sors. The Ni ( gsSe@MoSe, nanosheets exhibited C, of 774 F
g’l, which is twice that of Ni, gsSe and seven times more than

— s s s s e s sy

15kV WD11mm SS35

Hexagonal
structure
N

(a—e) SEM results of the synthesized MoSe, powder. This figure has been reproduced from ref. 66 with permission from Elsevier,
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that of MoSe, nanoparticles. This was associated due to hier-
archical and interconnected porous nanosheet array structures.
An ASC is fabricated by the Ni ,gsSe@MoSe , nanosheet elec-
trode, which showed an output of 1.6 V, an Eq of 25.5 W h kg "
at Py of 420 W kg™, and after completion of 5000 cycles it
showed good cycling stability having 88% capacitance reten-
tion.” Peng and coworkers reported NiSe@MoSe, unique
nanosheet arrays prepared by a hydrothermal growth method
without any surfactants for high-performance ASC applications.
Nickel selenide and MoSe, are similar in terms of their crys-
tallographic structure due to the same space group. This can be
useful for developing a good heterogeneous structure.®* NiSe/
MoSe,/MoO, ternary composites were reported using a growth-
annealing approach. The synergistic effects of MoSe,, NiSe and
MoO, worked well to gain good performance of the SC.”* Gao
et al. reported NiCoP nanowires decorated with few-layer MoSe,
nanosheets grown on CC for the first time, employing a hydro-
thermal method. NiCoOH nanowires on carbon cloth were
prepared via a hydrothermal reaction followed by low-
temperature solid-state phosphorization to form NiCoP. A few
layers with an expanded interlayer (from 0.65 nm to 0.76 nm)
were seen for the composite. The composite exhibited appre-
ciable long-term durability and at 1 mA c¢cm > gravimetric
capacitance of 5613.5 mF cm > (2245.4 F g~ ') was recorded. A
flexible ASC was constituted using the composite as the positive
electrode showing E4 of 55.1 W h kg™* at P4 of 799.8 W kg™ .
After completion of 8000 cycles, it showed 95.8% capacitance
retention revealing good cycling stability.”” Nanosheets of
layered Ti;C,T, MXene/MoSe, nanohybrids were hydrother-
mally synthesized. The authors found out that MXene flakes
were enveloped inside MoSe, nanosheets. CV and GCD

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(a—c) FESEM images (d) EDS of the synthesized MoSe, powder. This figure has been reproduced from ref. 66 with permission from

measurements showed that they possess faradaic pseudocapa-
citive behavior. The Ti;C,T,/MoSe, composite revealed
enhanced cycling rate and specific capacitance which were
better than those of MXenes and MoSe,. The authors demon-
strated that the observed better performance was due to
expanded interlayer spacing of Ti;C,T, by addition of MoSe,,
which enhances the surface area in the electrochemical
processes. High cycling ability was associated with the layered
structure formation of the composite, preventing agglomera-
tion and stacking issues. After completion of 10000 cycles,
94.1% capacitance was retained showing good cycling resil-
iency.” Using the hydrothermal method, Guo et al. demon-
strated nanoflower preparation of Na intercalated MoSe, based
on mixed-phase (1T/2H) MoSe,/graphene nanocomposites. The
transition of MoSe, from the semiconductor to the metallic
structure was observed after the addition of sodium ions. Na ion
insertion causes electrolyte ions to enter the electrode, thereby
enhancing the capacitance. The improved conductivity of
MoSe, was due to the presence of graphene and 1T phase which
enhances electrochemical activity. The authors demonstrated
that the nanoflower shape, which increased the contact between
electrolyte ions and the electrode, were responsible for the
composite's increased electroactive area. During the CV and
GCD analysis, a specific capacitance of 1407.5 F g~ was recor-
ded at 1 mV s~ ". An all-solid-state SC based on the prepared
composite showed a specific capacitance of 244.8 F g~ "7 A
hydrothermal approach was employed to develop nanohybrids
of 2D MoSe,/Ni(OH),, which had superb electrochemical
property due to the synergistic effects. The 2D/2D hybrid dis-
played Cg, of 1175 F g~ !, which was better than Ni (OH), (933 F
¢ ') maintaining 85.6% rate capability. The nanohybrid-based

RSC Adv, 2024, 14, 37644-37675 | 37653
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Fig. 10

(a—c) Result of TEM scan, (d) HR-TEM measurements, (e) TEM results (plan view) (f) SEAD measurements of MoSe, powder. This figure

has been reproduced from ref. 66 with permission from Elsevier, Copyright 2020.

