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Emergence of symmetric and asymmetric Dirac
points under periodic electric and vector potentials

in ABA-trilayer graphene superlattice
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We have theoretically investigated the impact of both periodic electric and vector potentials on the low
energy spectrum of ABA-trilayer graphene superlattice. Finite energy Dirac points appear in the energy
spectrum due to the application of the vector potential. These extra Dirac points are symmetric about k,,

= 0 plane for equal barrier and well widths. For different barriers and well widths, one Dirac point shifts

away and the second Dirac point shifts towards the k, = 0 plane. The extra Dirac points are not only
generated from the original Dirac point but also emerge from the valleys developed in the energy
spectrum. The application of both electric and vector potentials with identical barrier and well widths
breaks the symmetry of the spectrum about the Fermi level. When the electric and vector potentials are

asymmetric with all three layers having the same electric potentials, the energy spectrum becomes

Received 31st July 2024
Accepted 13th August 2024

asymmetric about the Fermi level, and this asymmetric behavior of both potentials annihilates the

original Dirac point from the spectrum. When all the layers have different electric potentials and both
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1. Introduction

Two-dimensional (2D) semiconductor materials have a special
layered structure. The layers in the bulk semiconductor material
are vertically stacked by van der Waals force and can be reduced
to an atomic layer scale, which causes significant changes in the
electronic properties. The high mobility of charge carriers and
the tunable band gap in some 2D materials make them poten-
tial candidate materials for the development of optical and
electronic devices. During the last two decades, graphene (2D
material) has developed a keen interest among scientists and
thereby emerged as a major field of research in physics. Gra-
phene (2D material) nowadays is becoming a base material for
optical and electronic devices because the electronic properties
of graphene are completely different from those of conventional
semiconductors."” The low energy electronic structure of gra-
phene is explained using the Dirac Hamiltonian. Charge
carriers in single-layer graphene can be described by the Dirac
equation, and they behave like massless relativistic chiral quasi-
particles having a speed equal to the Fermi velocity. The natural
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electric and vector potentials are asymmetric, the spectrum becomes asymmetric again, but this time
the asymmetry of the spectrum occurs across the k, = 0 plane.

clean system has a conical gapless linear dispersion close to K
and K points.** Due to Klein tunneling, charge carriers in
graphene can tunnel through a high enough electrostatic
barrier when they are incident at normal angle,>® which limits
the use of graphene in electronic devices. Graphene also
displays the quantum Hall effect.” The exceptionally good
carrier mobility and high stability of graphene make it a future
building block for spintronic devices, high memory density
devices and nanoelectronics devices.’ Due to the underlying
reasons stated earlier for graphene, intense research has been
carried out to address the problems of how to manipulate and
exploit its electronic properties.

Recently, many studies have been conducted to understand
the behavior of charge carriers in multilayer graphene and to
explore the electronic transport properties.'*"” In multilayer
graphene, the layers are bonded with each other by van der
Waal force and the energy spectrum is completely different
from single-layer graphene.'®* One example of multilayer gra-
phene is bilayer graphene having a quadratic energy spectrum
and shows no Klein tunneling.” The energy spectrum of multi-
layer graphene has no energy gap between the valence band and
conduction band under normal circumstances; however, when
a gate potential is applied to bilayer graphene, an energy gap is
induced in the energy spectrum. This is due to the fact that the
gate potential induces a difference in potential between the two
layers. The second example of multilayer graphene is trilayer
graphene with two allotropes having different stacking orders:
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the Bernal or ABA-trilayer graphene and Rhombohedral or ABC-
trilayer graphene as shown in Fig. 1. These two allotropes of
trilayer graphene have different physical properties,**>* the
band structure of ABC-trilayer graphene is cubic where the
electron behaves like a massive fermion close to the Dirac
point.*® The band structure of the ABA-trilayer graphene is
a combination of linear and quadratic dispersion where the
electron behaves as both massless and massive fermion close to
the Dirac point.***’

