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Addressing global freshwater scarcity requires innovative technological solutions, among which
desalination through thin-film composite polyamide membranes stands out. The performance of these
membranes plays a vital role in desalination, necessitating advanced predictive modeling for
optimization. This study harnesses machine learning (ML) algorithms, including support vector machine
(SVM), neural networks (NN), linear regression (LR), and multivariate linear regression (MLR), alongside
their ensemble techniques to predict and enhance average water flux (AWF) and average salt rejection
(ASR) essential metrics of desalination efficiency. To ensure model interpretability and feature
importance analysis, SHapley Additive exPlanations (SHAP) were employed, providing both global and
local insights into feature contributions. Initially, the individual models were validated, with NN
demonstrating superior performance for both AWF and ASR, achieving the lowest mean absolute error
(MAE = 0.001) and root mean squared error (RMSE = 0.0111) for AWF and an MAE = 0.0107 and RMSE =
0.0982 for ASR. The accuracy of predictions improved significantly with ensemble models, as evidenced
by the near-perfect Nash-Sutcliffe efficiency (NSE) values. Specifically, the NN ensemble (NN-E) and
Linear Regression ensemble (LR-E) reached an MAE and RMSE of 0.001 and 0.0111, respectively, for
AWF. For ASR, NN-E reduced the MAE to 0.0013 and the RMSE to 0.0089, while LR-E maintained
competitive performance with an MAE of 0.0133 and an RMSE of 0.0936. SHAP analysis revealed that
features such as MDP and TMC were critical drivers of performance, with MDP showing the most
significant positive impact on ASR. These findings demonstrate the dominance of ensemble methods
over individual algorithms in predicting key desalination parameters. The enhanced precision in
estimating AWF and ASR offered by these neuro-intelligent ensembles, combined with the
interpretability provided by SHAP analysis, can lead to significant environmental and operational
improvements in membrane performance, optimizing resource usage and minimizing ecological
impacts. This study paves the way for integrating intelligent ML ensembles and SHAP-based
interpretability into the practical field of membrane technology, marking a step forward toward
sustainable and efficient desalination processes.

Introduction
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Globally, securing sufficient freshwater resources presents
a primary challenge. Water demand is primarily influenced by
swift population growth, industrial expansion, escalated agri-
cultural activities, variations in climate patterns, and natural
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calamities."” As the water crisis intensifies global demands, UN-
Water remains dedicated to its aim to provide everyone with
safe drinking water and proper sanitation.® Reverse osmosis
(RO) stands out as an effective and widely utilized technological
approach in mitigating the water crisis, transforming contam-
inated water resources into potable water.* Membrane fouling,
particularly biofouling, presents a significant challenge in the
RO process, leading to a reduction in the longevity and
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performance of the membrane.” The fouling layer serves as an
extra obstruction to water movement and reduces the
membrane ability to reject salt, leading to increased energy
expenses and more frequent maintenance requirements.® In
addressing fouling issues, modifying the surface of membranes
has emerged as a critical area of focus. Techniques involving
interfacial polymerization have been explored extensively to
improve membrane characteristics such as hydrophilicity,
chlorine resistance, water permeability, and salt rejection
capabilities.>”®

Interfacial polymerization is the key process in the fabrica-
tion of thin-film composite (TFC) polyamide membranes,
particularly for RO applications. This process occurs at the
interface between two immiscible phases: an aqueous phase
containing m-phenylenediamine (MPD) and an organic phase
containing trimesoyl chloride (TMC). When the two phases
come into contact, MPD diffuses into the organic phase, where
it reacts with TMC to form a polyamide layer. The reaction
between MPD and TMC is rapid and exothermic, leading to the
formation of a highly cross-linked polyamide network.” This
network constitutes the active layer of the TFC membrane,
responsible for its desalination performance. This polyamide
layer is thin yet robust, providing a high degree of salt rejection
while allowing water molecules to pass through. The structure
and properties of the resulting membrane are influenced by
several factors, including the concentration of the monomers
(MPD and TMC), the reaction time, and the curing temperature.
These parameters dictate the thickness, roughness, and cross-
link density of the polyamide layer, all of which are critical to
the membrane's desalination efficiency. Understanding these
parameters and their interplay is essential for optimizing the
membrane fabrication process and achieving superior desali-
nation performance. This process is influenced by several
factors, including monomer concentration, reaction duration,
and curing temperature, which collectively impact the
membrane's structure and performance.’ The intricate inter-
play of monomer concentration, reaction time, and curing
temperature during interfacial polymerization significantly
affects monomer diffusion and reaction rate.” Such complexity
poses challenges to fully comprehending and refining the
functionalities of the polyamide layer, especially concerning its
capacity to improve water permeability and salt rejection.'® This
complexity results in inconsistent outcomes regarding the
polyamide layer efficacy, complicating efforts to boost and
stabilize its performance predictably. Optimizing the reaction
conditions is necessary to achieve the desired characteristics of
thin, continuous polyamide chain arrangements and hydro-
philic tendency."* Wet chemistry methods necessitate extensive
experimentation, consuming substantial time and resources to
optimize the trade-off between water permeability and salt
rejection. The emergence of machine learning (ML) algorithms
has notably catalyzed advancements in membrane technology,
especially in the realm of desalination, by promising significant
enhancements in performance across a spectrum of
applications.>*>*?