ASC recorded a high Eg4 value of 43 W h kg™ " and a high P, value
of 8181 W kg *. Even after the completion of 5000 cycles, 85% of
capacitance was retained showing appreciable resiliency. It was
used to light small LEDs for few minutes.” Karade and
coworkers  demonstrated the synthesis of MoSe,/
MWCNT(MSMC) hybrids employing a combination of dip and
dry along with chemical bath deposition. The authors in this
work compared the energy storage performances between
MoSe,, MWCNTs and MSMC using a 1 M KOH electrolyte.” Yu
et al. reported NiygsSe/N-MoSe, hybrids for asymmetric
supercapacitors via a hydrothermal route, using water and
formamide as a mixed solvent. The hybrid had a better specific
capacity than that of the individual units, which was due to the
cooperative effect and mesoporous structure. The electro-
chemical performance of the hybrid demonstrated good cycla-
bility, retaining 105.1% of capacitance after completion of 15
000 cycles.”” Wei et al., for the first time, successfully designed
3D MoSe, nanoflowers on an anisotropic carbon architecture.
Most of the studies on MoSe, are focused on cathodes. Here,

37654 | RSC Adv, 2024, 14, 37644-37675

they prepared composites for anodes. High pseudo capacitance
was observed due to good specific surface area of 83.5 m* g~ *
and high electrochemical activity of the nanoflowers. Contri-
bution from both EDLC and pseudocapacitance is observed,
which produces synergistic effects and helps to provide good
areal capacitance.” A hydrothermally prepared MoSe,/Ni foam
showed a specific capacitance of 1114 F g * in the works of
Huang and team.” Improvement in the specific capacitance was
observed when composites are formed with carbon materials
such as graphene and acetylene black. MoSe,/graphene showed
a specific capacitance of 1422 F ¢~ and MoSe,/acetylene black
showed 2020 F g~ ".8>%! A self-charging power cell was fabricated
making use of MoSe, electrodes. The reported better perfor-
mance was due to the use of ionogel electrolytes and
intercalative-type MoSe, energy storing electrodes. The cell
exhibited 18.93 mF cm™? specific capacitance, 37.90 mJ cm >
energy density and 268.91 uW cm ™2 power density.*> Arulkumar
et al. reported Ti;C,T, MXene/MoSe, nanocomposites for ASC
prepared via a hydrothermal approach. A bare Ni foam has little

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra06114d

Open Access Article. Published on 25 November 2024. Downloaded on 1/19/2026 2:10:28 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

View Article Online

RSC Advances

Solution /./
Preparation with

necessary

precursors sonicator

e L L L T

Ultrasound Probe

- @

MoSe2 products

Vacuum Oven

Fig. 11 Sonochemical method for MoSe, preparation. Created in BioRender. FRANCIS, M. (2024) https://BioRender.com/c76w095.

capacitance, as indicated by a flat line on the CV graph. The
composite has better capacity than that of individual elements,
which can be inferred from the larger area coverage in the CV
plots. The diffusion control contribution slowly declines and
pseudocapacitive contribution slowly increases with the
increase in scan speeds. The GCD plots are non-linear and
symmetrical in nature supporting the redox peaks shown in the
CV plots, thereby confirming the pseudocapacitance nature.
The composite exhibits the highest specific capacitance of
1531.2 F g ' at 1 A g~ '. An ASC device was built using the
composites as one of the electrodes. Good efficiency was re-
ported which can be ascertained from the symmetric GCD
profile and very negligible IR drops even when increasing
current densities. The authors concluded that MXenes and
MoSe, work harmoniously to produce good performance. All
test results are shown in Fig. 12-14.%

Studies on the effect of alkaline electrolyte concentration
(0.5 M, 1 M, 3 M KOH) on energy storage of MoSe,/PANI were
reported by Zheng and team. The samples were hydrothermally
prepared using silica templates. MoSe, hollow microspheres
with rough morphology were formed, which were in sizes of
740 nm contributing to the improvement in surface area. From
BET analysis, it was found that the surface areas increase in the
order of PANI > MoSe,/PANI > MoSe,. MoSe,/PANI with a mass
ratio of 1/1 recorded 146.5 F g ' as the highest specific capac-
itance at 0.3 A g ". Tt also showed 22.16 W h kg " energy density
with 198 W kg™' power density. The authors concluded that
good performance of MoSe,/PANI was attributed to the syner-
gistic effect of PANI and MoSe, hollow microspheres, improved
conductive path, suitable electrolyte concentration, variable
oxidation state, and large surface area of the material.** Mittal

© 2024 The Author(s). Published by the Royal Society of Chemistry

and co-workers for the first time prepared MoSe,/PANI nano-
composites and studied its electrochemical performances for
supercapacitor applications. The optimized MoSe,/PANI having
aratio of 1/2 showed 96% enhancement in capacitance. Testing
for 3000 cycles, the composite showed capacitance retention of
72% showing good cycling stability. MoSe, performs like an
EDLC material and PANI falls under a pseudo capacitance
material. Forming their composite will utilize the benefits of
both by synergistic effects, thereby improving the performance.
Moreover, other benefits such as improved electron and ion
transfer, and improved wettability of electrode were observed.*
Zhang et al. prepared MoSe, porous nanospheres by a hydro-
thermal method. Nanosheets of PANI were grown in situ, and
thereafter, MoSe,/PANI capsule nanospheres (CNs) were
synthesized. The authors noted that the composite's perfor-
mance was dependent on the quantity of PANI. The best
composition was found to be MoSe,/PANI-16 CNs, which
recorded a specific capacitance of 753.2 F g~ *. It was found that
pseudocapacitance contribution dominated more than diffu-
sion capacitance. Further the ASC device fabricated using the
composites showed energy density of 20.1 W h kg™ ' at 650 W
kg ' power density. Surface areas of MoSe, and MoSe,/PANI
CNs were noted to be 5.94 m® ¢~ " and 44.49 m* g~ respectively.
A seven-fold increment in specific surface area was seen due to
the formation of composites. The composites had a good
mesoporous structure, which can be confirmed by observing the
pore size of MoSe, (21.15 nm) and MoSe,/PANI (8.66 nm). The
authors reported that the pore size decreased after adding
PANIL.*® Sukanya et al constructed an asymmetric super-
capacitor based on the ternary heterostructure composite of
YSe,/MoSe,/Ni,B.*” The electrode made from the prepared