The tunable bandgap and high electronic properties of gra-
phene such as the way the charge carriers respond to both external
electric and magnetic fields offer great opportunities for scientists
to design and develop highly efficient optical and electronic
devices. To develop these interesting applications, which totally
depend on their optical and electronic properties; a scheme of
superlattice in graphene-based nanostructures has attracted
a great deal of research interest in the last decade. Since, the work
published by Esaki and Tsu in 1970 on semiconductor super-
lattices,”® nowadays, a great deal of attention has been devoted to
graphene superlattices to study the electronic properties under
periodic electric and magnetic potentials.>*' In these studies,
researchers have demonstrated effective band gap engineering
and optical modulation by using external periodic potentials.
Theoretically, it was predicted that the superlattice potential
modifies the transport properties of graphene, which are
completely different from superconductor superlattices.** Periodic
Kronig-Penny (KP) type of potential in single-layer graphene leads
to the generation of extra Dirac points in the energy
spectrum,**>* a renormalization of charge carrier group velocity*
and the phenomena of super-collimation.** In single-layer gra-
phene, the application of periodic superlattice potential opens an
energy gap in the energy spectrum but under certain conditions,
this superlattice periodic potential creates extra Dirac points in the
energy spectrum and also closes the energy gap.** The same
periodic superlattices potential when applied to bilayer graphene
induces an energy gap and also generates both zero energy and
finite energy Dirac points in the energy spectrum.*-** The KP-type

~
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~ - - E

Fig. 1 Schematic diagram of ABA-trilayer graphene representing the
relative position of sublattices A; and B,. t; and t, are the nearest and
next nearest hopping parameters.
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periodic superlattice potential in ABC- and ABA-trilayer graphene
superlattice generate extra Dirac points in the energy spectrum,
which depends on the barrier height of the periodic potential.*
The impact of KP-type magnetic potential on trilayer graphene
superlattices has also been incorporated in different studies.***~*

In this paper, we have investigated the effect of both electric
and magnetic vector potential on the low energy spectrum of
ABA-trilayer graphene superlattice. We first applied the electric
and vector potentials separately and observed the changes that
occur in the energy spectrum. The application of vector poten-
tial is unique, which generates finite energy Dirac points due to
the intersection of second and third mini-bands. These Dirac
points are symmetric about k, = 0 line when the barrier and well
widths of the vector potential are identical. However, for
different barriers and well widths, the symmetry of the finite
energy Dirac points about Fermi level get destroyed. The
application of electric potential causes the generation of zero
energy Dirac points in the energy spectrum. These Dirac points
emerge both from the original Dirac point as well as from the
valleys developed in the energy spectrum by increasing the
barrier height of the electric potential. The application of both
electric and vector potentials together changes the symmetry of
the spectrum with respect to zero energy level and with respect
to k, = 0 planes depending on layer potentials.

The paper is organized as follows: in Section 2 we have dis-
cussed the theoretical model of ABA-trilayer graphene super-
lattice Hamiltonian. We have also elaborated the periodic
electric and magnetic superlattice potentials in Subsections 2.1
and 2.2, respectively. The problem has been further solved
numerically and the numerical results have been discussed in
Section 3 of the result and discussion section. Finally, we have
concluded the paper in Section 4.

2. Formulism

In order to study the band structure and electronic properties of
ABA-trilayer graphene superlattice with Kronig-Penny type of
electric and vector potentials, we have considered three coupled
layers of graphene with ABA stacking order. In ABA-trilayer
graphene, atoms of the top layer lie exactly on top of the
bottom layer as shown in Fig. 1. The hopping strength between
neighboring and next neighboring layers is represented by the
coupling parameters ¢, and ¢,, respectively, and the hopping
strength between sites within each layer is represented by ¢. The
low energy Hamiltonian of ABA-trilayer graphene with both
electric and magnetic potentials is given by*

