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ultrasonic-assisted extraction of
total flavonoids from Oxalis corniculata by a hybrid
response surface methodology-artificial neural
network-genetic algorithm (RSM-ANN-GA)
approach, coupled with an assessment of
antioxidant activities†

Deng-Zhao Jiang, *ab Dan-Ping Yu,a Ming Zeng,a Wen-Bo Liu, a Dong-Lin Lic

and Ke-Yue Liuab

The objective of this research endeavor is to refine the ultrasonic-assisted extraction technique for total

flavonoids from Oxalis corniculata (TFO), utilizing a synergistic approach combining response surface

methodology (RSM) and artificial neural network integrated with genetic algorithm (RSM-ANN-GA). The

optimized extraction parameters determined through RSM yielded a TFO concentration of 13.538 mg

g−1 under the following conditions: an ethanol concentration of 61.95%, a liquid–solid ratio of 41.06 mL

g−1, an ultrasonic power setting of 351.57 W, and an ultrasonic exposure duration of 58.95 minutes.

Conversely, the RSM-ANN-GA approach identified an even more refined set of conditions, achieving

a TFO concentration of 13.7844 mg g−1, with an ethanol concentration of 58.93%, a liquid–solid ratio of

41.16 mL g−1, an ultrasonic power of 350.22 W, and an ultrasonic exposure time of 58.18 minutes. These

findings underscore the superior predictive accuracy and enhanced extraction efficiency offered by the

RSM-ANN-GA model over the conventional RSM method. Furthermore, the study demonstrated that

TFO possesses a potent antioxidant effect, as evidenced by its ability to scavenge DPPH, hydroxyl, and

superoxide anion free radicals in vitro, highlighting its potential as a valuable source of natural antioxidants.
1 Introduction

Oxalis corniculata, a globally widespread member of the Oxali-
daceae family, is prevalent in Asia, South Africa, and South
America. Known as an invasive yet medicinally potent weed, it
has been valued in traditional medicine in China, Pakistan, and
India.1 Recent studies have reported various pharmacological
activities, including anticancer, antibacterial, antifungal,
insecticidal, and antioxidant effects, etc.2–12 Phytochemical
analysis reveals the presence of alkaloids, avonoids, terpe-
noids, glycosides, and saponin, etc.6–8,12–14 Among these, avo-
noids stand out for their strong antioxidant and antimicrobial
properties. These bioactive compounds make O. corniculata
a valuable resource for advancing modern pharmacology,
nutraceutical development, and cosmeceutical formulations.5,13
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Conventional extraction methods for avonoids, such as
percolation and decoction, require signicant solvent and
energy. Ultrasound-assisted extraction (UAE) is a more efficient
and sustainable alternative. UAE uses ultrasonic waves to create
acoustic cavitation, which disrupts cellular structures and
enhances the release and solubilization of target compounds.
This improves extraction efficiency and reduces environmental
impact. UAE accelerates the leaching of bioactive compounds,
boosting extraction efficacy while minimizing resource
consumption. Therefore, UAE has become widely adopted for
extracting bioactive plant components.15–19

The efficacy of component extraction depends on factors
such as solvent concentration, extraction duration, ultrasonic
power, pH levels, and temperature, etc. The complex nature of
botanical constituents oen results in a non-linear extraction
process. Despite its inefficiency and resource wastage, the one-
variable-at-a-time (OVAT) method is still widely used for its
simplicity and intuitiveness. However, OVAT fails to detect
interactions between factors and lacks a comprehensive
understanding of all determinants.20

In contrast, the design of experiments (DoE) approach offers
signicant advantages by requiring fewer experiments and
RSC Adv., 2024, 14, 39069–39080 | 39069
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lower costs.21 Orthogonal design, a traditional DoE method,
investigates the impact of different parameters through
a limited number of experimental runs. When used correctly,
orthogonal design effectively determines the optimal combi-
nation of factor levels, making it a valuable tool for optimizing
extraction processes.21

Novel optimization methodologies, such as Response Surface
Methodology (RSM) and Articial Neural Networks (ANN), have
gained attention for extracting plant-based medicinal ingredi-
ents. RSM, a statistical technique, models complex processes and
optimizes parameter interactions.22,23 ANNs add computational
intelligence by recognizing intricate patterns and making
sophisticated predictions.24–27 Compared to RSM, the integration
of RSM, ANN, and Genetic Algorithms (GA)—known as RSM-
ANN-GA—demonstrates superior prociency in analyzing obser-
vational data and creating predictive models for complex,
nonlinear processes. This combination has evolved into a more
powerful and accurate optimization tool.25,27–31

Current literature shows a notable lack of research on
enhancing the extraction of TFO, particularly using ANN
methodologies. To address this, we rst employed RSM to
optimize the TFO extraction process. Next, an ANN model was
developed using the experimental data from RSM design points.
Finally, the optimal extraction conditions were determined
using a synergistic RSM-ANN-GA approach, followed by in vitro
assessments of the antioxidant activities of TFO.
2 Results and discussion
2.1. Standard curve

The deduced linear regression equation manifests as: A =

9.8182C + 0.0264, complemented by a correlation coefficient R
= 0.9995. Such results unequivocally validate that, within the
concentration domain spanning from 0.03 to 0.06 mgmL−1, the
concentration of rutin bears an exceptional linear relationship
with absorbance. This nding attests to the precision and
steadfast reliability of the adopted measurement method
(Fig. 1).
2.2. Identication and characterization of TFO

Following the interaction between the extraction solution and
magnesium hydrochloride powder, a notable change occurred,
Fig. 1 The standard curve of rutin.