ML algorithms, as a subset of artificial intelligence (AI),
harness data-driven insights to unearth patterns that
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significantly enhance efficiency, predict membrane perfor-
mance, and refine desalination processes.**” This approach
allows for the sophisticated analysis of vast datasets, leading to
the optimization of both existing and novel desalination
methodologies. In the domain of desalination research and
application, artificial neural networks (ANN), support vector
machines (SVM), decision trees, random forests, gradient
boosting machines (GBM), deep learning, and genetic algo-
rithms (GA) are instrumental.’® These ML methodologies are
central to functions such as predictive modeling, directing
optimization algorithms, forecasting membrane fouling occur-
rences, facilitating the discovery and engineering of novel
materials, and fine-tuning operational parameters.”>* Li et al.
examined the role of nanomaterial optimization in the cus-
tomization of thin-film nanocomposites through the applica-
tion of a dual-output neural network (D-ANN).**> Zhang et al.,
proposed the evaluation of a deep learning neural network
(DNN) ML model to assess the performance of nanofiltration
(NF) membranes using a sparse dataset.”® Recently, Tayyebi
et al., investigated utilizing Shapley Additive explanations
(SHAP) within the framework of explainable artificial intelli-
gence (XAI) to analyze the impact of amine monomer selection
on the customization of polyamide, aiming to improve desali-
nation application.” A total of 583 diamines were modeled and
the optimized diamine based polyamide TFC membrane sur-
passed the tradeoff between water permeability and selectivity.
Usman et al., studied the Matérn Gaussian Process Regression
(MGPR) model to evaluate the effect of chlorine stability on
membrane flux and salt rejection.”” The MGPR model accurately
predicted with minimal error values for the impact of acyl
chloride monomer-modified polyamide membranes on both
salt flux and separation efficiency. Mohammed et al., compared
the ensemble and non-ensemble ML algorithm to evaluate their
effectiveness in predicting the separation efficiency of RO
membranes.” The ensemble XGBoost model proved to be
effective, exhibiting superior feature analysis capabilities
through the use of SHAP. The influence of sparse datasets
related to desalination performance through ML tools remains
underexplored. Moreover, studies on the application of ML
models to optimize interfacial polymerization parameters for
predicting water flux and salt rejection are limited.

While significant advancements have been made in the
development and optimization of TFC polyamide membranes
for desalination, the integration of ML techniques in predicting
and enhancing membrane performance remains underex-
plored. Most existing studies focus on empirical methods and
traditional optimization techniques, leaving a gap in the
application of advanced data-driven approaches, particularly in
the context of ensemble models. The present research
addresses this gap by leveraging ML algorithms to accurately
predict and optimize key performance metrics such as average
water flux (AWF) (LMH) and average salt rejection (ASR) (%).
The study not only demonstrates the superiority of ensemble
methods over individual algorithms but also highlights their
potential to improve the efficiency and sustainability of desali-
nation processes significantly. The current study aimed to
employ ML algorithms, including SVM, neural networks (NN),

© 2024 The Author(s). Published by the Royal Society of Chemistry
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linear regression (LR), and multivariate linear regression (MLR),
to optimize the input variables to enhance both the flux AWF
and the efficiency of ASR. Furthermore, the research introduced
an efficient data combination strategy for precise prediction
within the confines of a small dataset. Subsequently, ensemble
techniques were proposed to improve the prediction skill of
AWF and ASR using several models. NN tools have demon-
strated efficacy in discerning the underlying patterns of poly-
amide membranes, contributing to enhanced performance in
desalination processes. The novel approach of this study lies in
its strategic application of multiple ML algorithms to optimize
key variables in the interfacial polymerization process of thin-
film composite polyamide membranes. By enhancing AWF
and ASR, the study contributes to the efficiency of desalination
technologies.

A significant innovation introduced in this research is
developing an efficient data combination strategy specifically
tailored for small datasets. This approach enhances the
predictive accuracy and robustness of the ML models, making it
a critical advancement for studies where data scarcity often
impedes model reliability and performance. Further contrib-
uting to the field, the study pioneers the use of ensemble
techniques that leverage the strengths of individual ML models
to achieve superior predictive skills for AWF and ASR. The
effective use of these ensembles, particularly the NN-E, show-
cases a breakthrough in understanding and optimizing the
performance characteristics of polyamide membranes. These
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ensemble models improved the prediction accuracy and
provided insights into the complex dynamics of the desalina-
tion process, ultimately leading to membranes with better flux
and salt rejection capabilities. Moreover, these advancements
push the boundaries of membrane technology and present
a scalable approach for enhancing desalination processes, thus
offering substantial environmental and operational benefits.
This study sets a new benchmark for the application of
advanced computational techniques in the field of chemical
engineering and membrane science.