V] VE 7/'\C+ 121 0 0 0
VF']/'\C V1 0 0 0 0
t 0 V, vt 0
Hann — 1 2.0V 1 1
B 0 0 wr ¥, 0 0 ®
0 0 I3 0 V3 V[:’?ITJr
0 0 0 0 VF’?C V3
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where V3, V,, and V; are the electric potentials in each layer
respectively. @ = p, + i(p, + ed), where p, and p, are the
components of the in-plane momentum operator, A is the vector
potential, which is defined by the Landau gauge i.e., A(x) = (0,
Byx, 0) with B, a uniform magnetic field that is perpendicular to
the superlattice plane. Next, we are going to diagonalize the
above Hamiltonian, for which we define the eigenstate as x =
[Xa1, iXB1, XB2y IXa2) Xa3, iXps]” With T denoting the transpose
and the subscript representing the corresponding sublattices.
Expanding the eigenvalue equation Hxy = Ex, we get the
following set of six equations.

9 ; ,6+eA(x) . +t1 B
lax lay 7 IXB1 thXBZ =

L0, AN
Tox ! lay h Xar =

(E-W)
hVF

XAl
(2.1)

E-T1).
(TFI)IXBU (2.2)

(2.3)

0 .0 eA(x) (E-T1).
i _ S = = 2.4
{ i 1( it T )}sz o XAz (2.4)
. .0 n eA(x)\]. N 4 B
l@x ! lay 7 IXB3 hVFXBz =

P (PR C)) _E_N);
ox dy 7 XA3 = Tivg XB3»

(E—-V3)

g XA3-

(2.5)

(2.6)

ZVs(mg)xAs (E - mg;) + (kx - iky)iXBs <E> - ZiA(”g)iXBs (E - ngf) + fllXBz (E) = EXas (E>

These equations are all written in the position space. To
write these equations in momentum space, we use the Fourier
transformation of the wavefunction and periodic electric and
vector potential as

V12 3(F)— Z Vias (mg')e”""g’i

m

AR =y _A(mg)e "7,

27, . .
where =0, 1, £2,... and g = - is the reciprocal lattice vector

with A being the period of the periodic electric or vector
potential. Using these transformations in the above equations
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and after a straightforward calculation we obtain the following
modified equation in the momentum space.

ZVI (mg)x a1 </;f mgf) + (kx — iky)iXBl (lg)

= id(ng)ixp (/;— ”gf) + 1 xm: (12)

NG (3.1)
S Vi mg)in: (12 - mgi> + (ke + iky)xm(l?)
m+ > id(ng)xar (K - ngi)
i (§) 52)
> Valmg)xw (K~ mei) + (ke + ik,)ixn (K)
. Sidng)ixas (K — ngi) + fxas (K) + faa (F)
= ;sz (/?) (3-3)
S Valme)inas (K — mei) + (ke — k) (£)
m_ ZiA(ng)sz(/S - ngf)
— ]::‘XAZ (12) (3.4)
(3:5)
> Valmg)ixgs (K — mei) + (ke + ik,)xus (K)
m+ S id(ng)xas (19 - ngi)
— I;;’Xm (E) (3.6)

The above six equations are written in dimensionless units.

Here, we define the length unit as Iy = ,/e%, which is the

0
magnetic length of the magnetic field. Using this length unit,

the vector potential is expressed in the unit of Bylg, the electric
potential V(x), the coupling parameter ¢, and the energy E are

. . . hv .
written in units of — and kx, ky, respectively, and the corre-
B

sponding reciprocal lattice vector is expressed in units of 1/.
The above sets of equations are six simultaneous equations that

link xs(k — mg) with x,(k) for all possible values of m.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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N(g)
N(-g) Mp  N(g)
N(=2¢) N(-g) My
H= N(-3g) N(-2g) N(-g)
N(—4g) N(-3g) N(-2g)
N(-5g) N(-4g) N(-3g)
N(-6g) N(-5g)

Expanding all these equations and writing them in a matrix
form, we finally obtain the following general form of super-
lattice Hamiltonian as

here the diagonal and off-diagonal matrices are defined as
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N(3g)