39070 | RSC Adv., 2024, 14, 39069–39080
manifesting as a deep purple coloration, which unequivocally
signals the inclusion of avonoids in the extracted mixture. The
FTIR spectral prole for the extract derived from UAE is delin-
eated in Fig. 2, revealing the molecular vibrations characteristic
of the constituents within the extract.

The broad and intense absorption band observed around
37.70 cm−1 is likely attributable to the stretching vibrations of
the O–H group, which typically occur within the range of 3600–
3200 cm−1.

An absorption peak at 2921.69 cm−1 could be attributed to
the stretching vibrations of both aliphatic and aromatic C–H
groups, which are commonly observed in the range of 2950–
2850 cm−1. Meanwhile, the peak at approximately 1655.33 cm−1

may be indicative of C]O stretching vibrations, typically found
within the spectral window of 1680–1620 cm−1. Peaks located at
1606.38 cm−1 and 1449.25 cm−1 might be associated with the
skeletal vibrations of the benzene ring, while the feature at
1067.09 cm−1 is likely due to the deformation vibrations of C–C
bonds. All the identied absorptions, when considered in
concert, point unmistakably toward the existence of avonoids,
their distinctive spectral signatures weaving a tale of the
sample's chemical composition.15,32
2.3. Single factor experimental results and analysis

2.3.1. Effect of ethanol concentration. As illustrated in
Fig. 3A, the yield of TFO extraction increases with the elevation
in ethanol concentration, attributed to the reduction in solution
polarity, which helps enhance the solubility of avonoids.33

Notably, this increase is more pronounced between concentra-
tions of 40% and 60%, aer which the rate of increase tapers off
gradually beyond the 60% mark. Upon reaching an ethanol
concentration of 80%, a notable transformation occurred in the
extraction solution, shiing its hue from a standard orange-
yellow to a lighter shade of green. This change in coloration
suggests a signicant extraction of chlorophyll by the 80%
ethanol, leading to a decrease in the concentration of TFO. The
resultant light green tint of the solution is indicative of the
elevated chlorophyll content, illustrating the complex interplay
between solvent strength and the selective extraction of plant
compounds.

2.3.2. Effect of ultrasonic power. As illustrated in Fig. 3B,
the yield of TFO extraction ascends to a zenith at 350 W
concurrent with the augmentation of ultrasonic power. The
ultrasonic cavitation phenomenon, characterized by the
formation and subsequent implosion of bubbles, signicantly
enhances the diffusion of the solute and exerts a disruptive
inuence upon the raw materials. This dual action facilitates
a higher permeability of the solvent into the matrix, thereby
augmenting the extraction yield.34 Upon transcending the
350 W threshold, a progressive enhancement in ultrasonic
power engenders a decremental shi in the extraction efficacy
of TFO. This observation may be attributed to the production of
hydroxyl radicals at high ultrasonic power, which can react with
phenolic compounds and cause their degradation.35

2.3.3. Effect of liquid–solid ratio. As depicted in Fig. 3C, the
extraction yield of TFO ascends progressively in tandem with
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 FTIR spectrum analysis of the extraction obtained by UAE.
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the augmentation of the liquid–solid ratio, achieving its apex at
a ratio of 40 mL g−1. The effect of the solvent to material ratio
can be attributed to the possibility that the reduced mixture
density, resulting from a higher solvent to material ratio,
increases the ultrasound wave propagation speed, reduces the
attenuation of ultrasound power, and enhances the transfer of
energy/distance/time.36

2.3.4. Inuence of ultrasonic time. As illustrated in Fig. 3D,
in the initial stage, the extraction yield of total avonoids (TFO)
rapidly increases with the extension of ultrasonic exposure time,
Fig. 3 Effect on the extraction yield of TFO ((A) ethanol concentration;

© 2024 The Author(s). Published by the Royal Society of Chemistry
reaching a peak at 60 minutes. This may be due to the higher
slope of the gradient solvent and the cavitation, thermal, and
physical effects generated at the sample surface.37 Nonetheless,
a paradoxical diminution in yield becomes apparent upon
further extension of the ultrasonic treatment beyond this optimal
time frame. The plausible rationale behind this phenomenon
may be attributed to the prolongation of ultrasonic exposure,
which leading to the degradation of avonoids.38

In accordance with the empirical ndings delineated herein,
the factorial design encompasses three hierarchical levels for
(B) ultrasonic power; (C) liquid–solid ratio; (D) ultrasonic time).

