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S-Alkylated quinazolin-4(3H)-ones as dual EGFR/
VEGFR-2 kinases inhibitors: design, synthesis,
anticancer evaluation and docking study
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Dual targeting by a single molecule has emerged as a promising strategy for fighting cancer. In this study,
a new set of 2-thioquinazolin-4(3H)-ones as potential anti-cancer surrogates endowed with dual EGFR/
VEGFR-2 kinases inhibitory activities were synthesized. The anti-tumor potency of the newly synthesized
candidates 4-27 was evaluated against a panel of four cancer cell lines. The prepared candidates 4-27
showed comparable activity to that of the standard drug sorafenib. For instance, compound 4 (ICsq =
1.50-5.86 uM) and compound 20 (ICsq = 4.42-6.39 uM) displayed superior potencies against all cell
lines compared to sorafenib (ICsq = 5.47-7.26 uM). Dual EGFR/VEGFR-2 inhibitory activities of the most
active analogues (4, 11, and 20) were investigated. Compound 4 showed comparable EGFR/VEGFR-2
inhibitory activity to the used control drugs. Flow cytometric analysis indicates that the most potent
analogue 4 stopped the cell cycle at the G1 phase and induced 46.53% total apoptosis in HCT-116 cells
that was much more powerful than the untreated cells with 2.15% apoptosis. Molecular docking and
dynamic simulations of 4, 11, and 20 with EGFR and VEGFR-2 were performed to examine the binding
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1. Introduction

Cancer is a fatal illness caused by unchecked cell proliferation.
By 2050, it will be the leading cause of death worldwide,
primarily in low- and middle-income countries (LMIC)."*> Ten
million cancer deaths and 19.3 million new cases were reported
globally in the 2020 Global Cancer Statistics Report.® Over the
past few years, there has been a discernible increase in the
acquired chemotherapeutic resistance of various cancer types.*
These considerations lead to a great demand for and develop-
ment of novel anti-cancer medications that are more active and
selective.®® The discipline of medicinal chemistry relies heavily
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mode and interaction within the enzyme binding pockets.

on the nitrogen-containing heterocyclic scaffold exemplified by
quinazoline.”** Quinazoline heterocyclic compounds exhibit
a variety of biological effects, such as antidiabetic,”® anti-
inflammatory,'*"” anti-cancer activity,"*>* carbonic anhydrase
inhibition,*** and antimalarial® properties.

The tyrosine kinase family member epidermal growth factor
receptor (EGFR) is essential for cell signal transduction, influ-
encing cell proliferation, survival, migration, and
differentiation.**** EGFR is currently overexpressed in many
human cancer cells.**** As a result, the EGFR protein has
emerged as a critical therapeutic target for cancer treatment,
and several EGFR inhibitors have been created.**>* Represen-
tative EGFR inhibitors with considerable EGFR inhibitory
action include Gefitinib (I), Erlotinib (II), Vandetanib (III), and
Afatinib (IV) (Fig. 1).>>*

Angiogenesis, or constructing new blood vessels from pre-
existing ones, is a normal physiological process for most
blood vessel formation during growth and development,
inflammation, and wound healing.** Angiogenesis is a critical
phase in transforming a benign tumor into a malignant tumor
in which new blood vessels penetrate tumor masses, providing
them with oxygen and nutrients to promote tumor development
and metastasis.*>*® As a result, inhibiting angiogenesis could be
a successful technique for slowing tumor growth.
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hydrophobic tail; S: spacer; SA: solubilizing apendage

Fig. 1 The design strategy of our target compounds is guided by previously reported antitumour drugs/agents.