N(4g) N(5g) N(6g)
N(2g) N(3g) N(4g) N(5g)
N(g)  N(2g) N(3g) N(4g)
Mg N(g) N(2g) N(3g) ; (4)
N(—g) My N(g) N(Q2g)
N(2g) N(-g) My N(g)
N(-2g) N(-g)

N(—.3g)

considered uniform along y-direction and staggered along the x-
direction on a length scale that is greater than the lattice
constant. The vector potential in the Landau gauge with barrier
width dy, (B, = B,) and well width d,, (B, = —B,) is characterized
by the function

1(0)  p_ ['1 0 0 0 Alx) = 0 m(dy + dy)<x<m(d, + dy)+dy
oy V1(0) 0 0 0 0 ) Bolg m(dy, + dy)t+dy<x<(m + 1)(dy + dy)
sy = | 0 PO e 0 0)
0 0 o WO 0 0 . .
0 0 / 0 V4(0) where m = 0, £1, £2, ..., and A = d}, + d is the superlattice
! ’ h- period. Since the vector potential is periodic with superlattice
0 0 0 0 P+ V3(0) period d, it can be expanded using Fourier series as
A(x) = Y A(ng)e™*, where A(ng) is the Fourier coefficient and is
and "
given by
Vi(ng) —iA(ng) 0 0 0 0
iA(ng) Vi(ng) 0 0 0 0
_ 0 0 Vi(ng) iA(ng) 0 0
Nm) = 0 0 —iA(ng) Vi(ng) 0 0 ’ (©)
0 0 0 0 Vi(ng) —iA(ng)
0 0 0 0 iA(ng) Vi(ng)
where p, = k. + mg + i(k, + A(0)), m = 0, &1, &2, ... and n = +1, )
+2, ... We will solve eqn (4) numerically and obtain the energy A(ng) = .AO { xp( — zZdeW) _ 1] (8)
eigenvalues and corresponding energy spectra for different i27n dy + d
values of barrier heights of the electric and vector potentials,
which we will discuss in detail in Section 3. We apply both
periodic electric and vector potentials as shown in Fig. 2.
2.2. Periodic Kronig-Penney type of superlattice electric

2.1. Periodic Kronig-Penney type of superlattice vector
potential

The applied magnetic field and the corresponding vector
potential are shown in Fig. 2(a) and (b), respectively. The field is

© 2024 The Author(s). Published by the Royal Society of Chemistry

potential

The one-dimensional periodic electric potential V(x) is shown in
Fig. 2(c), which is periodic along x-direction with period d = L +
W, where W is the barrier width, L is the barrier separation and

RSC Adv, 2024, 14, 27162-27173 | 27165
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Fig. 2 Schematic diagram of superlattice potentials; (a) alternating magnetic strip with signs By and —Bg representing by up and down arrows
respectively and (b) the corresponding Kronig-Penney type of vector potential A(x) with barrier width dy,, well width d,, and strength (barrier
height) Ag. (c) Periodic Kronig—Penney type of electric potential V(x) with barrier width W, well width L and barrier height V. Both potentials are

zero inside the wells and non-zero inside the barriers.

the height of the barrier is V,. This potential for convenience is
modeled by the function

wm={%

where m =0, +1, +2, ..., and A = L + Wis the superlattice period.

Thus electric potential can be expanded in a Fourier series as

V(x) = Y_V(ng)e™*, where V(ng) is the Fourier coefficient
n

Voa.23) ox i2mnL |
ool |TP\ T Ly w ’
where the subscripts 1, 2, 3 in V; , 3(ng) represent the potential
in each layer, respectively. Similarly

Voo W
L+W '

m(L + Wy<x<m(L+ W)+ L 9
m(L+ W)+ L<x<(m+1)(L+ W)’

given by

Viaa (ng) = (10)

V125(0) = (11)