RSC Adv., 2024, 14, 39069–39080 | 39071
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each of the four investigated parameters. Specically, the
ethanol concentration (X1) spans a spectrum from 50% to 60%
and 75%; the ultrasonic power (X2) is delineated at 300 W,
350 W and 400 W; the liquid–solid ratio (X3) is calibrated at 35,
40 and 45 mL g−1; and the extraction time (X4) is set at intervals
of 50, 60 and 70 minutes, as meticulously tabulated in Table
S1.†

2.4. Optimization of extraction parameters utilizing RSM

The Box–Behnken design with RSM and ANN results were
shown in Table S2.† Utilizing the sophisticated capabilities of
Design-Expert 10.0 soware, an exhaustive analysis of variance
(ANOVA) was conducted on the dataset amalgamating both
empirical and projected values, as outlined in Table 1. Adopting
the extraction yield of TFO (Y) as the focal response parameter,
the implementation of a quadratic regression analytical
framework resulted in the derivation of a comprehensive
quadratic multinomial regression equation. This equation
elucidates the intricate interplay between the extraction yield of
TFO (Y) and the quartet of independent variables: ethanol
concentration (X1), liquid–solid ratio (X2), ultrasonic power (X3),
and ultrasonic time (X4):

Y= +13.41 + 0.65X1 + 0.53X2 + 0.094X3 − 0.096X4 + 0.22X1X2 −
0.098X1X3 + 0.24X1X4 + 0.19X2X3 − 0.50X2X4 − 0.030X3X4 −

1.84X1
2 − 1.48X2

2 − 1.90X3
2 − 1.19X4

2

An inspection of Table 1 reveals that the regression model,
marked by a p-value less than 0.001, underscores the excep-
tional signicance of the regression equation model, signifying
an optimally efficacious t. The insignicance of the lack of t
test (p > 0.05) corroborates the veracity of the quadratic poly-
nomial regression model, substantiating its appropriateness for
the dataset at hand. The concordance between the coefficient of
Table 1 ANOVA for response surface quadratic model

Source Sum of squares df Mean

Model 55.59 14 3.97
X1-ethanol concentration 5.10 1 5.10
X2-liquid–solid ratio 3.31 1 3.31
X3-ultrasonic power 0.11 1 0.11
X4-ultrasonic time 0.11 1 0.11
X1X2 0.20 1 0.20
X1X3 0.04 1 0.04
X1X4 0.24 1 0.24
X2X3 0.14 1 0.14
X2X4 1.01 1 1.01
X3X4 0.0036 1 0.003
X1

2 22.03 1 22.03
X2

2 14.27 1 14.27
X3

2 23.52 1 23.52
X4

2 9.25 1 9.25
Residual 1.31 14 0.09
Lack of t 1.08 10 0.11
Pure error 0.23 4 0.06
R2

Adj. R2

Pred. R2

39072 | RSC Adv., 2024, 14, 39069–39080
determination (R2 = 0.9771) and the adjusted determination
coefficient (adj. R2 = 0.9541) is indicative of a well-calibrated
model, underscoring the reliability of predictions derived
from this regression equation.27 An F-value of 1.91 for the lack of
t suggests that any discrepancy between the model's predic-
tions and the actual observations is not statistically signicant
relative to the intrinsic variability (pure error). This nding
implies that there is a 27.83% probability that an F-value of this
magnitude could arise solely from random uctuations or
noise.

In the signicance testing of the coefficients for the
quadratic model regression equation, the Prob > F values for X1

(ethanol concentration) and X2 (liquid-to-solid ratio) were both
lower than 0.01, indicating a highly signicant linear effect on
the TFO ultrasonic extraction efficiency. The hierarchy of factors
impacting the extraction yield of TFO is delineated as follows: X1

(ethanol concentration) > X2 (liquid–solid ratio) > X4 (ultrasonic
time) > X3 (ultrasonic power). The Prob > F values for X1

2, X2
2,

X3
2 and X4

2 were less than 0.01, indicating a highly signicant
curvilinear effect on the TFO ultrasonic extraction efficiency.