RSC Adv, 2024, 14, 37644-37675 | 37655
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Fig. 12 (a) Cyclic voltammetry results of TizC,T, (MXene), MoSe,, and composite of MXene/MoSe,. (b) Cyclic voltammetry results of the
composite at different scanning rates. (c) Display of the b-value of the composite. (d) Illustration of the total capacitance of the composite. (e)
Capacitive contribution of the composite. (f) Diffusive and capacitive contributions of the composite. This figure has been reproduced from ref.
83 with permission from Elsevier, Copyright 2023.
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Fig. 13 (a and b) Galvanostatic charging and discharging profile of MoSe, and the composite of MXene/MoSe, at 1-20 A g~ (c and d) Display of

stability and efficiency results for MoSe, and the composite. (e) Display of specific capacitance of MoSe, and composite at 5mV s~ to 100 mV's
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(f) EIS measurements of MoSe, and the composite with the corresponding equivalent circuit. This figure has been reproduced from ref. 83 with
permission from Elsevier, Copyright 2023.
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Fig. 14 (a) lllustration of the assembled asymmetric device. (b) Cyclic Voltammetry (CV) results of the composite and AC. (c) Cyclic Voltammetry

(CV) results of the device. (d) Display of GCD results of the device. (e) Specific capacitance versus current density plots for the device. (f) Stability
analysis of device at 20 A g™*. This figure has been reproduced from ref. 83 with permission from Elsevier, Copyright 2023.

composite showed 893.3 F g~ ' as the specific capacitance and
128.17% retention after the completion of more than 5000
cycles. At 800 W kg ', the ASC device exhibited 39.5 W h kg™".
Masanta and coworkers studied Mn doping on MoSe, nano-
structures. Compared to pristine MoSe,, 313% increment in
specific capacitance was recorded when 6.2% Mn was doped.*®
Tanwar et al. fabricated activated carbon-coated MoSe, nano-
composites prepared via a hydrothermal method for high-
performance aqueous supercapacitors of asymmetric type.
Around 1 mg of active material was coated on the Ni foam
during the tests.* Using a hydrothermal method, different
noble metals were also explored for MoSe, composites. The
authors concluded that, among them, MoSe,-Au showed the
highest specific capacitance. It was 1.5 times larger in
comparison to bare MoSe, nanosheets.”® Du et al. employing
a hydrothermal method prepared nanoflowered porous MoSe,/
N-doped carbon, which was utilized as the anode material in
potassium-ion capacitors.® Lattice plane expansion is achieved
by the authors. From BET analysis, it was found that the specific
surface area was 228.85m> g~ and the pore size was 3.91 nm.
Nitrogen doping and porous carbon enhanced the structural
solidity and conductivity of MoSe,, accelerating the reaction
kinetics and promoting the transmission of electrons. Recently,
Zhu et al. have studied the variation of morphologies of
Molybdenum selenides by controlling the Mo : Se ratio.®> MoSe,

© 2024 The Author(s). Published by the Royal Society of Chemistry

was developed on a Ni foam by an electrodeposition process and
tests were done in a three-electrode setup. SEM characterization
showed that the morphologies were influenced by a Mo/Se
molar ratio. The authors deduced that compared to MoSe-12,
the MoSe-21 and MoSe-11 compositions had better ion
storage capacity. An annealing strategy was employed to
improve the overall performance. He et al. achieved mixed-
phase 3D MoSe,-NiSe/NF electrodes by controlling the hydro-
thermal temperature. An electroactive area of 50.84 m> g~ " with
a mean pore size of 10.7 nm was found using BET analysis. 2H
and (2H-1T) mixed phases were observed, which had inter-
connected wrinkled nanosheets. Compared to individual MoSe,
and NiSe, the composite had a good 3D network structure on
the surface and all the available active materials were utilized to
the full extent.” Wang and team achieved 2H semiconducting
to 1T metallic phase transition in MoSe, by tungsten doping at
a high temperature.®® Yang et al investigated hetero-
nanostructures of MoSe,/Bi,Se; for supercapacitive perfor-
The MoSe,/Bi,Se; hybrids possess enhanced
electrochemical properties due to large surface areas, more
redox active sites, and better electron transportation. The
authors showed that the hybrids demonstrated better capacitive
performances than those of individual Bi,Se; and MoSe,.”
Balasingam et al. developed MoSe,/rGO nanosheets for super-
capacitor applications. The nanosheet composites were