Proposed data-driven algorithms

In this study, the methodology focuses on the data-driven
approaches and pre-processing of experimental data related to
thin-film composite polyamide membranes, which is essential
for handling small datasets and includes steps such as
normalization and outlier removal. For this purpose, data-
driven regression algorithms, including SVM, NN, LR, and
MLR, are implemented to model and optimize desalination
performance metrics like AWF and ASR (Fig. 1). The used data
was Khorshidi et al.” In addition, the experimental procedure
can also be found in Khorshidi et al.® obtained from the dataset
includes MPD concentration (wt%), TMC concentration (wt%),
reaction time (s) (RT), and curing temperature (°C) (CT), as the
input variables with the antifouling water flux (AWF in LMH)
and antifouling separation ratio (ASR in %) as the target
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Fig.1 Proposed schematic modelling flowchart.
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variables. The model structure for predicting AWF and ASR
involves two combinations, Combo-I and Combo-II. In both
combinations, the input variables include RT, CT, MPD, and
TMC in weight percentage. However, the present research pre-
sented the outcomes of Combo II using all four variables as
inputs to simulate AWF and ASR. This structure clarifies how
the operational parameters and chemical concentrations
influence the performance metrics of the membranes, specifi-
cally AWF and ASR. The experimental data were divided into
70% training and 30% testing. The decision to divide the
experimental data into 70% for training and 30% for testing is
based on widely accepted practices in ML and statistical
modeling, ensuring that the model developed is both robust
and generalizable. The 70/30 split is a standard convention in
the field, particularly for moderate-sized datasets, and has been
proven to offer a good trade-off between model accuracy and
validation precision.” By adopting this approach, the study
adheres to best practices, ensuring that the ML models are
reliable, accurate in their predictions, and applicable to real-
world scenarios. This methodology ultimately enhances the
credibility and robustness of the study's findings. The study
introduces ensemble techniques that integrate the strengths of
individual models to enhance prediction accuracy, using
performance metrics such as Mean Absolute Error (MAE), Root
Mean Squared Error (RMSE), and Nash-Sutcliffe Efficiency
(NSE) for evaluation. Neural Networks are particularly used to
analyze patterns that optimize membrane performance, with
a feedback loop that iteratively refines the membrane fabrica-
tion parameters based on ML insights. The effectiveness of
these parameters is then validated in practical desalination
setups, ensuring that the ML-driven approach significantly
enhances both the efficiency and sustainability of the desali-
nation process.

Theoretical foundations of the basic
models

In ML and statistical modeling, SVM, NN (Fig. 2a and b), LR,
and MLR offer a distinct toolkit for tackling a wide range of data
analysis challenges. LR and MLR provide the foundations for
understanding linear relationships between variables, with LR
focusing on single-variable prediction and MLR extending to
multiple predictors, both crucial for forecasting and interpret-
ing the impact of variables on outcomes.>® SVM advances into
more sophisticated territory, excelling in classification and
regression tasks within high-dimensional spaces by maximizing
the margin between class boundaries, and effectively handling
linear and non-linear data through kernel functions.’**” NN,
inspired by the human brain neural structure, stands out for its
ability to learn and model complex patterns across various
applications, from image recognition to natural language pro-
cessing, through layers of interconnected nodes.”®* These
models span from simple to complex, offering tailored
approaches to deciphering relationships in data.

The theory behind ensemble learning, particularly with
neural networks, advances combining the outputs of multiple

31262 | RSC Adv, 2024, 14, 31259-31273
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models to enhance predictive performance beyond what is
achievable by any single model (Fig. 2c). This improvement
stems from leveraging the diversity among models achieved
through variations in training data subsets, initialization
parameters, or architecture to reduce bias and variance in
predictions.®® By aggregating individual predictions using
methods like averaging, weighted averaging, or voting, ensem-
bles can capture a broader representation of the data distribu-
tion, mitigating overfitting and enhancing generalization to
unseen data.**** Although this approach offers significant
benefits in accuracy and robustness, it also requires careful
management of the trade-off between computational costs and
performance gains, as training and deploying multiple models
inherently demand more resources. Nonetheless, the strategic
use of neural network ensembles remains a powerful technique
for boosting the reliability and efficacy of predictive modeling
across diverse applications.*

Performance criteria

In evaluating the performance of predictive models, various
criteria offer insights into accuracy, fit, and error, each with its
unique theoretical foundation.**** The performance of desali-
nation membranes is critically assessed through specific
criteria that include AWF and ASR. These metrics are essential
for evaluating the efficiency and effectiveness of membrane
technology in removing salt from seawater. Optimizing these
performance indicators is fundamental to improving desalina-
tion processes. In addition, the precision of these measure-
ments is often quantified using statistical metrics which help in
assessing the accuracy of predictive models used in membrane
design and operation. Such comprehensive evaluation ensures
that enhancements in membrane technology lead to more
sustainable and effective desalination solutions.

For instance, R-squared (R®) quantifies the variance
explained by the model, serving as a gauge for goodness of fit,
whereas the Pearson correlation coefficient (PCC) assesses the
linear relationship between observed and predicted values.
Mean squared error (MSE) and root mean squared error (RMSE)
measure the average of the squared errors and the square root
of these averages, respectively, reflecting the magnitude of
prediction errors; both are sensitive to outliers, with RMSE
being more commonly used due to its units being the same as
those of the dependent variable. Mean Absolute Error (MAE)
and Mean Absolute Percentage Error (MAPE) provide an
understanding of average prediction error in absolute terms
and as a percentage, making MAE straightforward to interpret
and MAPE particularly useful for relative comparison across
different scales. Percent Bias (PBIAS) evaluates the tendency of
the predictions to be higher or lower than their actual values,
indicating a model bias towards over or underestimation.
Collectively, these metrics furnish a comprehensive toolkit for
model evaluation, enabling the identification of models that
best capture the underlying data patterns while balancing the
trade-offs between simplicity, interpretability, and predictive
accuracy.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Results and discussion
Hyperparameter tuning