The 3D graphical representations (illustrated in Fig. 4)
elucidate the interactive inuences exerted by the independent
variables upon the yields of TFO. A steeper incline within these
visual depictions signies a more pronounced interaction
between the paired factors, thereby highlighting their collective
potency in modulating the response variable.39 Analysis
revealed that the Prob > F values for the interactions involving
X1X2, X1X3, X1X4, X2X3 and X3X4 were all above 0.05, which
implies insignicant interaction effects on the ultrasonic
extraction rate; on the other hand, the interaction term X2X4

had a Prob > F value lower than 0.01, indicating a highly
signicant interaction effect. The optimal extraction parame-
ters ascertained through RSM were delineated as follows: an
ethanol concentration of 61.95%, a liquid–solid ratio of
square F value p-Value Prob > F

42.60 <0.0001 Signicant
54.66 <0.0001 Signicant
35.48 <0.0001 Signicant
1.14 0.3034
1.18 0.2953
2.12 0.1671
0.41 0.5334
2.58 0.1308
1.55 0.2337
10.83 0.0054 Signicant

6 0.04 0.8470
236.36 <0.0001 Signicant
153.04 <0.0001 Signicant
252.33 <0.0001 Signicant
99.25 <0.0001 Signicant

1.91 0.2783 Not signicant

0.9771
0.9541
0.8845

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Response surface 3D plots. (A) The interaction effects of ethanol concentration and liquid–solid ratio; (B) the interaction effects of ethanol
concentration and ultrasonic power; (C) the interaction effects of ethanol concentration and ultrasonic time; (D) the interaction effects of liquid–
solid ratio and ultrasonic power; (E) the interaction effects of liquid–solid ratio and ultrasonic time; (F) the interaction effects of ultrasonic power
and ultrasonic time.
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41.06 mL g−1, an ultrasonic power setting of 351.57 W, and an
ultrasonic exposure duration of 58.95 minutes, yielding a TFO
concentration of 13.538 mg g−1. In consideration of practical
experimental constraints, these conditions were judiciously
adjusted for the validation experiment, resulting in an ethanol
concentration of 62%, a liquid–solid ratio of 41 mL g−1, an
ultrasonic system power of 350 W, and an ultrasonic treatment
interval of 59 minutes.
2.5. Optimization of extraction parameters utilizing RSM-
ANN-GA

Utilizing the dataset derived from RSM analyses, a Back Prop-
agation (BP) Articial Neural Network (ANN) was trained,
incorporating four pivotal factors-ethanol concentration,
liquid–solid ratio, ultrasonic power and ultrasonic time-as
input parameters, with the extraction yield of TFO serving as
the output metric. The architectural topology of this articial
neural network is visually represented in Fig. S1.† The hyper-
bolic tangent sigmoid (“tansig”) function was utilized as the
activation function bridging the input layer and the hidden
layer, whereas the linear (“purelin”) function served as the
transfer mechanism linking the hidden layer to the output
layer. Employing the Levenberg–Marquardt backpropagation
(“trainlm”) algorithm as the training function, the network was
meticulously calibrated with a regimen encompassing 1000
epochs, 25 iterations per epoch, and a training goal error of
© 2024 The Author(s). Published by the Royal Society of Chemistry
0.0001. Consequently, a network topology featuring 4 input
nodes, 10 hidden nodes, and a solitary output node was archi-
tecturally realized, as depicted in Fig. S1.† As exemplied in
Fig. S2† and 5, the best validation performance was 0.32438 at
epoch 6 and the correlation coefficients pertaining to the
training data, validation data, test data, and the aggregate
dataset were recorded at 0.99916, 0.96762, 0.94672, and
0.93688, respectively. Notably, the correlation coefficients
across all four sample categories surpassed the benchmark of
0.90, a testament to the commendable tting capacity of the BP-
ANN model for training, validation, and testing samples alike.
In essence, the constructed BP-ANN model manifests potent
predictive potential with regard to the test outcomes.

To optimize the output maximization, the network data
emanating from the RSM-ANN-GA integration was adopted as
the objective function. The quartet of independent variables
was conceptualized as matrix variables, subject to boundary
constraints, as delineated hereaer:

[50; 35; 300; 50] # [X1; X2; X3; X4] # [70; 45; 400; 70]

The optimal extraction parameters, as determined through
the sophisticated amalgamation of RSM-ANN-GA, were delin-
eated as follows: an ethanol concentration of 58.93%, a liquid–
solid ratio of 41.16 mL g−1, an ultrasonic power setting of
350.22 W, and an ultrasonic treatment duration of 58.18
RSC Adv., 2024, 14, 39069–39080 | 39073
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Fig. 5 Training, validation, testing and fit of all data to the BP-ANN simulation output values.
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minutes, culminating in a TFO concentration of 13.7844 mg
g−1. In deference to the practicalities of experimental execution,
these conditions were judiciously rened for the validation
phase, resulting in an ethanol concentration of 59%, a liquid–
solid ratio of 41 mL g−1, an ultrasonic power output of 350 W,
and an ultrasonic treatment interval of 58 minutes.
2.6. Validation experiment

In accordance with the optimal extraction parameters ascer-
tained via RSM and the integrated RSM-ANN-GA approach, a trio
of replicate experiments was meticulously conducted for each
method. Subsequently, the relative errors were computed to
critically assess the predictive efficacy of the respective method-
ologies. As evidenced by the tabulated data in Table 2, the
Table 2 Validation experiments of the optimal extraction conditions by