3. Results and discussion

Before discussing the results, we define some of the parameters.
The value of the magnetic field produced by the periodic
magnetic strip in the barrier of width d;, can range up to 17,
having typical values of the order of a tenth of tesla. Thus, for

By = 0.1T, the energy scales and magnetic length are
hVF .
T ~ 8.1 meV and /z = 80 nm, respectively, also t; = 0.35 eV
B
, Iz
corresponds to t; = —t; = 15.
th
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First, we will examine the full band structure of the ABA-
trilayer graphene superlattice by applying the vector potential
only and keeping the electric potential zero. The effect of
different values of barrier height A, of the vector potential on
the low energy spectrum with identical barrier and well widths
(dp = dw = 5,d = 10) is shown in Fig. 3. To check the symmetry
of the low energy spectrum with respect to the zero energy level,
both positive and negative energy results are drawn here. When
the barrier height of the vector potential 4, = 0, the dispersion
relation is a combination of linear and quadratic dispersion
close to k, = 0, shown in Fig. 3(a) by black and red curves, where
the electron behaves in both massless and massive fermions,
respectively.”**” By increasing the barrier height A4, of the vector
potential to 0.5, the linear and quadratic bands get more flatten
while there is an emergence of second mini-band shown by blue
dotted line in Fig. 3(b). This newly emerging mini-band touches
the third mini-band (green curve) and generates two finite
energy Dirac points on either side of k, = 0 when the barrier
height is increased to 1.5, as shown in Fig. 3(d). Further,
increase in barrier height of the vector potential does not
generate any other extra Dirac points in the energy spectrum but
only flattens the linear and quadratic bands and shifts the two
Dirac points to higher energies as shown in Fig. 3(e) and (f).
Both these Dirac points are symmetric about k, = 0 plane.
Similarly, other mini-bands also intersect at higher energies
and produce extra Dirac points on either side of k, = 0 with an
increase in barrier height of the vector potential which is not
shown in Fig. 3. The inclusion of the hopping term ¢, in the low
energy Hamiltonian of the ABA-trilayer graphene superlattice
does not change the results significantly. The only difference

© 2024 The Author(s). Published by the Royal Society of Chemistry
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[’\

Ky(27c/|B)

Fig.3 Energy dispersion along k,, direction (k, = 0) for different values of barrier height Ap with identical barrier and well widths (dy, = d,, = 5 and

d = 10). The barrier heights Ag = 0, 0.5, 1, 1.5, 2, 3 in (a)-(f) respectively.

4 K (27h,)

0
K (2n/l,)

Fig. 4 Energy dispersion along k, direction (k, = 0) for different values of barrier height Ag with unequal barrier and well widths (d, =4, d, =6
and d = 10). The barrier heights A = 0, 0.5, 1, 1.5, 2, 3 in (a)—(f) respectively.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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observed due to the inclusion of ¢, is that the emergence of extra
Dirac points appears in the energy spectrum at slightly different
potentials.

The dispersion relation for different values of barrier height
Ao with unequal barriers and will widths, i.e., d, =4 and d, = 6
is depicted in Fig. 4. The energy dispersion of this asymmetric
case (d, # dy) has different behavior as compared to the
symmetric case (d, = d). At Ao = 1 (Fig. 4(c)) extra Dirac points
emerge from the intersection of second and third mini-bands,
these extra Dirac points are not symmetric about the k, =
0 plane. The distance of the left Dirac point from k, = 0 is
comparatively large as compared to that on the right Dirac
point. The left Dirac point is situated at higher energy as
compared to the left Dirac point as shown in Fig. 4(d-f). The
behavior of the quadratic dispersion remains the same while
there is a slight shift in the linear dispersion. Thus, extra Dirac
points show asymmetric behavior with respect to the k, =
0 plane and are located at different energies. Further, an
increase in the barrier height does not create any other extra
Dirac point but only causes a change in the curvature of the
existing Dirac points and also increases the asymmetry in the
energy dispersion.