Vascular endothelial growth factor (VEGF) is a crucial
element in angiogenesis, increasing the number of blood
vessels in a given network and driving both healthy and path-
ological angiogenesis.*** VEGF overexpression has been
observed in a variety of cancers, including colorectal cancer,*
hepatocellular carcinoma,*® and breast cancer.’* Endothelial
cells express VEGFR-2, a tyrosine kinase receptor, which has
been shown to play an essential role in tumor angiogenesis
control.>"* As a result, VEGF/VEGFR-2 signaling represents an
appealing therapeutic target in cancer treatment.*®** Repre-
sentative VEGFR-2 inhibitors with considerable EGFR inhibi-
tory action include Sunitinib (V), Sorafenib (VI), Tivozanib (VII)
and Pazopanib (VIII) (Fig. 1).>® As a result, inhibiting VEGFR-2
or down-regulating its signaling is a primary method for
developing novel treatments for various human angiogenesis-
dependent cancers.>®

Based on our earlier findings® and the significance of tyro-
sine kinases as attractive targets for the development of new

26326 | RSC Adv, 2024, 14, 26325-26339

anti-cancer medicines, we chose to introduce new quinazolin-
4(3H)-one derivatives with dual inhibitory effects against EGFR/
VEGFR-2-TK. Molecular hybridization is an appealing and effi-
cient method for generating multi-targeted compounds that
can synergize biological activity and bring significant value to
cancer treatment. Furthermore, the synthesized compounds
were tested for antiproliferative activity against colon, liver,
breast, and lung cancer cell lines expressing EGFR/VEGFR-2.
The most active compounds were evaluated for their ability to
inhibit EGFR/VEGFR-2-TK and cause apoptosis in the HCT116
cell line. Finally, the examined compounds were docked with
their molecular targets to investigate their binding patterns to
the predicted targets.

2. The rationale of design strategy

In an extension of our previous research,* which demonstrated
the potential anti-cancer effects of novel quinazoline chemical

© 2024 The Author(s). Published by the Royal Society of Chemistry
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agents, we designed and synthesised a new series of quinazo-
line-4(3H)-one derivative. The analysis of structure-activity
correlations (SAR) and common pharmacophoric characteris-
tics shared by diverse EGFR/VEGFR-2 antagonists indicated that
the majority of them exhibit four key features, as illustrated in
(Fig. 1).***” These characteristics are as follows: (i) a flat central
heteroaromatic (CHA, grey region) ring system with at least one
H-bond acceptor (the N-atom is favoured, or C=0 group). This
H-bond acceptor binds hydrogen with the catalytic ATP-binding
domain's essential amino acid residue (Cys917).** (ii) A central
hydrophobic aryl ring (hydrophobic group, HG, green region)
that sits between the ATP-binding domain and the DFG
domain.*® This hydrophobic group varies in size between EGFR
and VEGFR-2 known inhibitors. In EGFR-TK, these groups
comprise an aryl group with small lipophilic functionality at the
distal end of this aryl ring. In VEGFR-TK, the hydrophobic group
is composed of 3 parts. Part I is a central aryl spacer (S, cyan
region) between the ATP-binding and DFG domains.*** Part II
is a pharmacophore moiety composed of two groups of an H-
bond acceptor/donor (HBA/HBD, red region) (e.g., urea or
amide). This pharmacophore binds to two critical residues in
the DFG (Asp-Phe-Gly) motif (Glu883 and Asp1044). The NH
motifs of amide or urea moieties often establish two hydrogen
bonds with Glu883, whilst the C=O motif creates another
hydrogen bond with Asp1044.%>° Part III is a terminal hydro-
phobic tail (HT, blue region) that occupies the generated allo-
steric hydrophobic pocket via various hydrophobic contacts.>
Furthermore, the X-ray structural characterisation of numerous
VEGFR-2 inhibitors indicated enough space for different
substituents surrounding the terminal hetero aromatic ring.*>**