mances.
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developed via a hydrothermal route. During CV and GCD tests,
a specific capacitance of 211 F g~ ' was recorded, and 180%
capacitance retention was noted after the completion of 10 000
cycles. The authors concluded that these results are better
relative to pristine MoSe,. This may be due to contributions
from EDLC and pseudo capacitances. The hybrid nanostructure
has excellent electrochemical performance due to more elec-
troactive sites, better electrical conductivity, small diffusion
path length and fast charge transport.”® Vidhya et al. reported
CuSe,@MoSe, (CMS) binary composite nanorods for ASC
applications, which showed an improved energy density of
113 W h kg~ " and showed 98.1% retention after completion of
2000 cycles.*””

3.2 Symmetric set-up

Upadhyay and Pandey fabricated a symmetric supercapacitor
(SSC) based on 2H MoSe, nanosheets using Whatman paper/
KOH as a solid electrolyte. The Cyclic voltammetry tests were
conducted at a scanning speed of 100 mV s~ . GCD tests were
conducted at 1 A g~ '. The authors revealed that the SSC can
operate in the 0-0.6 V voltage window. Above 0.6 V, the CV
curves no longer maintained rectangular shapes. The SSC had
good capacitive property, which can be ascertained from the CV

a 2
o
< 14
2
)
& 04
°
Rl
c
o
E
3 =14 MoSe,/rGO-1-1
== MoSe,/rGO-0.5-1
MoSe,/rGO-2-1
-2 T r T T T
-04 -0.2 0.0 0.2 0.4 0.6

E vs. (Ag/AgCl) /1 V

()
o
=

- S S B B NS B EEE S S S S S S e e e
1
o
»

o
2 159
>
@ 0.0
(]
kel
$-1.54
£
a3 MoSe,/rGO-1-2
-3.04 MoSe,/rGO-1-4
MoSe,/rGO-1-1
| 06 -04 -02 00 02 04 06

E vs. (Ag/AgCl) /1 V

R —

Fig. 15

View Article Online

Review

curves which do not show many variations when the scanning
rates are slowly increased. During higher scan rates around 0.3-
0.4 V redox peaks were seen in the CV curves (Fig. 15), which is
an indication of pseudocapacitive nature. The GCD curves were
almost symmetrical throughout the tests, indicating that SSC
has high reversibility. High Eq of 184.5 mW h kg™ ' can be
achieved at P4 of 74.6 mW kg ' at 0.5 A g~ '. Then 22.6 mW h
kg~ " of energy density was maintained at high power density
(155.6 mW kg~ '), which was a proof that the SSC has a good rate
capability. The highest specific capacitance was found to be
equal to 4.1 F g~ " at 0.5 A g '. High cyclability with a retention
of 105% even after completing 10000 cycles and 98% of
coulombic efficiency were shown after the first cycle. Then
100% increment in efficiency was seen after 10 000 cycles. Good
structural stability can be confirmed due to small increment of
0.05 Q in the ESR after 10000 cycles. The charge transfer
resistance also got decreased by 0.8 Q, indicating good trans-
portation of the electrolyte ions. The authors concluded that the
results support the suitability of MoSe, for supercapacitors.®®
All-solid-state symmetrical SCs based on MoSe,/graphene
nanocomposites had modification in the lattice structure when
a small amount of W (=5%) was inserted into the composite.
The characteristics of W-doped MoSe,/graphene were evaluated
using DFT calculations. Low K" adsorption energy and a large
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(@ and b) CV and GCD plots of MoSe,/rGO at different concentrations of graphene oxide. (c and d) CV and GCD plots of MoSe,/rGO at

different Se/Mo ratios keeping the optimum graphene oxide concentration as 1 mg mL™ . This figure has been reproduced from ref. 98 with

permission from Elsevier, Copyright 2023.
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interlayer distance were reported by the authors. The 444.4 mF
cm? as specific capacity was achieved, and after 5000 cycles,
81.3% of capacitance was retained, thereby showing good
stability.”” Tanwar et al. reported MoSe,@AC nanocomposites
for SC applications via a hydrothermal strategy. A surface area
of 522 m* g~! with 4.6 nm mean pore size was found using BET
analysis. Highest specific capacity was shown by the M@AC 1: 5
electrode when compared with all samples. An aqueous
symmetric cell using the electrode was fabricated showing
39.4 W h kg energy density and 704.5 W kg~ ' power density.
Testing for 10 000 cycles the composite showed appreciable
cyclability, and the coulombic efficiency was nearly 100%.
When energy from this symmetric cell was applied for a small
LED device, it could glow for around 22 min." Kichi et al.
studied electrochemical performances of layered MoSe, and
selenium-rich MoSe, by the optimization of reaction parame-
ters such as molar ratio of precursors, temperature and dura-
tion of reaction. The supercapacitor based on the MoSe,
electrodes recorded Cy, of 122.66 F g~'. The Se-rich MoSe,-
based supercapacitor recorded Cg, as 19 F g~', which was less
than the previous MoSe, sample. The authors concluded that
this decrease can be due to unreacted selenium, which reduces
the surface area.' Tanwar and coworkers investigated electro-
chemical performances of different shaped transition metal
selenides. They prepared nanoflowers of MoSe, via a hydro-
thermal method and found out that the nanoflower morphology
showed better performance than CoSe, nanoneedles and NiSe,
nanospheres. A symmetric supercapacitor was constructed
using prepared MoSe,, which displayed a maximum specific
capacitance of 154 F g~ ' during the energy storage tests.'®
MoSe,/FeOOH composite formation between nanorods of iron
oxide-hydroxide and nanoflowers of molybdenum diselenide