Next, we will consider the effect of periodic electric potential
only and then we will explore the impact of both electric and
vector potentials together on the low energy spectrum of the
ABA-trilayer graphene superlattice. For the periodic electric
potential, we consider two different cases; first by assuming that
all the three layers of the ABA-trilayer graphene superlattice
have the same potential ie., Vi(ng) = V,(ng) = Vi(ng) = V(g)

View Article Online
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{ ( i2mnL
- exp| —

121tnL L+w
dispersion relation along the k, direction for different values of
the barrier height V, of the electric potential while keeping the
vector potential zero. When the barrier height of the electric
potential is increased from 0, the quadratic dispersion becomes
linear close to k, = 0, as a result, a Dirac cone appears in the
middle and valleys also emerge in the spectrum. The valleys get
closer with an increase in barrier height and finally touch each
other when the barrier height reaches 0.2 as shown in Fig. 5(b).
Two extra Dirac points appear in the energy spectrum due to the
touching of the valleys, and at the same time, the central Dirac
point is converted into a parabolic curve. Further, an increase in
the barrier height causes the emergence of two extra Dirac
points from the central Dirac point as shown in Fig. 5(c). The
newly generated Dirac points move away from the original Dirac
point along k, direction and at the same time the central Dirac
point becomes parabolic, this parabolic dispersion close to k, =
0 generated two other extra Dirac points as we increased the
barrier height, which is shown in Fig. 5(e and d).

Now we discuss the combined effect of both electric and
vector potential on the low energy spectrum of the ABA-trilayer
graphene superlattice. We consider the case with all three layers
having the same electric potential. Fig. 6 shows the E versus k,
dispersion having identical barriers and well widths of both
electric and vector potentials. The barrier height of the vector
potential is kept constant (4, = 0.5) while the barrier height of
the electric potential varies, as shown in Fig. 6(a—f). Owing to the
impact of periodic electric potential, extra Dirac points emerge
in the energy spectrum by increasing the barrier height of the

where V(ng) = ) — 1}. Fig. 5 shows the

(d)

1)

0
K (27/1,)

4 -4 2

Fig. 5 Energy dispersion along k,, direction for k, = O for the first three mini-bands, with equal barrier and well widths (L = W = 5) and different

barrier heights Vo =0, 0.2, 0.6, 1, 1.4, 1.8 in (a)—(f) respectively.
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A,=05,V =10

A=05,V =138

0
K (2n/l)

e

0
K (27,

Fig.6 Energy dispersion along the k,, direction (k, = 0) with equal barrier and well widths (d, =d,, =5, L =W =5,d=L + W=d, + d,, =10). The
barrier height of the vector potential is 0.5 which is constant while the barrier height of the electric potential is different. The barrier heights Vo =

0,0.2,0.6,1.0, 1.4, 1.8 in (a)-(f) respectively.

electric potential, which is discussed in detail in Fig. 5. The
application of constant vector potential (4, = 0.5) cannot
produce any extra Dirac points but only breaks the symmetry of
the spectrum about the Fermi level as shown in Fig. 6(a-f).
The effect of the electric potential while keeping the vector
potential zero on the low energy dispersion of ABA-trilayer gra-
phene superlattice is analyzed in Fig. 7, but this time all three
layers are considered to be at different potentials. Such type of
arrangement can be achieved by using two gate potentials with
opposite polarities one at the top and the second at the bottom of
the superlattice structure. The top gate has potential +V and the
bottom gate has potential —V and if we ignore the screening, the
three potentials would be V;(ng) = V(ng), Vo(ng) = 0 and V;(ng) =
—V(ng). When the barrier height of the electric potential is
increased, the linear band gradually shifted to the nonlinear
band (parabolic band). At barrier height V;, = 1.3, the two bands
overlap each other close to k, = 0, as shown in Fig. 7(b) and
become more flatten along the k, direction. A slight increase in
the barrier height above V,, = 1.3 emerge two extra Dirac points in
the energy spectrum having the same electron-hole crossing
energy as that of the original Dirac point as shown in Fig. 7(c) for
Vo = 1.9. These extra Dirac points, which are initially close to the
k, = 0 line are now shifted away along the k, direction with
increasing V, as shown in Fig. 7(d) for V, = 2.6. Further, increase
in the barrier height above V, = 2.6 generates two additional extra
Dirac points in the energy spectrum as shown in Fig. 7(e) for V, =
3.2. This process of emerging of extra Dirac points continues with