Surveying the literature, we found a series of quinazoline-
4(3H)-one derivative that can develop into EGFR/VEGFR-2
inhibitors. Ghorab et al. prepared compound (IX) with N3-
phenyl-quinazoline-4(3H)-one core bearing S-alkylated substit-
uent in 2-position, taking into consideration the required
features of Erlotinib (II). Compound IX was evaluated against
the EGFR tyrosine kinase enzyme with an ICs, value of 58.26
uM. Superimposition of IX and erlotinib showed that the phenyl
ring (hydrophobic tail) of the thioacetamide moiety in
analogues is expected to bind to Lys721 in the back hydro-
phobic pocket similar to the free phenyl ring of Erlotinib (II).**
Wu et al. synthesised compound IX with a longer spacer on the
S-alkylated branch at the 2-position of the same scaffold of
compound (X). This structural change resulted in a 100-fold
boost in EGFR ICs, value. This indicates tolerance of the
increase of bulkiness in this side of these molecule series.® On
the other hand, using the VEGFR-2 as mentioned earlier phar-
macophoric model, Ghorab et al. designed and synthesised
compound (XI) with N3-phenyl-quinazoline-4(3H)-one core with
bulkier S-alkylated substituent in 2-position. The S-substituent
would comprise a spacer, HBA/HBD, and hydrophobic tail,
essential to fill the back pocket for potent VEGFR-2 inhibition.
They obtained XI with VEGFR-2 inhibition ICs, value of 0.46
pM.** Compound (XII)** and compound (XIII)** were syn-
thesised. They showed a dramatic decrease in the binding
affinity to VEGFR-2, which could be attributed to the partial
occupation of the back pocket in the VEGFR-2 active site due to

© 2024 The Author(s). Published by the Royal Society of Chemistry
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smaller S-alkylated substituent in both compounds. Another
compound (XIII) observation is the tolerance of introducing
bulky bromo on the para-position of N3-phenyl of the quina-
zolinone core. This aligned with our previously synthesised
compound (XIV)** by introducing the 4-bromostyryl group at the
2-position of the 4-arylaminoquizoline scaffold. Compound XIV
showed an ICs, value of 0.06 pM concerning VEGFR-2
inhibition.

The goal of our research is to create novel anti-tumour agents
that have the same essential pharmacophoric properties as
previously reported and clinically used EGFR/VEGFR-2 inhibi-
tors while also being molecularly hybridised with efficient anti-
tumour moieties in an attempt to create more potent anti-
tumour compounds. Our molecular design reasoning was
built around bio-isosteric modification techniques of EGFR/
VEGFR-2 inhibitors (IX-XIII) at two different sites (Fig. 1). Due
to the presence of the conventional linker's significant features
(HBA-HBD linker), our modification incorporates the usage of
a quinazolinone core as a central heteroaromatic core, with S-
alkylated moiety chosen for the spacer at the 2-position of the
quinazolinone ring. The first position was the heterocyclic
aromatic ring to explore the para-position of the N3-phenyl ring
on the 2-S-alkylated-3-phenylquinazolin-4(3H)-one scaffold. The
second position was the linker (spacer) region at the 2-mercapto
group on the quinazolinone. The linker was modified to be N-
acylthioacetohydrazide with the nitrogen atoms acting as HBA/
HBD, resulting in high VEGFR-2 potency. The third position was
the terminal hydrophobic tail on the far end of the hydrazide
group. This various aryl group was directed to fill the back
pocket of VEGFR-2 to achieve interaction with Lys721 and gain
the noticed increase in binding affinity as in compound X. The
numerous structural alterations allowed us to investigate the
SAR of these quinazolinone compounds as efficient anti-cancer
drugs with possible dual EGFR/VEGFR-2 inhibitory actions,
which is a critical goal of our research. Fig. 1 depicts and
summarises all modification paths and molecular design
reasoning. Compounds 4-27, which varied like S-alkylated
substituent and para-substituent on the N3-phenyl ring of the
quinazolinone scaffold (Fig. 1), were developed and syn-
thesised. The most effective compounds were tested as EGFR/
VEGFR-2 inhibitors after in vitro cytotoxic activities against
a panel of four cell lines. The influence of the most potent
compound on the cell cycle, its ability to decrease cell migra-
tion, and its apoptotic effect were also investigated. A docking
study was carried out to obtain insight into the molecular
interaction and determine a potential mode of action.