Method

The optimal extraction conditions

Ethanol concentration
(X1)

Liquid–solid
ratio (X2)

Ultrasonic pow
(X3)

RSM 62 41 350
RSM-ANN-GA 59 41 350

39074 | RSC Adv., 2024, 14, 39069–39080
prediction outcome of the RSM-ANN-GA integration exhibited
a notably reduced relative error, accompanied by a superior
extraction yield compared to the standalone RSM technique.
2.7. Antioxidant activity of TFO

Under physiological homeostasis, the generation and scav-
enging of free radicals within the body maintain a delicate
equilibrium. However, an overabundance of free radicals can
precipitate a redox imbalance, disrupting the organism's
metabolic functions and culminating in the manifestation of
disease states. This perturbation of the body's natural redox
equilibrium, triggered by an excess of free radicals, leads to
oxidative stress, which is implicated in the pathogenesis of
numerous maladies.
RSM and RSM-ANN-GA

Result (TFO)

er Ultrasonic time
(X4) Experiment Predicted RE (%)

59 13.3533 � 0.0241 13.538 −1.36 � 0.18
58 13.6608 � 0.0251 13.7844 −0.90 � 0.18

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Extensive scholarly investigations have unequivocally
demonstrated that an array of antioxidant enzymes inherent in
the human body possess the capability to efficaciously
neutralize free radicals.40–42 However, concomitant with the
progression of chronological age, there ensues a decrement in
the activity of these antioxidant enzymes, thereby attenuating
the organism's prociency in scavenging free radicals. This
decline precipitates an accumulation of free radicals,
a concomitant elevation in the concentration of
malondialdehyde-a marker of oxidative stress-and an exacer-
bation of the extent of oxidative damage inicted upon the
body. Such a cascade of events culminates in the onset and
progression of senescence.43

To ascertain the antioxidant efficacy of TFO, a series of in
vitro assays were meticulously conducted within the ambit of
this investigation. As illustrated in Fig. 6, TFO demonstrated
a pronounced propensity to scavenge DPPH, hydroxyl, and
superoxide anion radicals (DPPHc, cOH and cO2

−, respec-
tively), albeit exhibiting a less pronounced effect compared to
vitamin C (VC) when administered at equivalent
concentrations.
Fig. 6 The antioxidant capacity of TFO in vitro. (A) The scavenging
capacity on DPPH free radical (DPPHc); (B) the scavenging capacity on
hydroxyl free radical (cOH); (C) the scavenging capacity on superoxide
anion free radical (cO2

−).

© 2024 The Author(s). Published by the Royal Society of Chemistry
3 Experimental section
3.1. Materials

Oxalis corniculata, sourced from the Lushan Mountain Nature
Reserve (situated between 115°520 and 116°080 east longitude
and 29°260 to 29°410 north latitude) in Jiangxi Province, was
taxonomically authenticated by Dr Keyue Liu from the School of
Pharmacy and Life Sciences at Jiujiang University, Jiujiang,
China. The plant material underwent a controlled drying
process at 60 °C for a duration of 12 hours (water content less
than 5%), post which it was nely ground and subsequently
sieved through a 40 mesh sieve. Thereaer, the processed herbs
were meticulously stored under cool conditions to preserve
their integrity and pharmacological properties.

3.2. Chemicals and reagents

The 1,1-diphenyl-2-picrylhydrazyl (DPPH) reagent (lot: 8R7RL-
JT, purity > 97%) was acquired from Tokyo Chemical Industry
Development Co., Ltd., based in Shanghai, China. Rutin (lot:
M1013A, purity > 97%) was obtained from Dalian Meilun
Biotech Co., Ltd., headquartered in Dalian, China. For Fourier
transform infrared (FTIR) spectroscopic analysis, potassium
bromide of spectral purity grade was sourced from Tianjin
Kemiou Chemical Reagent Co., Ltd., situated in Tianjin, China.
Ultra-pure water utilized in the experimental procedures was
produced using aMilli-Q purication system. All other chemical
reagents and solvents employed throughout this investigation
were of analytical grade, ensuring the highest quality standards
for accurate and reliable results.

3.3. Experimental design

3.3.1. Quantitative determination of avonoid constitu-
ents in extracted samples. The quantication of avonoids was
achieved through the employment of the NaNO2–Al(NO3)3–
NaOH spectrophotometric assay, with rutin serving as the
standard compound.35 Precisely 30 mg of rutin standard was
accurately weighed and dissolved in 60% ethanol, followed by
heating in a water bath maintained at 38 °C until fully dis-
solved. Upon cooling, the solution was transferred to a 100 mL
volumetric ask and diluted to the mark with 60% ethanol. A
reference solution, with a concentration of 0.3 mg mL−1, was
thus prepared and stored at 4 °C in the refrigerator to ensure
stability and prevent degradation.