P e s s S e e s S S EEe e S e mms
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using a chemical blending technique via a hydrothermal route
was reported by Tanwar and team. A symmetric cell was con-
structed recording a specific capacitance of 132 F g~ ' keeping
the voltage as 1 V. It shows capacitance retention of 100% after
completion of 3000 cycles and after 10 000 cycles 100% effi-
ciency was maintained. It provides 18.3 W h kg energy density
at 1174 W kg~ ! power density. The average length of 546 nm and
diameter of 80 nm was estimated for the FeOOH nanorods. The
Ostwald ripening process was carried out, which influenced the
rod and nanoflower morphology of the grown sample. The
authors revealed that nanoflowers covering nanorods can be
a suitable morphology for effective charge storage.'® Shui et al.
combined phase and interface engineering approaches to
improve the energy storage ability of heterogeneous MoSe,/rGO
composites. The authors showed that the intercalation of Na*
ions can cause phase conversion from 2H (hexagonal) semi-
conducting to 1T (octahedral) metallic. The authors studied the
effect of the molar ratio (Se : Mo) and GO concentration on Na*
intercalation. The authors found out that among all composi-
tions the best was MoSe,/rGO-1-2. The CV and GCD test results
of MoSe,/rGO-1-2 electrode are provided in Fig. 16. An ASSC (all
solid-state symmetric SC) was developed based on the prepared
composite. The prepared composite electrode revealed a high
Csp 0f 169.3 F g ' at 0.5 A g~ '. The assembled ASSC device had
energy density (4.88 W h kg™ ) and good cyclability (83.1% over
10 000 cycles). The device can also be a power source to glowing
small LEDs for 70 s.°® The various test results for the ASSC are
shown in Fig. 17.

Tanwar and team studied aging impact of Se powders on
morphology and electrochemical performances of MoSe,
composites. Se powder is subjected to aging for several days in
hydrazine hydrate as a reducing agent. The MoSe,@AC

Fig. 16
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(a) CV plot of the MoSe,/CRF composite at different scan speeds, (b) CV plot of MoSe, and the composite at 30 mV's

-1

, (c) GCD curves of

the composite at different current densities, (d) discharging profiles for MoSe, and the composite electrode at 1 A g~%. This figure has been
reproduced from ref. 105 with permission from Elsevier, Copyright 2021.
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composite was prepared via a hydrothermal route. Compared to
the remaining samples, the six days aged sample showed
superior performance. With the help of the fabricated
symmetric cell, a few small LEDs can be illuminated.'® The
synthesis of ultrathin MoSe,@carbon aerogel microspheres
employing a solvent thermal method was reported by Han and
coworkers. Carbon aerogels were derived from resorcinol-
formaldehyde (RF) aerogels. Due to composite formation with
RF, the surface area and the conductivity were increased.
Various test results of the MoSe,/CRF composite and MoSe, are
shown in Fig. 18. CV tests were conducted at different scanning
speeds employing a three-electrode system. The occurrence of
faradaic reactions and the pseuodcapacitive nature of the
composite were confirmed by looking into the peaks in the CV
plots. The peaks become bigger on increasing the scan speeds.
Compared to MoSe,, the composite MoSe,/CRF electrode
demonstrated larger area in the CV plot, showing that it has
more capacitive properties. The pseudocapacitive characteris-
tics of the composite were further supported by the appearance
of peaks in the GCD plots. The charging and discharging
profiles are almost symmetric at different current densities,
confirming that the redox reactions had excellent reversibility.
The composite electrode outlasted the MoSe, electrode in terms
of discharge time, aligning with the trends observed in the CV
curves, thereby demonstrating that the composite has better
specific capacitance as shown in Fig. 18. The electrode's specific
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capacitance diminished as the scanning speed increased. A
symmetric supercapacitor is also developed using the compos-
ites and its performances are checked. Different test results for
symmetric SCs based on MoSe,/CRF are shown in Fig. 19. The
current density peaks increased with the increase in scanning
speeds revealing the good capacitive behaviour of the
symmetric SC. Linear and triangular responses in GCD plots for
different current densities indicate high-rate capability and
superb charge transportation. After the completion of 2500 GCD
cycles, the symmetric SC retained 120.8% capacitance, indi-
cating the excellent cyclability and stability. The authors
demonstrated that the primary cause of the composite's overall
enhanced performance was the presence of porous CRF
microspheres.'” Various MoSe, composite electrodes which are
reported until now are shown in Table 1 along with their
performances (Fig. 20).