© 2024 The Author(s). Published by the Royal Society of Chemistry

the barrier height in a periodic manner, which can be seen in
Fig. 7(f-i). From these observations, we reached the conclusion
that the emergence of extra Dirac points is periodic; two extra
Dirac points appear in the spectrum by increasing the barrier
height of the electric potential by 1.3. Such type of behavior of
emergence of extra Dirac points in a periodic manner was also
observed earlier for single-layer graphene superlattice.®® Fig. 8
shows the E versus k, dispersion having identical barrier and well
width of both electric and vector potentials but the three layers
have different electric potentials. A constant vector potential (of
barrier height A, = 0.5) is applied to the system, while the electric
potential has different values. The application of constant vector
potential along with electric potential does not destroy the
symmetry of the spectrum, unlike in the case when all three layers
have the same electric potential. The addition of vector potential
along with electric potential modifies the generation of extra
Dirac points. The extra Dirac points are generated both from the
original Dirac point as well as from the valleys developed in the
dispersion as can be seen in Fig. 8(a-i).

Finally, we discuss the asymmetric case for which the effect
of both electric and vector potential is different as compared to
the symmetric case. In Fig. 9(a—c) (left panel), the electric and
vector potentials are the same (V, = 0.6, 4, = 0.5), also all three
layers have the same potential but have asymmetric barriers
and well width. As shown in Fig. 9(a), the electric potential is
symmetric (L = W = 5) while the vector potential is asymmetric
(dy» = 6, dy = 4). This asymmetry of the vector potential not only
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Fig.7 Energy dispersion along k, direction for k, = 0, With different potentials for three layers. The barrier heights Vo =0, 1.3,1.9,2.6,3.2,3.9,4.5,

5.1, 5.7 in (a)-(i) respectively and the values of L and W are 5.
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Fig. 8 Energy dispersion along the k, direction (k, = 0) with same potential for each layer. The barrier and well widths are equal (d, =d\, =5, L =
W=5d=L+ W=d,+ d, = 10), the barrier height of the vector potential is 0.5 which is constant while the barrier height of the electric

potential Vo =0, 1, 15, 2, 3, 3.5, 3.8, 4, 5 in (a)—(i) respectively.
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Fig. 9 Energy dispersion along the k,, direction (k, = 0). The left panel is for the case when all the layers have the same potential and the right
panelis for the case when all the three layers have different potentials. (a) L= W =5, d, =6, dy, =4 withAg=0.5,Vy=0.6 (b) L=6, W=4,dp, =dy
=5withAg=0.5Vp=0.6()L=6W=4,d,=6,d,=4withAg=0.5,Vy=0.6(d)L=W=5,d,=6,dy=4withA;g=0.5,Vy=32()L=6 W=