With meticulous precision, volumes of 0.8, 1.0, 1.2, 1.4, 1.6,
1.8, and 2.0 milliliters of the rutin standard solution were ali-
quoted. Each aliquot was then supplemented with 0.3 mL of
a 5% sodium nitrite solution, vigorously shaken, and allowed to
rest for a period of 6 minutes. Subsequently, 0.3 mL of a 10%
aluminum nitrate solution was added to each sample, followed
by another round of thorough mixing and a subsequent resting
phase of 6 minutes. Thereaer, 4 mL of a 0.1 mol per L sodium
hydroxide solution was introduced. The solutions were adjusted
to a nal volume of 10 mL with 60% ethanol, shaken rigorously,
and le to equilibrate for a 10 minute interval. Spectral scans in
the UV-VIS range from 400 to 600 nm were performed on the
rutin standard solutions. The absorption peak at 505.2 nm was
RSC Adv., 2024, 14, 39069–39080 | 39075
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selected for quantitative analysis. A linear regression equation
was established by plotting the concentration of the standard
solution (mg mL−1) against the absorbance readings.

The extraction of TFO was facilitated through an ultrasonic-
assisted extraction (UAE) technique. Precisely 1.00 g of the
powdered plant material was weighed and subjected to extrac-
tion with a predetermined volume of ethanol. The mixture was
exposed to ultrasonic agitation for a specied duration, fol-
lowed by ltration to separate the solid residue from the liquid
extract. Ethanol was then added to the ltrate to achieve a xed
volume of 50.00 mL. The total avonoid content of the extract
was assessed following the NaNO2–Al(NO3)3–NaOH colorimetric
assay protocol. The concentration of TFO was subsequently
quantied by applying the linear regression equation derived
from the calibration curve.

3.3.2. Identication and characterization of TFO. The
identication of TFO was conrmed through the magnesium
hydrochloride powder reaction assay. A minute quantity of
magnesium powder was introduced to 5 mL of the extraction
solution, followed by the addition of 5–10 drops of concentrated
hydrochloric acid. The ensuing color alteration was meticu-
lously observed and recorded. A predetermined amount of TFO
was mixed with potassium bromide and scanned within the
wavenumber range from 4000 to 400 cm−1 with 128 scans using
an FTIR spectrometer (VERTEX 70, BRUKER, Germany). The
blank (KBr pellet without test samples) used under the same
settings was reported as reference spectra. The data were pro-
cessed using OPUS 8.2 soware (OPUS Series, BRUKER, Ger-
many) following the collection of all spectra.

3.3.3. Single factor experiment. To comprehensively eval-
uate the inuence of diverse parameters on the yield of TFO,
a series of single-factor experiments were meticulously
designed. The ethanol concentration was varied between 40%
and 80% (in steps of 10%), ultrasonic power was adjusted from
250 to 450 W (in increments of 50 W), the liquid–solid ratio was
altered from 15 to 45 mL g−1 (in steps of 5 mL g−1), and the
ultrasonic time ranged from 30 to 80 minutes (in intervals of 10
minutes).These variables were systematically manipulated to
discern their individual impacts on the extraction efficiency of
TFO.

3.3.4. The RSM modeling. The statistical soware package
Design-Expert 13.0 (Minneapolis, MN, USA) was enlisted to
construct RSM models. Drawing upon the outcomes of prelimi-
nary single-factor experimentation, a Box–Behnken Design (BBD)
was meticulously craed, incorporating four independent vari-
ables and three levels for each variable. The levels of these factors
were coded as −1, 0, and 1, as delineated in Table 1. A compre-
hensive series of 29 experimental trials were executed, the
outcomes of which are tabulated in Table 2. The gathered data
were subjected to quadratic polynomial modeling, yielding
a predictive mathematical equation that elucidates the interac-
tions and effects of the variables on the response:22

Y ¼ b0 þ
Xk

i¼1

bixi þ
Xk¼1

i¼1

i\j

Xk

j¼2

bijxj þ
Xk

i¼2

biixii
2 (1)
39076 | RSC Adv., 2024, 14, 39069–39080
Within the quadratic model equation, the parameters b0, bi, bii,
and bij represent the regression coefficients, where b0 signies the
intercept, bi denotes the linear effect coefficients, bii corresponds to
the squared term coefficients indicating the curvature of the
response surface, and bij represents the interaction effect coeffi-
cients. Here, xi and xj denote the coded levels of the independent
variables that exert inuence over the dependent response variable
Y, while k signies the total number of variables under
consideration.

Analysis of Variance (ANOVA) was employed to scrutinize the
RSM tting model, thereby evaluating the statistical signi-
cance of each constituent term within the model. This rigorous
statistical test facilitated the determination of whether the
variations in the response variable could be attributed to the
independent variables or were simply due to random error.