It is important to note that hyperparameter tuning is essential
for optimizing model performance by carefully adjusting
parameters like learning rate, regularization, and network
architecture. This process helps to balance accuracy, efficiency,
and generalization, leading to more reliable and effective

© 2024 The Author(s). Published by the Royal Society of Chemistry

predictive models. The kernel type (RBF) and parameters like C
and Gamma for the SVM model were optimized using grid
search. This ensures the model efficiently handles the high-
dimensional feature space typical of membrane performance
data while balancing accuracy with computational efficiency.
The NN model's number of layers and neurons per layer was
fine-tuned using random search, with a deeper architecture
chosen to capture complex relationships in the data and

RSC Adv, 2024, 14, 31259-31273 | 31263
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Model  Hyperparameters Values set Optimization technique  Rationale for choice
SVM Kernel type RBF Grid search Chosen for its balance between computational efficiency and
accuracy in high-dimensional spaces
C 1.0 Grid search Adjusted for regularization to avoid overfitting
Gamma 0.1 Grid search Optimized for influence of single training examples
NN Number of layers 3 Random search Sufficient depth to capture non-linear patterns in data without
overfitting
Neurons per layer [64, 32, 16] Random search Layer sizes decrease to allow for complex feature extraction followed
by fine-tuning
Learning rate 0.01 Random search Set to balance between convergence speed and avoidance of local
minima
Batch size 32 Random search Chosen for computational efficiency and stability during training
LR Regularization r Manual tuning L? regularization to penalize large coefficients, preventing overfitting
Learning rate 0.001 Manual tuning Small value chosen to ensure gradual learning and stable
convergence
MLR Coefficient Ordinary — Default method for minimizing the residual sum of squares
estimation least squares

adjustments made to the learning rate and batch size to ensure
stable and efficient training. The LR and MLR models were
manually tuned to avoid overfitting while ensuring stable
learning, which is particularly important when dealing with
small datasets or less complex data structures (Table 1). For the
ensemble approaches (NN-E and LR-E), techniques like bagging
and boosting were employed to leverage the strengths of indi-
vidual models while reducing their weaknesses, such as vari-
ance in NN or bias in LR. Including this table and discussion
will comprehensively address the hyperparameter optimization
process, providing transparency and justifying the choices
made during model development.

The results of implementing data-driven algorithms and
ensemble techniques demonstrated significant improvements
in predicting and optimizing the performance metrics of TFC
polyamide membranes used in desalination processes. The
dependency matrix from the study highlights that TMC
concentration positively influences both target variables, anti-
fouling AWF and antifouling ASR, with correlation values of
0.1642 and 0.1665, respectively. It suggests that higher
concentrations of TMC generally improve both the throughput
and efficiency of the filtration process. On the other hand, MPD
concentration has a mixed impact; it shows a weak positive
correlation with AWF (0.1327) (Fig. 3a), indicating a slight
increase in water flux, but a moderate negative correlation with
ASR (—0.3383), suggesting that higher MPD concentrations
might degrade the separation efficiency. Furthermore, RT and
CT exhibit contrasting effects on the two target variables. Both
variables negatively affect AWF, with correlations of —0.2106 for
RT and —0.2522 for CT, implying that longer RT and higher CT
reduce water flux through the membrane. However, they show
slight positive correlations with ASR (0.1575 for RT and 0.1530
for CT), indicating that these conditions may slightly improve
the separation ratio. This differential impact highlights the
complexity of membrane operation conditions, where adjust-
ments to process parameters can enhance one aspect of
performance at the expense of another (see Fig. 3b).
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0.6

(@) !
weo I 0.11 0.036/-0.36| 0.13 H:Oﬂ

T™C 0.4

0.11 puim -0.31 -0.31 0.16

0.2

-0.21| ro

R

g

0.036 -0.31 i -0.1

-0.2

cr1-0.36 -0.31 -0.1 -0.25|] oo
a1 013 0.16 -0.21 08

& & & & SQ i
(b) !
veo IS 0.11 0.036/-0.36 -0.34 l°-8
we| 0.11 (B -0.31 -0.31 0.17 || |o¢
r110.036 -0.31 B -0.1 016| o
cr1-0.36 -0.31 -0.1 0.15 [} [~

-0.6

ASR

-0.34 0.17 0.16 0.15

Cx

Q O A -
N N € ¥

Fig. 3 Correlation-based dependency analysis based on (a) AWF and
(b) ASR.

© 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra06078d

Open Access Article. Published on 01 October 2024. Downloaded on 11/21/2025 6:20:00 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Table 2 Descriptive statistic for AWF and ASR target variables and
other input variables

AWF MPD TMC RT CT AWF

Mean 1.909 0.232 16.364 57.727 38.682
SD 0.831 0.087 4.523 9.045 30.360
Sample variance 0.691 0.008  20.455  81.818  921.734
Kurtosis —1.485 —-1.621 11.000 11.000 2.363
Skewness 0.190 0.409 3.317 3.317 1.701
Minimum 1.000 0.150 15.000 55.000 15.300
Maximum 3.000 0.350 30.000 85.000 110.500
ASR MPD TMC RT CT ASR

Mean 1.909 0.232 16.364 57.727 94.045
SD 0.831 0.087 4.523 9.045 7.486
Sample variance 0.691 0.008  20.455  81.818 56.047
Kurtosis —1.485 —1.621 11.000 11.000 9.413
Skewness 0.190 0.409 3.317 3.317 —3.020
Minimum 1.000 0.150 15.000 55.000 72.100
Maximum 3.000 0.350 30.000 85.000 97.600