4. Machine learning for
supercapacitors

Machine Learning (ML) algorithms can realize their potential in
designing and optimizing electrode materials for super-
capacitors. Deep learning, artificial intelligence, and data
science methodologies will be able to identify the optimal
electrode material specific to a particular application with
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Fig. 19 Symmetric SC performance of MoSe,/CRF: (a) CV plots at 5-30 mV s™%, (b) GCD plots at 1-10 A g™%, (c) Ragone plots and (d) stability
analysis. This figure has been reproduced from ref. 105 with permission from Elsevier, Copyright 2021.
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improved efficiency. Very large datasets are used in ML-based
methods, often generated through prolonged experimental
research or existing literature, which train models for predict-
ing quantities such as specific capacitance, efficiency, cyclic
stability, charge-discharge times, and capacity retention.””***
It typically involves aggregating a plentiful amount of research
data and then feeding it into sophisticated algorithms that
analyze the information to generate insights relevant to the
research objectives. Then, these ML models are used for pro-
jecting the performance of electrode materials and estimating
parameters such as capacitance, remaining useful life, lifetime,
and state of health. Moreover, ML tools allow for investigating
complex correlations and interdependencies of various factors
influencing electrode properties, facilitating an enhanced
understanding of material behavior under different
conditions.”**™*> ML applied in this context fundamentally
quickens the identification of optimal electrode compositions,
reducing thermal energy storage time and resources usually
spent on experimental trial and error. Synthesis conditions also
include the selection of an electrolyte and voltage window
specifications that can, additionally, be fed into the machine
learning software.****** Machine learning workflow diagram for
supercapacitors is shown in Fig. 21.

If blueprinting performance and accurately predicting
enhancement strategies of MoSe, nanostructures for super-
capacitor applications are feasible, machine learning algo-
rithms provide an extraordinarily robust toolset for doing so.
Not only algorithms like multiclass classifiers or random forest
but also support vector machines contained in a class may
classify nanostructures by either morphology or electro-
chemical properties. Following the modeling of synthesis
parameters and performance metrics, regression techniques
are then applied for means such as linear and support vector
regression to understand how changes in production can lead
to better results. Long-term stability in MoSe, electrodes was
predicted with time series models such as RNNs and LSTM
networks. Deep learning methods within multi-layer perceptron
and deep belief networks will allow uncovering complex
nonlinear dependencies between variables. Techniques like
random subspace and random committee further increase
predictive accuracy and robustness, thereby rendering these
algorithms indispensable in stepping up research and devel-
opment in supercapacitor technologies. Many research articles
have used machine learning approaches that predict the
capacitance of materials. The remaining useful life of SCs were
predicted with the aid of machine learning techniques.'>**>*
Some hybrid machine learning models have also been formu-
lated by integrating two or more different algorithms to
enhance accurate prediction; it becomes quite useful during
material science and supercapacitor research. Performance
assessments for these machine learning models is typically
considered by different metrics as follows: Root Mean Square
Error (RMSE), Mean Absolute Percentage Error (MAPE), Corre-
lation coefficient (R*), Mean Absolute Error (MAE), Accuracy
score and error rate. These give a sense of accuracy and effec-
tiveness of the models within their applicability domains. This

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 21 Machine learning workflow for supercapacitors. This figure has been reproduced from ref. 47 with the permission of MDPI, copyright
2024.
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ensures that the most suitable electrode materials for any
supercapacitor application are found.

Using a machine learning technique, Mishra and colleagues
investigated how the physicochemical features of carbon elec-
trodes affected the performance of SCs. The ML models were
trained and tested using extracted published experimental
datasets having 4899 data entries to ascertain the relative
significance of electrode material properties on specific capac-
itance. These characteristics include the carbon-based electrode
material's oxygen and nitrogen content, potential window,
specific surface area, pore volume and size, presence of defects
and current density. Furthermore, testing procedure, electrolyte
and electrode carbon structure are taken as categorical vari-
ables. Four ML techniques SVR, DT, RF, XGBoost and one
Ordinary Least Square Regression (OLS) method were used to
perform the regression of the target capacitance from the input
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Fig. 22 (a—h) Illustration of the relationship between various input
features and specific capacitance. This figure has been reproduced
from ref. 155 with permission from Nature, copyright 2023.
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features of the SCs. MAPE, bias factor (b'), R?, and RMSE were
used as performance metrics. The best RMSE and R values were
displayed by the XGBoost model. The XGBoost model was re-
ported to be best to correlate the input features with the
capacitive performance. This indicates that the most important
descriptors among the features chosen for the specific capaci-
tance are potential window, specific surface area and the pres-
ence of N doping.”™ Fig. 22 shows the relationship between
specific capacitance and various input features for the model.
The comparison between actual capacitance and predicted
capacitance for various models is shown in Fig. 23.