3. Results and discussion

3.1. Chemistry

Synthesis of the target compounds 4-27 is depicted in
Scheme 1. 2-Mercapto-3-arylquinazolin-4(3H)-ones la-c were
synthesized by reaction of anthranilic acid with different aryl
isothiocyanates. Alkylation on the free mercapto group on
compounds la-c was obtained by reaction of quinazolinones
la-c with ethyl bromoacetate using K,CO; in acetone at room
temperature for 8 hours. 2-S-Acetatequinazolin-4(3H)-ones 2a-c

RSC Adv, 2024, 14, 26325-26339 | 26327
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Scheme 1 Synthesis of quinazoline analogues 4—27 with various S-linked fragments.

were further reacted with hydrazine hydrate in ethanol under
reflux conditions to generate the acid hydrazide derivatives 3a-
c. The previously mentioned 1a-c, 2a—-c¢ and 3a-c were synthe-
sized following the detailed procedure in previous literature.
The subsequent reaction of the obtained hydrazides 3a-c with
aryl isocyanates in DMF at 80 °C overnight furnished the final
target 4-27 in 61-76% yield.*"* The chemical structures of all
the final targeted 4-27 were confirmed based on the spectro-
scopic data (IR, 'H-NMR, "*C-NMR, and ASAP-MS). IR analyses
showed the existence of urea functionality by distinct stretching
bands around 1630 and 3300, which match the C=0 and NH
groups, respectively. 'H NMR spectra for the targeted
compounds showed downfield signals of ¢ 8.02-10.14 ppm
corresponding to the urea and hydrazide three exchangeable
NH protons. In addition, *C NMR spectra of the targeted 4-24
showed distinct signals resonating at the range of 6 156.7-
167.6 ppm, which corresponds to the C=O carbon for the urea

group.

4. Biological activities

4.1. In vitro anti-tumor activity and structure-activity
relationship (SAR)

The newly synthesized quinazolinone analogues 4-27 were
tested for in vitro anti-cancer activity utilizing four human
tumour cell lines: normal human lung fibroblast (WI38),
hepatocellular carcinoma (HEPG-2), colorectal carcinoma
(HCT-116), and breast cancer cell lines (MCF-7).”*"* As a refer-
ence control drug, sorafenib was employed. Table 1 summarizes
the data given as ICs, values, denoting the concentration that
produces a net 50% impairment of cell viability. The results
showed that the synthesized compounds had varying inhibitory
effects against the investigated four human tumor cell lines.
The ICs, values against the HEPG-2 cell line demonstrated that
4, 11, and 20 showed remarkable anti-tumor activities with IC5,
values of 3.92, 8.1, and 5.17 uM, respectively. In addition, 6, 12
and 21 displayed moderate activity with ICs, values of 14.15,
19.5 and 11.53 puM, respectively. The anti-tumor activity against
the HCT-116 cell line revealed that 4, 6, 11, 20 and 21 showed
potent binding affinity with ICs, values of 1.50, 7.83, 6.72, 9.52,
4.42 and 2.83 uM, respectively. Moreover, 9 and 17 displayed
moderate anti-tumor activity with ICs, values of 18.66 and 13.5

26328 | RSC Adv, 2024, 14, 26325-26339

uM, respectively. Regarding the HCT-116 cell line, 4 demon-
strated ICs, of 6.59 uM, the best activity against HCT-116 cells
exceeding sorafenib (positive control) (IC5, = 5.47 pM). With the
comparison of ICs, values of our synthesized compounds
against MCF-7 cells, 4, 11, and 20 showed significant inhibitory
activity with IC5, of 5.86, 9.43, and 6.39 pM, respectively.
Furthermore, 6, 12 and 21 showed moderate cytotoxic activities
with ICs, values of 18.18, 12.49, and 10.23 uM. 4, 11, and 20
exhibited anti-tumor solid activities with an ICs, range of 1.5-
8.1 uM.