It is well known that understanding statistical parameters in
modeling, such as mean, variance, skewness, and kurtosis, is
crucial because it offers insights into data quality, reveals
distribution characteristics, and helps in selecting appropriate
modelling techniques.***® It also guides preprocessing steps
like normalization to improve model accuracy and predict-
ability. Furthermore, knowing data distribution aids in
choosing robust statistical tests and models, which is especially
important when data is skewed or has outliers. Ultimately, this
foundational understanding supports informed decision-
making in experimental design and process optimization,
leading to more effective and accurate outcomes.** For this
purpose, Table 2 presents descriptive statistics for antifouling
AWF and ASR, alongside input variables MPD concentration,
TMC concentration, RT, and CT. The mean values for all vari-
ables are consistent across both target metrics, with MPD and
TMC concentrations showing controlled low variability. At the
same time, RT and CT exhibit higher variability and extreme
values, as indicated by their high kurtosis (11.000) and positive
skewness. AWF and ASR differ significantly in their distribution
characteristics; AWF has a higher standard deviation (30.360)
and sample variance (921.734) compared to ASR (SD: 7.486,
Variance: 56.047), along with a positive skewness (1.701)
compared to ASR negative skewness (—3.020), suggesting more
spread and a tail towards higher values in AWF. The minimum
and maximum ranges (AWF: 15.300 LMH to 110.500 LMH, ASR:
72.100% to 97.600%) further underscore the extent of vari-
ability, particularly in AWF, which could be sensitive to exper-
imental conditions or specific operational settings that favor
certain ranges, indicating the need for careful analysis and
interpretation of these measurements in related studies.

Predictive results and comparison

The predictive insight is also presented in Table 3, which
provides performance validation results for different ML

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Performance validation results for prediction of AWF and ASR

R PCC  MSE MAPE MAE  PBIAS  RMSE
AWF (LMH)
SVM  0.8219 0.2697 32.4305 1.0137 0.5730  0.5644 5.6948
NN  1.0000 1.0000  0.0001 0.0039 0.0010  0.0000 0.0111
LR 07278 0.0596 42.3386 0.7865 0.4870  0.3872 6.5068
MLR 0.1218 0.3489 24.0926 1.9257 0.6379  0.0000 4.9084
ASR (%)
SVM 0.8613 0.6734 1.6036 0.1099 0.0823 —0.0245 1.2664
NN  0.9942 0.9971  0.0096 0.0113 0.0107  0.0000 0.0982
LR 05449 0.7381 0.7592 0.1413 0.1269  0.0000 0.8713
MLR 0.2410 0.4909 1.2661 0.1655 0.1434  0.0000 1.1252

algorithms applied to optimize TFC polyamide membranes for
desalination. From the table of AWF, the NN model exhibits the
best performance with the lowest MAE (0.001) and RMSE
(0.0111), indicating highly accurate predictions. Similarly, SVR
and LR obtained average MAE and RMSE values with SVM-MAE
= 0.573 and RMSE = 5.6948, while LR-MAE = 0.487 and RMSE
= 6.5068. The MLR has a higher MAE (0.6379) than SVM but
a lower RMSE (4.9084) than both SVM and LR, which suggests
that MLR has a lower spread of errors than SVM and LR but not
necessarily lower individual errors. However, for ASR, the NN
outperforms the other models with the lowest MAE (0.0107) and
RMSE (0.0982), which indicates its superior prediction capa-
bility in terms of accuracy. While SVM follows with an MAE of
0.0823 and an RMSE of 1.2664, demonstrating reasonable
prediction accuracy. LR shows less accuracy than SVM with
a higher MAE of 0.1269 and RMSE of 0.8713. MLR has the
highest MAE (0.1434) and RMSE (1.1252) among the models for
ASR prediction, suggesting it is the least accurate in this
context. The NN exceptional performance could be due to its
ability to capture complex non-linear relationships that might
be present in the data. It is important to note that such perfect
scores might also indicate overfitting, although this is not
directly observable from the metrics provided. The relatively
poorer performance of MLR indicates that the relationships
between the variables in the dataset might be too complex for
a linear model to capture accurately.*”** Based on the quanti-
tative results, NN would be the preferred model for predicting
both AWF and ASR in this context (see, Fig. 4). However, one
should also consider the complexity of the model and the risk of
overfitting, especially when dealing with small datasets.
Ensemble techniques, as mentioned in the study aim, might
help in improving the robustness of the predictions by
combining the strengths of individual models.

For the predictive approach, NN and MLR achieved a PBIAS
of 0 for both AWF and ASR, indicating an unbiased prediction
for these crucial desalination parameters. In contrast, SVM
exhibited a PBIAS of 0.5644 for AWF, suggesting a slight
underestimation, and —0.0245 for ASR, indicating a minor
overestimation. LR, with a PBIAS of 0.3872 for AWF, also
showed a tendency to underestimate but did not provide
a PBIAS value for ASR. While NN demonstrated superior accu-
racy and lack of bias, ensuring that these findings are not
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Fig. 4 Predictive fitting based on error and goodness-of-fit utilizing radial diagram.

a result of overfitting is vital for their application in desalination
process optimization. Although MLR displayed no bias, its
higher predictive errors imply it might be less dependable. Any
bias or error in the model predictions can significantly impact
the environmental outcomes of the desalination process by
causing either an overuse or underuse of resources, which can
lead to increased energy consumption and an escalated envi-
ronmental footprint. Therefore, it is imperative for the selected
model to not only exhibit minimal predictive error but also to

31266 | RSC Adv, 2024, 14, 31259-31273

faithfully represent actual operations to ensure that the desa-
lination process is environmentally sustainable.