3.3.5. RSM-ANN-GA modeling. Employing the Neural
Network Toolbox™ integrated within MATLAB R2019a,
a sophisticated ANNmodel was constructed utilizing the Genetic
Algorithm (GA) for optimization. Drawing from the dataset
generated through RSM, the BP-ANN was meticulously trained.
The training regimen involved four critical input variables:
ethanol concentration, liquid–solid ratio, ultrasonic power, and
ultrasonic time. These inputs were directed towards predicting
the output variable, specically the extraction yield of TFO.

Guided by the minimization of the Mean Square Error (MSE)
function, a 4-10-1 neural network model architecture was metic-
ulously designed, as depicted in Fig. 7. In the construction of this
network, the Levenberg–Marquardt algorithm was selected for its
efficiency in minimizing the error. Of the total RSM samples, 70%
(comprising 21 data points) were allocated for the training phase
to teach the network the underlying patterns in the data. An
additional 15% (equivalent to 4 points) were reserved for valida-
tion purposes, ensuring the network's generalizability beyond the
training dataset. Similarly, another 15% (also 4 points) were set
aside for testing the network's performance on unseen data. The
optimal ANNmodel was identied based on the lowest MSE value
and the highest correlation coefficient (R value). GA optimization,
encompassing operations like reproduction, crossover, and
mutation, was subsequently employed to ne-tune the model
parameters for enhanced performance.25

3.3.6. Conrmatory experiment. The samples were accu-
rately weighed, and three parallel experiments were carried out
according to the optimal extraction parameters predicted by
RSM and RSM-ANN-GA. The relative errors of the actual and
predicted extraction rates of TFO were calculated.

With meticulous precision, the samples were weighed, and
a series of triplicate experiments were meticulously executed in
strict adherence to the optimal extraction parameters fore-
casted by both the RSM and the RSM-ANN-GA models. The
discrepancies between the actual extraction yields of TFO and
those predicted by the models were quantied as relative errors,
offering a measure of the models' predictive accuracy.
3.4. Antioxidative study of TFO in vitro

Pursuant to the delineated optimal extraction protocols, the
isolation of TFO was successfully executed. Upon completion of
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Structure diagram of BP neural network model.
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the evaporation process, the concentration of avonoids was
quantied at an impressive 76.8%. The antioxidant potential of
the extracted TFO was subsequently appraised through the
measurement of its ability to scavenge DPPH radicals (DPPHc),
hydroxyl radicals (cOH), and superoxide anions (cO2

−). This
evaluation was contextualized against vitamin C (VC), a widely
recognized antioxidant, which served as the benchmark stan-
dard in assessing the comparative efficacy of TFO's free-radical
scavenging capabilities.

3.4.1. Scavenging effect on DPPHc. Solutions of TFO and
vitamin C (VC) were meticulously prepared across a concentra-
tion gradient of 100, 200, 300, 400 and 500 mg mL−1. These
solutions were then subjected to thorough mixing to ensure
complete homogeneity prior to analysis. A 0.15 mmol L−1

solution of 1,1-diphenyl-2-picrylhydrazyl (DPPH) was concur-
rently prepared using an 80% ethanol solvent. Subsequently,
0.11 mL of the DPPH solution was judiciously combined with
0.01 mL aliquots of each sample concentration, with immediate
mixing to facilitate the onset of the reaction. These mixtures
were allowed to incubate in the dark at room temperature for
a period of thirty minutes to permit the radical scavenging
process to occur. Absorbance readings of each sample were then
acquired at a wavelength of 517 nm utilizing a spectrophotom-
eter, from which the percentage clearance rate was calculated as
a measure of antioxidant capacity:44–46

Scavenging capacity ð%Þ ¼
�
1� A1 � A0

A2 � A3

�
� 100% (2)

A1: the absorbance of DPPH solution mixed with the sample
solution, A0: the absorbance of the sample solution, A2: the
absorbance of DPPH solution, A3: the absorbance of 80%
ethanol solution.
© 2024 The Author(s). Published by the Royal Society of Chemistry
3.4.2. Scavenging effect on cOH. A volumetric pipette was
used to carefully dispense 0.2mL of a 0.75mmol per L o-diazepine
solution into a clean, pre-chilled Eppendorf tube. Subsequently,
0.4 mL of a 0.2 mol per L phosphate buffer solution (PBS),
precisely adjusted to pH 7.40, was added to the aforementioned
solution to maintain optimal pH conditions for the ensuing
reaction. Next, 0.2 mL of a 0.75 mmol per L FeSO4 solution was
introduced to serve as a catalyst in the formation of hydroxyl
radicals via the Fenton reaction. Then, 0.2 mL of the sample
solution, containing TFO or VC at varying concentrations, was
precisely added to the mixture to assess its hydroxyl radical
scavenging capacity. Finally, 0.2 mL of a 0.01% hydrogen peroxide
(H2O2) solution was added to trigger the radical formation. The
entire reaction mixture was then incubated in a water bath at
a temperature of 37 °C for a duration of 60 minutes to ensure
adequate time for the reaction to occur. Following the incubation
period, the absorbance of each sample was accurately measured
at a wavelength of 536 nm using a high-performance spectro-
photometer. The clearance rate was subsequently calculated,
providing a quantitative measure of the antioxidant efficacy of the
tested samples against hydroxyl radicals:47

Scavenging capacity ð%Þ ¼
�
1� A1 � A2

A0

�
� 100% (3)

A1: the absorbance of the sample solution mixed with o-dia-
zepine, FeSO4 and H2O2, A2: the absorbance of the sample
solution with FeSO4 and H2O2, A0: the absorbance of o-dia-
zepine, FeSO4 and H2O2 solution.