A study on a data-driven ML method for forecasting the
capacitance of graphene-based SC electrodes was presented by
Saad et al. Data from over 200 published papers has been ob-
tained and analysed using several ML algorithms. The atomic
percentages of C, N and O, Ip/I; ratio, electrode configuration,
pore-volume and size, and specific surface area were among the
physicochemical characteristics used in this study. Cell
configuration, potential window, ionic conductivity, current
density, concentration of electrolyte, equivalent series resis-
tance and charge-transfer resistance were among the electro-
chemical test characteristics derived from EIS analyses and
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Fig. 23 (a—e) Comparison between predicted specific capacitance
and actual reported specific capacitance from various models. This
figure has been reproduced from ref. 155 with permission from Nature,
copyright 2023.
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GCD tests for the same purpose. ANN, k-nearest neighbor
regression, decision trees and Bayesian ridge regression were
the models used here by the authors. Comparing the con-
structed ANN model to other models created for this purpose,
the former produced incredibly accurate prediction results,
with RMSE and R® values of 60.42 and 0.88, respectively.?®
Deebansok and team performed analysis of various CV and
GCD images using a Convolution Neural Network (CNN) model
based on image classification. The authors applied supervised
ML for image classification to perform electrochemical shape
analysis (over 5500 CV plots and 2900 GCD plots). Schematic
illustration of the model is shown in Fig. 24. The authors
developed this method to address the problem of using simple
binary classification to identify which electrode type (pseudo-
capacitor vs. battery) the materials belong to. The CVs and GCDs
were analyzed via the ML model, trained with datasets obtained
from a number of scientific papers. Various CNN architectures
are validated and selected based on the evaluations, by applying
the theoretical CV and GCD curves. The training of model is
based on the classification of the signal, such as the peak vs. box
shape for CV, and the plateau vs. triangular shape for GCD. The
study described here has effectively addressed the issue of
interpreting signals from CVs and GCDs by utilizing machine
learning to categorize materials behaviours as either battery-
like or pseudocapacitor-like. Using the supervised machine
learning model, the authors also examined many scientific
articles that contained the keywords “pseudocapacitor” (1346
articles) or “battery” (2011 articles). This allowed them to
statistically analyze the number of articles that contained the
keyword that contradicted their signals. In summary, the arti-
cles were chosen at random, their pertinent GCD and CV signals
were taken out, and they were then simply categorized as either
battery or pseudocapacitive. The authors found that 67% of the

View Article Online

RSC Advances

their experimental findings. Nevertheless, conflicting signals
were found in almost half of the publications that contained
“battery” as keyword. These findings support the idea that ML
could significantly outperform human-based interpretation.'**

Wang et al. used an ANN model to identify oxygen-rich
extremely active porous carbon electrodes for aqueous SCs
with the aid of machine learning. The information gathered
from several literature was used to train the ANN. Surface areas
of micropores and mesopores are the structural parameters
employed in ANN, whereas the overall percentage of N and O
doping is employed as a chemical feature. The SC performance
of N/O co-doped activated carbon-based electrodes is gathered
in the training database for both 6 M KOH and 1 M H,SO,
electrolytes. The electrolyte type is handled as a dummy variable
in the ANN model. There are 288 data points in the dataset.
Training, validation, and test datasets make up 70%, 15%, and
15% of the total, respectively. According to ANN's prediction,
the highest capacitance of a N/O co-doped activated carbon
electrode in 1 M H,SO, can be attained with a micropore surface
area of 1502 m> g ', a mesopore surface area of 687 m> g %,
nitrogen doping of 0.5 at%, and oxygen doping of 20 at%. The
ANN prediction states that excessive oxygen doping in 1 M
H,SO, would provide a notable rise in specific capacitance
because it would improve the electrode surface wetting and
increase the electronic conductivity.’” Various ML models are
utilized for SC applications such as CNN, SVM, RNN, Regression
models, XGBoost, Random Forests, Decision trees, and KNN.
The choice of model for specific application depends on the
type of data, number of datasets, and type of task (analysis,
comparison, prediction, and classification). Each model has its
own benefits and disadvantages. If possible, the researcher can
apply the data to all models and compare their performances
based on accuracy, error and other metrics. The model which

reports that contain “pseudocapacitor” as keyword align with shows good performance in metrics can be selected
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(@) CV and GCD image extraction and classification from reported papers (b and c) representative of testing and training datasets. This

figure has been reproduced from ref. 156 with permission from Nature, copyright 2024.
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accordingly. However, this approach is suitable for small sets of
data. Several researchers have selected neural network models
since they can handle large and complex datasets. Other models
are also beneficial depending upon the requirements of the
purpose.

5. Challenges and future perspectives

(1) Using the formula E = 0.5CV?, energy density was calculated
for a SC electrode. From this, the energy density can be
improved either by expanding the voltage window or by
increasing the capacitance. The capacitance of MoSe, elec-
trodes can be enhanced by creating highly porous structures
and making composites or heterostructures with advanced
capacitive materials. The voltage window can be expanded by
properly selecting suitable electrolytes.

(2) Due to repeated charging/discharging and volume
expansion, the MoSe, electrodes undergo structural collapse
and damage. This affects their capacitance performances to
a great extent. New strategies should be identified and adopted
to prepare highly efficient MoSe, electrodes.