Anti-tumor activity against the HEPG-2, HCT-116 and MCF-7
cell lines revealed some essential SAR features (Fig. 2). 4,12 and
20 equipped with unsubstituted phenyl group at the distal end
of urea moiety (ICs, values of 1.5-19.5 uM) possessed anti-
tumor activity more than the corresponding congers with
different substituents at the same phenyl ring. 11 with the
benzyl group at the urea group showed a superior inhibitory
activity (ICs, values of 8.10 uM) compared to the substituted Ar
analogues (5-10). The introduction of this methylene spacer
between the urea functionality and the phenyl ring in 11 showed
a 2-4-fold decrease in ICs, value compared to 4. 21 with 4-flu-
orophenyl on the urea group showed comparable activity with
20 as both shared a 4-methoxy group on the distal end of the N3-
phenyl group.

4.2. Invitro cytotoxicity against human normal cell

The safety margin of the newly synthesized quinazolinone
analogues was evaluated by assessing their cytotoxicity on the
WI-38 standard fibroblast cell line to determine if the synthe-
sized derivatives showed preferential cytotoxicity towards tumor
over normal cells (Table 1). Notably, the tested compounds had
decreased cytotoxicity against normal fibroblast cells WI-38, as
indicated by their IC5, values. When compared to sorafenib
(IC50 = 10.65 uM), the most active 4, 11, and 20 have a reduced
damaging effect on WI-38, with ICs, values of 45.61, 54.06, and
42.86 pM, respectively.

4.3. EGFR/VEGFR-2 enzyme inhibition assay

Candidates with the highest anti-cancer activity against the
tested cell lines were chosen to investigate their dose-related

enzymatic inhibition of EGFR/VEGFR-2 further at five

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 In vitro anti-tumor activities (ICsq) of the synthesized 4—27 against lung, liver, colon and breast cancer cell lines compared to sorafenib

2,

N/)\S/\H/NANJ\N.Ar

o H H
427

IC50” (UM)
Comp. no. R Ar WI-38 HEPG-2 HCT-116 MCF-7
4 -CH3; Ph 45.61 + 2.4 3.92 £ 0.2 1.50 = 0.1 5.86 = 0.2
5 4-FPh >100 58.92 £+ 3.4 39.79 £ 2.3 52.49 £ 2.9
6 4-CIPh 66.23 £+ 3.9 14.15 £ 1.2 7.83 + 0.6 18.18 + 1.3
7 4-CH;Ph >100 76.41 + 4.3 69.43 + 3.7 65.99 + 3.7
8 4-OCH;3;Ph 31.83 £2.2 >100 74.56 + 4.1 76.07 £ 3.8
9 2,6-(CH;),Ph 62.19 £ 3.5 53.10 £ 3.0 18.66 + 1.4 25.20 £ 2.0
10 2-Cl-4-CF;Ph 86.85 £ 4.4 49.64 £+ 2.7 44.95 £+ 2.5 38.39 £2.3
11 -Bn 54.06 £+ 3.0 8.10 + 0.6 6.72 + 0.3 9.43 + 0.7
12 -Cl Ph 75.51 £ 4.0 19.50 £+ 1.3 9.52 + 0.8 12.94 + 1.0
13 4-FPh 47.46 £+ 2.6 63.48 £ 3.7 24.83 £ 1.9 32.65 £ 2.2
14 4-ClPh 16.74 + 1.4 29.78 + 1.8 35.01 £ 2.2 36.31 £ 2.3
15 4-CH;3Ph 43.16 = 2.5 68.60 £+ 3.9 67.71 + 3.8 59.49 £ 3.3
16 4-OCH;Ph 17.82 + 1.3 46.60 £ 2.6 51.46 + 2.7 43.75 £ 2.4
17 2,6-(CH3),Ph 89.43 + 4.7 22.38 £ 1.5 13.50 £ 1.1 21.41 £ 1.8
18 2-Cl-4-CF;Ph 84.39 + 4.2 34.59 £ 2.0 28.79 £ 2.1 26.31 £ 1.9
19 -Bn >100 73.49 £ 4.2 79.47 + 4.3 68.07 £ 3.9
20 -OCH; Ph 42.86 £ 2.6 5.17 £ 0.4 4.42 £ 0.2 6.39 £ 0.4
21 4-FPh 27.63 £1.9 11.53 £ 0.9 2.83 + 0.1 10.23 £ 0.9
22 4-CIPh 1548 £ 1.2 3775 £2.1 64.34 £+ 3.5 55.53 £ 3.1
23 4-CH;3Ph 63.88 £ 3.7 41.29 + 2.4 57.12 £+ 3.2 48.68 + 2.6
24 4-OCH;3;Ph 71.38 £ 3.8 >100 >100 93.74 £ 4.7
25 2,6-(CH;),Ph 56.35 + 3.3 83.56 & 4.5 >100 78.32 4+ 4.1
26 2-Cl-4-CF;Ph 30.17 £ 2.1 72.80 £ 4.0 85.24 £+ 4.5 61.92 £ 3.5
27 -Bn >100 87.27 £ 4.6 91.16 £ 4.9 82.75 £ 4.3
Sorafenib — — 10.65 + 0.8 9.18 + 0.6 5.47 £ 0.3 7.26 + 0.3