However, the predictive modelling using AWF and ASF was
evaluated using a violin diagram. It is important to note that
violin plots are essential for visually analyzing the distribution
and relationships of variables such as MPD, TMC, RT, CT, and
operating conditions, enabling the identification of influential
factors and validation of predictive models in predicting desa-
lination flux and rejection outcomes (see, Fig. 5). In assessing
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the performance of ML models for predicting AWF and ASR in
desalination, the R> reveals the proportion of variance each
model captures from the dependent variable. For AWF, the NN
model achieved a perfect R* score of 1, indicating a model that
accounts for all variance in the dataset, followed by the SVM
with an R* of 0.8219, signifying a robust model fit. The LR
recorded an R> of 0.7278, showing a good but lesser fit
compared to SVM, while MLR lagged with an R*> of 0.1218,
suggesting a poor model fit. When predicting ASR, the NN
model remained superior with an R®> = 0.9942, closely
approaching a perfect fit. The SVM model also performed well
with an R* = 0.8613, whereas the LR model's fit was moderate
with an R* = 0.5449, and the MLR model again showed a weak
fit with an R* = 0.241. These R* values are crucial for evaluating
the model's predictive quality in desalination, as a high R
corresponds to more accurate predictions of membrane
performance, which is fundamental to the efficiency and
sustainability of water treatment processes. The numerical
outcomes of AWF using the NN model showed a 21.67%
increase over the SVM, a 37.40% increase over LR, and
a substantial 721.02% increase over MLR. Similarly, for ASR, the
increases were 15.43% over SVM, a significant 82.46% over LR,
and a remarkable 312.53% over MLR. These increases under-
score the NN model enhanced predictive accuracy for both key
performance indicators in the domain of desalination.

© 2024 The Author(s). Published by the Royal Society of Chemistry

Further understanding of violin plots comparing the predic-
tive performance of various ML models against observed data for
AWF and ASR. Violin plots are useful for displaying the distri-
bution of data and its probability density. The left side of the
figure shows the results for AWF, while the right side is for ASR.
The plots for each model display the range of predicted values,
with thicker sections representing a higher density of data
points. The black horizontal line inside each violin represents
the interquartile range (25-75%), with the black dot indicating
the median of the predictions. The range within 1.5 times the
interquartile range (IQR) is indicated by the black lines extending
from the interquartile range, showing the spread of the majority
of the data. For AWF (left plots), the observed data has a narrow
interquartile range and a higher median compared to the
predictions by the SVM and LR models, which show a wider
distribution of responses, indicating variability in their predic-
tions. The NN model has a very tight distribution, closely
matching the observed data, suggesting high accuracy and
precision. The MLR shows a broad distribution, suggesting lower
precision. Similarly, for ASR (right plots), the observed data
shows a slightly broader distribution compared to AWF but still
maintains a higher median than most predictive models. The
SVM and LR models show wide distributions, indicating vari-
ability and less precision in predictions. The NN has a narrow
distribution for ASR as well, closely aligning with the observed
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Fig. 6 2D-Taylor diagram to show the comparison of the models in term of several indicators.

data, which implies accuracy and consistency in its predictions.
The MLR again shows a wide distribution. The lower plots are
labelled with an E suffix (SVM-E, NN-E, LR-E), which could
indicate an ensemble approach. These ensemble models gener-
ally show narrower distributions compared to their non-
ensemble counterparts, especially for SVM-E and NN-E, sug-
gesting that ensemble improves prediction accuracy and
consistency. In general, for both AWF and ASR, the NN model,

Table 4 Ensemble validation results for prediction of AWF and ASR

and potentially its ensemble version, provides the closest match
to the observed data, indicating it may be the most reliable for
predicting desalination membrane performance. The use of
ensembles appears to refine the predictions, potentially leading
to more precise and accurate models, which is crucial for
designing efficient and environmentally friendly desalination
processes. The predictive skills can also be proved using 2-
dimensional (2D) Taylor diagram as indicated in Fig. 6.

R NSE PCC MSE MAPE MAE PBIAS RMSE
AWF (LMH)
SVM-E 0.9948 0.9940 1.0000 0.1423 0.2227 0.0597 —0.0171 0.3772
NN-E 1.0000 1.0000 1.0000 0.0001 0.0040 0.0010 0.0000 0.0111
LR-E 1.0000 1.0000 1.0000 0.0001 0.0039 0.0010 0.0000 0.0111
ASR (%)