4,d, =dyw=5withAg =05, Vo=32and (f)L=6 W=4,d,=06,dy

destroys the symmetry of the spectrum but also annihilates the
original Dirac points, the spectrum now twisted about the zero
energy level. As shown in Fig. 9(b), the electric potential is
asymmetric (L = 6, W = 4) and the vector potential is symmetric
(dp = dw = 5), again the asymmetry of the electric potential
destroys both the symmetry of the spectrum as well as the initial
Dirac points from the spectrum. For both electric and vector
potentials to be asymmetric i.e., L = 6, W =4, d}, = 6, dy, = 4, the
symmetry of the spectrum again destroys about the zero energy
level, as shown in Fig. 9(c). Fig. 9(d—f) (right panel) shows the
dispersion relation for the case where all three layers have
different potentials with a constant barrier height of the electric
and vector potentials i.e., A, = 0.5 and V, = 3.2 but different
barriers and well widths. In Fig. 9(d), the electric potential is
symmetric (L + W = 5) while the vector potential is asymmetric
(dp = 6, dy, = 4), the energy spectrum now becomes asymmetric
about k, = 0 line while the spectrum remains symmetric about
the Fermi level. This asymmetry in the vector potential also
destroys one of the Dirac points from the energy spectrum. Now,
by making the electric potential asymmetric (L = 6, W = 4) and
vector potential symmetric again the energy spectrum becomes
asymmetric about the k, = 0 line and also generates extra Dirac
points in the energy spectrum as shown in Fig. 9(e). By making
both electric and vector potentials asymmetric i.e., L = 6, W = 4,
dy = 6, dy, = 4, the symmetry of the spectrum again destroyed
across the k, = 0 line and more and more extra Dirac points are
generated in the energy spectrum.

© 2024 The Author(s). Published by the Royal Society of Chemistry

=4 withAg = 0.5, Vo = 3.6.

There has been a growing interest in the study of graphene
superlattices in recent years because the study of superlattices
provides a route to band structure engineering in semi-
conductor devices. The model and formulism provided in this
work will be helpful in studying the electronic properties of
a few (four and five) layers of graphene superlattices. These
fascinating results will also be useful in analyzing the electronic
properties while designing electric and magnetic field-effected
trilayer graphene devices.

4. Conclusion

The effect of both electric and magnetic potential on the low
energy spectrum of the ABA-trilayer graphene superlattice was
investigated. We found that the application of vector potential
causes the emergence of two extra Dirac points from the inter-
section of two min-bands other than the linear and quadratic
bands of ABA-trilayer graphene. These extra Dirac points are
symmetric about the k, = 0 line for equal barrier and well widths.
However, for unequal barriers and well widths the symmetry of
the extra Dirac points is broken both in terms of energy and in
terms of their position with respect to the k, = 0 plane. The
application of an electric potential to the ABA-trilayer graphene
superlattice, when all three layers have the same potential,
generates extra Dirac points with the same electron-hole crossing
energy as that of the original Dirac point. These extra Dirac points
are not only generated from the original Dirac point but also
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emerge from the valleys developed in the energy spectrum of the
ABA-trilayer graphene superlattice. When both electric and vector
potential are applied with the same barrier and well widths, the
symmetry of the spectrum breaks about the Fermi level. Thus,
a constant vector potential cannot generate any extra Dirac points
but only breaks the symmetry of the spectrum about the zero
energy level. Next, we analyzed the effect of the electric potential
on the low energy spectrum of ABA-trilayer graphene by assuming
that all three layers have different potentials and observing the
emergence of extra Dirac points from the original Dirac point in
a periodic manner. Each time two Dirac points emerge by
increasing the barrier height of the vector potential V, by a factor
of 1.3. The application of both electric and vector potential when
all three layers have different electric potential does not change
the symmetry of the spectrum about zero energy level but only
helps in generating additional Dirac points both from the original
Dirac point as well as from the valleys that appeared in the
spectrum. Next, we study the effect of asymmetric electric and
vector potential on the low energy spectrum of the ABA-trilayer
graphene superlattice. When all the layers have the same poten-
tial and either electric or vector potentials are asymmetric or both
become asymmetric, the energy spectrum becomes asymmetric
about the zero energy level and also these asymmetries destroy
the original Dirac point from the energy spectrum. Similarly,
when all the layers have different potentials, then the asymmetry
in one of the potentials or in both potentials also destroys the
spectrum but this time about the k, = 0 plane. The asymmetries
in these potentials for the above-mentioned case also generate
extra Dirac points other than the initial Dirac points that appear
in the spectrum. In conclusion, our results show that the super-
lattice electric and vector potentials are an effective means to
produce interesting features in the energy spectrum of the ABA-
trilayer graphene superlattice
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