(3) The intrinsic electrical conductivity of MoSe, is very less,
therefore it is not suitable for practical applications. The elec-
trical conductivity can be improved via doping mechanisms,
better morphology structures, adopting conductive substrates,
nanosheet fabrication and composite formation with highly
conductive materials.

(4) Slow ion transport hinders the overall performance of
MoSe,-based electrodes. This can be tackled by selecting proper
electrolytes, developing microporous electrodes which can
facilitate fast ion diffusion processes.

(5) Researchers have found that the 1T phase of MoSe, is
metallic in nature, possessing very interesting properties.
However, it suffers from structural and thermodynamic insta-
bility, and hence, not suitable for practical applications. Only
few reports are available for 1T MoSe, and 1T/2H mixed MoSe,-
based supercapacitor electrodes. Numerous research studies
need to be devoted to the development of stable 1T-phase
MoSe,. Phase engineering can be a modification strategy for
MoSe, materials, because it can help to gain high intrinsic
conductivity, promoting electron transfer and decreasing
internal resistance, which are necessary for SCs. Many
researchers have reported several methods to obtain phase
change from 2H MoSe, to 1T MoSe, and enrich the energy
storage capabilities.”*

(6) Interfacial engineering which usually modifies the
surface of MoSe, with functional materials to enhance or
modify its inherent characteristics can be explored for SC
applications. There are four uses for interfacial engineering:
increasing catalytic performance, modifying the bandgap of
MoSe,, functionalizing the MoSe, interface, and promoting
electron transfer. Conductive carbon materials and metal
compounds are usually employed as backbones in this type of
modifications. Interfacial engineering can be made to modify
MoSe,-based materials for the fabrication of SCs because it can
create various pathways for electron transmission and distri-
bution of MoSe, nanosheets.>*
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(7) Depending on the doped components, doping engi-
neering can give pure MoSe, a variety of advantageous features.
To create materials with the best performance, doping tech-
niques can be employed in addition to single-heteroatom
doping. To fully realize the potential of the doped hetero-
atoms, more research should be done to identify the ideal
experimental settings for various dopants. The number of active
sites can be revealed on the surface of pure materials by intro-
ducing defects and vacancies, and the disorganized configura-
tion of active sites encourages reactant adsorption and
activation. One effective method for improving the poor
conductivity of MoSe, is vacancy engineering, and the degree of
improvement is directly correlated with the quantity of Se
vacancies. Thus, additional research ought to be carried out to
investigate the possibilities of vacancy engineering and broaden
its uses.**

(8) Inherent drawbacks of MoSe, in SC applications can be
mitigated by structural engineering, which can change their
physical characteristics. The structural changes employed to
customize the redox activity and speed up electron transmission
in the MoSe, interlayers are anticipated to have considerable
practicality and application potentials since MoSe, has
a layered structure with a wide interlayer spacing. This can be
an effective method for expanding active sites and speeding up
electron transport.**

(9) Recently, a new 2D material borophene has shown good
promise to be used in energy storage devices. Still now, no
reports are available on MoSe,/borophene composites. This can
be done in future to examine their energy storage abilities for
supercapacitor applications.

(10) Integrating MoSe, SCs with other devices such as
sodium-ion batteries and lithium-ion batteries and other types
of batteries can leverage the advantages of both batteries and

Flexible and
Wearable
Devices

Hybrid Devices

Future Directions
in MoSe2

Borophene Structural

Modifications

Composites

Fig. 25 Future Directions for MoSe, Supercapacitors.
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supercapacitors, offering high energy densities and power
densities.

(11) MoSe, SCs can find applications in various flexible and
wearable devices, which are in high demand in the future,
provided that sufficient research attention is paid in this field.
These devices require very flexible small efficient nano elec-
trodes for their operation. MoSe, electrodes can be developed
accordingly as per requirements. This can be studied and
developed in the future (Fig. 25).

6. Summary

Developing optimum electrodes is crucial for obtaining high-
performance supercapacitors. Various materials are tested for
electrode preparations. MoSe,-based electrodes attract consid-
erable attention in 2D materials and in the area of super-
capacitor applications. MoSe, can be a good substitute for MoS,
and other 2D electrodes. MoSe, stands as a good pseudocapa-
citive material. In this review, we discussed various synthesis
approaches utilized for MoSe, preparation for supercapacitor
applications. Most researchers have used hydrothermal
methods frequently. Various structures and morphologies are
reported using different synthesis and operating conditions.
Each method has its own benefits and shortcomings. A brief
discussion about supercapacitor fundamentals was mentioned
along with working and classifications. The performance of
various MoSe, composites was analyzed for asymmetric and
symmetric supercapacitors along with a comparison table.
Further, machine learning methods for supercapacitors are
briefly described for capacitance predictions, remaining useful
life predictions, life-time calculations and forecasting useful
details, emphasizing that the use of ML is inevitable in the
coming days in the area of energy storage. Current challenges
and prospects are also provided at the end.
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