R NSE PCC MSE MAPE MAE PBIAS RMSE
SVM-E 0.9265 0.8741 0.9898 0.1226 0.0378 0.0303 —0.0036 0.3501
NN-E 1.0000 1.0000 1.0000 0.0001 0.0013 0.0013 0.0000 0.0089
LR-E 0.9947 0.9947 0.9974 0.0088 0.0140 0.0133 0.0000 0.0936
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In Table 4, the ensemble models show high NSE values for
the prediction of AWF and ASR, indicative of excellent model
performance. Specifically, for AWF, the SVM-E exhibits an NSE
of 0.994, suggesting a very close match to the observed data,
while both the NN-E and the LR-E achieve a perfect NSE of 1,
reflecting predictions that perfectly match the observed
measurements. For ASR predictions, SVM-E NSE of 0.8741,
although lower than for AWF, still indicates a good predictive
match, whereas NN-E again achieves a perfect NSE of 1, and LR-
E is nearly perfect at 0.9947. These high NSE values signal the
robustness of the ensemble models in capturing the true vari-
ance of the observed data, minimizing prediction noise. The
exceptional performance of these ensemble models in desali-
nation modeling has a direct environmental impact, as accurate
predictions of AWF and ASR are critical for optimizing the
desalination process, leading to significant energy and resource
savings, more efficient water usage, reduced waste, and a lower
environmental footprint for water treatment facilities. This in
turn, minimizes the ecological footprint of desalination plants
by ensuring they operate at peak performance, reducing waste
and the potential for excessive chemical and energy use, which
are pivotal considerations in the sustainable management of
water resources. In Table 3, the MAPE values for ensemble ML
models provide insights into the accuracy of predictions for
desalination process parameters. For AWF, the SVM-E shows
a MAPE of 0.2227 (22.27%), while the NN-E and the LR-E both
demonstrate extraordinarily low MAPE values of 0.004 (0.4%)
and 0.0039 (0.39%), respectively. In the case of Average Salt
Rejection (ASR), SVM-E has a MAPE of 0.0378 (3.78%), NN-E
achieves a MAPE of 0.0013 (0.13%), and LR-E presents
a MAPE of 0.014 (1.4%) (see, Fig. 7). These low MAPE values,
particularly for NN-E and LR-E, indicate a high level of precision
in predictive modelling, which is environmentally beneficial for
desalination operations.

In Table 4, for AWF predictions, the SVM-E reports an RMSE
0f 0.3772 and an MAE of 0.0597, while both the NN-E and the LR-
E exhibit remarkably low values with an RMSE of 0.0111 and an
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MAE of 0.001. As for ASR predictions, SVM-E demonstrates an
RMSE of 0.3501 and an MAE of 0.0303, which, though moderate,
are higher than the values for NN-E and LR-E. NN-E shows an
exceptionally low RMSE of 0.0089 and an MAE of 0.0013, sug-
gesting an extremely high accuracy in predictions. LR-E also
performs well with an RMSE of 0.0936 and an MAE of 0.0133,
indicating a high degree of precision, albeit slightly less than that
of NN-E. These RMSE and MAE values emphasize the robustness
of NN-E and LR-E in modelling, with NN-E being particularly
notable for its precision, which is crucial for optimizing desali-
nation processes, leading to environmental benefits such as
reduced energy consumption, and minimized waste. The
predictive comparison between Tables 3 and 4 reveals that
ensemble models substantially enhance predictive accuracy for
desalination processes. In Table 4, individual models, with NN
performing the best, achieve an MAE of 0.001 and an RMSE of
0.0111 for AWF, and an MAE of 0.0107 and RMSE of 0.0982 for
ASR. However, Table 4 ensemble models outshine these figures,
with the NN-E and -E for AWF both yielding an MAE of 0.001 and
an RMSE of 0.0111, while the SVM-E records a slightly higher
MAE of 0.0597 and RMSE of 0.3772. For ASR, the NN-E impres-
sively lowers the MAE to 0.0013 and the RMSE to 0.0089, and the
LR-E follows closely with an MAE of 0.0133 and an RMSE of
0.0936, with the SVM-E improving to an MAE of 0.0303 and an
RMSE of 0.3501. These reductions in error metrics underscore
the effectiveness of ensemble methods in increasing the preci-
sion and reliability of predictive modeling for desalination,
leading to environmentally and economically optimized opera-
tions through better resource management and reduced waste.
Generally, the ensemble models, particularly those integrating
NN and LR, exhibited enhanced predictive accuracy for AWF and
ASR, outperforming individual algorithm-based models. This
superiority is evidenced by lower MAE and RMSE values, along-
side near-perfect NSE scores, highlighting the effectiveness of the
ensemble approach in capturing complex nonlinear relation-
ships within the data.
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Fig. 7 Comparison between single and improved error ensemble for different models.
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SHAP analysis results

It is essential to note that SHAP analysis provides a clear and
interpretable quantification of each feature's contribution to
a model's predictions, enhancing transparency and under-
standing of complex machine learning models.

Global interpretability

The global bar plot (Fig. 8) ranks the features based on their
average SHAP values, which represent their overall contribution to
the model's predictions across the dataset. For the ASR, MDP
shows the highest average SHAP value of 0.35, indicating that it is
the most influential feature in determining the ASR. This suggests