3.4.3. Scavenging effect on cO2
−. Precisely measure 1.0 mL

of the sample solution at various concentrations and gently
introduce it into a volumetric ask containing 5.00 mL of
a phosphoric acid buffer solution, accurately adjusted to a pH of
8.2. This mixture was then subjected to a preheating process in
RSC Adv., 2024, 14, 39069–39080 | 39077
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a water bath maintained at a constant temperature of 25 °C for
a duration of 20 minutes, ensuring thermal equilibrium.
Subsequently, 1.0 mL of a preheated pyrogallol solution
(4.50 mmol L−1) was swily added to the mixture, followed by
thorough blending to promote homogeneity. The concoction
was then returned to the water bath, where it was held at 25 °C
for an additional 4 minutes to facilitate the reaction. To
terminate the reaction instantaneously, 1 mL of HCl (8.00 mmol
L−1) was added to the mixture. The absorbance of the solution
was then determined at a wavelength of 320 nm using a spec-
trophotometer of high sensitivity. From these absorbance
values, the clearance rate was calculated, providing a quantita-
tive assessment of the sample's ability to scavenge radicals:48

Scavenging capacity ð%Þ ¼
�
1� A1 � A2

A0

�
� 100% (4)

A1: the absorbance of pyrogallic acid mixed with the sample
solution, A2: the absorbance of the sample solution, A0: the
absorbance of pyrogallic acid.
3.5. Statistical analysis

The outcomes of experiments were articulated as the mean and
standard deviation (mean ± SD). The Design-Expert Soware
13.0 and Neural Network Toolbox™ in MATLAB R2019a were
used for RSM and RSM-ANN-GA analysis, respectively.
4 Conclusions

This comprehensive study aims to optimize the UAE process for
the efficient extraction of TFO. The optimization strategy builds
upon the RSM by further employing ANN and GA to obtain the
optimal process conditions. This method combines the
advantages of RSM, ANN, and GA, not only enhancing the
precision of the extraction parameters but also highlighting the
superiority of the RSM-ANN-GA hybrid model in terms of
predictive accuracy and extraction efficiency.

Additionally, the study delves into the antioxidant properties
of the extracted total avonoids, providing critical insights into
their potential health benets. Through rigorous in vitro testing,
the antioxidant activities of the avonoids were assessed,
revealing their effectiveness in scavenging reactive oxygen
species such as DPPH, hydroxyl, and superoxide anions. This
research not only contributes to the advancement of extraction
techniques but also highlights the therapeutic potential of O.
corniculata as a rich source of natural antioxidants.

In general, in consonance with a plethora of preceding inves-
tigations, the ANN emerges as a remarkably potent mathematical
construct, adept at both optimizing and predicting the intricacies
of the extraction process.25,27,30 This nding underscores the
considerable potential of this methodology for broader applica-
tion within the domain of traditional Chinese medicine, partic-
ularly concerning the extraction of its pharmacologically active
constituents. Given its effectiveness in enhancing process effi-
ciency and predictive accuracy, utilizing articial neural networks
to optimize extraction methods such as enzyme-assisted extrac-
tion (EAE), microwave-assisted extraction (MAE) and deep eutectic
39078 | RSC Adv., 2024, 14, 39069–39080
solvent extraction (DESE) represents a promising avenue for
future research and practical applications.

In recent years, alongside ultrasonic-assisted extraction
(UAE), a variety of innovative extraction techniques including
supercritical uid extraction (SCFE),49 subcritical water extrac-
tion (SWE),50 hot pressurized liquid extraction (HPLE),51

microwave-assisted extraction (MAE),52 high hydrostatic pres-
sure extraction (HHPE),53 pulsed electric eld (PEF) extraction,54

and high-voltage electrical discharge (HVED)55 extraction have
gained prominence in the eld of plant component extraction.
Additionally, hybrid methodologies such as SCFE coupled with
pressurized liquid extraction (SCFE-PLE),56 integration of HHPE
with UAE (HHPE-UAE),57 synergistic application of PEF with
UAE (PEF-UAE),58 and the combination of HVED with UAE
(HVED-UAE)57 have emerged. Therefore, adopting innovative
extraction techniques, particularly utilizing the synergistic
effects of combined methods, and integrating ANN for process
optimization, can help enhance extraction efficiency and
improve the quality of extracted products, making it worthy of
further exploration in future research.
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