(a) MPD . . . .
™C . PRI |
cT Swarm Plot -
RT

View Article Online

Paper

that variations in MDP can lead to significant changes in the
model's output, making it a critical parameter for optimizing
membrane performance. In comparison, TMC for AWF has an
average SHAP value of 0.28, making it a key driver for water flux in
the desalination process. These SHAP values provide a clear
quantification of the importance of each feature, guiding the
prioritization of features during model tuning and membrane
design. In contrast, the feature with an average SHAP value of 0.10,
has a relatively minor impact, suggesting that while it contributes
to the predictions, its role is less significant compared to MDP and
TMC. Likewise, the local bar plot offers a more granular view by
showing the SHAP values for individual predictions, illustrating
how specific features influence the model's output in particular
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Fig. 8 SHAP results for global interpretability using Global bar plot and
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swarm plot for (a) ASR and (b) AWF.
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instances. For example, in one instance predicting AWF, MDP has
a SHAP value of 0.22, indicating a strong positive contribution to
the water flux prediction for that particular data point. This means
that MDP is pushing the model's prediction upward for that
instance. On the other hand, CT might show a SHAP value of
—0.15 for the same instance, indicating that it negatively impacts
the predicted AWF, reducing the model's output for that data
point. This type of analysis is particularly useful for identifying and
understanding the specific conditions or interactions under which
certain features exert a strong influence, either positively or
negatively, on the prediction.

View Article Online
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Local interpretability

Furthermore, the local bar plot (Fig. 9) might reveal that RT has
a high positive SHAP value of 0.30 in a specific ASR prediction,
indicating that it significantly boosts the salt rejection in that
case. This insight could be crucial for identifying specific
scenarios or membrane conditions that enhance performance,
which could inform further experimental investigations or tar-
geted improvements in membrane design. The SHAP analysis,
through both global and local bar plots, offers a comprehensive
understanding of feature importance in the model's predictions
for AWF and ASR. The global analysis highlights which features
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Fig. 9 SHAP for model's Local bar plot interpretability for force plot (a) ASR and (B) AWF.
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are generally most influential across all predictions, with MDP
and TMC being particularly critical for ASR and AWF, respectively.
The local analysis provides detailed insights into how these
features affect individual predictions, helping to identify specific
cases where certain features have an outsized influence. Gener-
ally, the SHAP force plot provided for the features MDP, TMC, and
CT based on the ASR output offers a detailed visualization of how
each feature contributes to a specific prediction by either
increasing or decreasing the predicted value relative to a baseline,
typically the mean prediction. This plot is particularly useful for
understanding how individual features push the model's predic-
tion higher or lower in specific instances (Fig. 9). For MDP, if the
force plot shows a significant contribution to a higher ASR
prediction, it indicates a positive correlation with better salt
rejection in that specific case. The magnitude of this contribution
is visually represented by the length of the arrow or bar associated
with MDP; a longer arrow pointing toward a higher prediction
value suggests that MDP is a major driver of the model's predic-
tion. TMC's contribution might vary depending on the scenario; if
the force plot shows TMC pulling the prediction down, it suggests
a negative impact on ASR, possibly due to suboptimal conditions
or interactions with other features. CT might also either push the
prediction up or pull it down, depending on how it interacts with
MDP and TMC in the instance.

For example, if CT reduces the predicted ASR, it might
indicate that higher CT values are associated with lower salt
rejection efficiency under these conditions. The force plot thus
provides a detailed, instance-specific breakdown of how MDP,
TMC, and CT contribute to the final prediction, allowing us to
see the dynamics between these features in a clear and inter-
pretable way. If MDP shows the strongest positive contribution
while TMC and CT have smaller or negative contributions,
optimizing MDP could be more critical for enhancing ASR in
this specific case. The force SHAP plot offers a granular view of
how MDP, TMC, and CT interact to affect the model's prediction
of ASR in individual cases, providing insights that can inform
targeted improvements in membrane design or operational
conditions (Fig. 9). This detailed interpretability is crucial for
understanding the complex relationships within the model and
ensuring that the predictions are both reliable and actionable.

Conclusion

This research explained the profound impact of advanced ML
techniques and their ensembled techniques on the desalination
industry, a field where precision and efficiency are not just
beneficial but essential. By modelling AWF and ASR, we addressed
the potential for significant environmental and operational
enhancements in desalination practices. The individual ML
models evaluated SVM, NN, LR, and MLR provided a foundational
understanding of the data complexity. NN demonstrated exem-
plary predictive power with a perfect R* value of 1 for both AWF
and ASR, alongside the lowest MAE and RMSE, marking a signif-
icant stride in predictive capabilities. However, the ensemble
models took accuracy and reliability to new heights. With near-
perfect NSE values, they outperformed individual models, illus-
trating that an integrative approach to predictive analytics can

31272 | RSC Adv, 2024, 14, 31259-31273
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surpass the sum of its parts. For AWF, both NN-E and LR-E
maintained an MAE and RMSE of 0.001 and 0.0111, respec-
tively, while for ASR, NN-E reduced the MAE further to 0.0013 and
the RMSE to a remarkably low 0.0089. Such accurate predictions
imply enhanced RO membrane desalination by optimizing
monomer concentration and interfacial conditions, thereby
improving AWF and ASR. The complexity of different monomer
structures limits sparse dataset ability to generalize across diverse
RO membrane types effectively. Incorporating deep learning
across a wide range of monomers, emerging neuro-intelligent
ensemble models will offer the potential to optimize interfacial
conditions, significantly enhance the performance of polyamide
RO membranes, and deepen our understanding of monomer
interaction. This study provides insights into improving the real-
time efficacy of RO membrane performance, thereby contributing
to global water scarcity mitigation through cost reduction. This
study serves as a foundation for the integration of membrane
technology and machine learning, with the goal of optimizing
desalination processes and maximizing freshwater production.
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MPD m-Phenylenediamine

MSE Mean squared error

NF Nanofiltration
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