% ICs, value defines the compound concentration required to achieve 50% inhibition of cancer cell proliferation. Data are shown as the mean of
three independent experiments + SD. ICs,, (UM) values are classified as follows: very strong (1-10 uM), strong (11-20 pM), moderate (21-50
uM), weak (51-100 uM), very weak (100-200 uM), inactive (above 200 pM).

Presence of CHj is favored
for the anticancer activity
than Cl and OCHj;

Introducing unsubstituted phenyl group increases the anticancer activity in the
three series as in compound 4 (R=CHj;) with mean ICs, of 3.76 pM, compound
12 (R= CI) with mean ICs, of 13.98 puM and compound 20 (R=OCH3;) with mean
IC50 of=5.32 }IM.

3,5
N H B Substitution at phenyl group dramatically decreases anticancer activity except
N’ N\.’ J ‘ —> |for 4-Cl substitution (compound 6, R=CHj;) and 4-F substitution (compound 21,
) R=0CH;) that increases the activity aganist HCT-116 cells with IC5,=7.83 and
-- 2.83 uM, respectively.

Replacement of phenyl group with bulky group as benzyl diminshes the activity
except for compound 11 (R=CH3) with mean IC5; of 8.08 pM.

Fig. 2 Summary of structure—activity correlation of target s-alkylated quinazoline-4(3H)-ones 4-27.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table2 Invitro EGFR/VEGFR-2 inhibitory effects of the synthesized 4,
11 and 20 compared to lapatinib and sorafenib

Comp. no. EGFR ICs, (uM) VEGFR-2 ICs, (LM)
4 0.049 + 0.002 0.054 + 0.002

11 0.117 £ 0.005 0.156 £ 0.007

20 0.362 £+ 0.014 0.474 £+ 0.02
Lapatinib 0.059 + 0.002 —

Sorafenib — 0.041 £+ 0.002

Table 3 Effect of 4 on the cell cycle progression in HCT-116 cells
compared to DMSO control

Cell cycle distribution (%)

Comp. no G0-G1 S G2-M
4 55.17 36.18 8.65
Control 43.93 36.53 19.54

different concentrations to determine their ICs, values.****”>
The investigated 4, 11, and 20 had significant EGFR/VEGFR-2
inhibitory activity with ICs, values in the nanomolar range, as

View Article Online
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shown in Table 2. 4 was the most potent analogue for strongly
inhibiting EGFR, with an ICs, of 0.049 uM compared to the
conventional medication lapatinib (ICs, of 0.059 uM). Also, 4
showed the lowest ICs, value (0.054 pM) amongst the tested
analogues regarding VEGFR-2 inhibition (sorafenib has an ICs,
of 0.041 pM). From the obtained results, we could deduce that
the best scenario for this series of a compound is to have 4-
methylphenyl groups at the N3-position of the quinazolinone
core and unsubstituted phenyl on the far end of the urea group
at the 2-position of the quinazolinone scaffold, as in 4. The
introduction of a methylene spacer between the phenyl ring and
the urea group, as in 11, resulted in a 2-3-fold reduction of ICs,
value against EGFR/VEGFR-2, compared to 4. 20 showed the
highest ICs, value against EGFR and VEGFR-2 between the
tested analogues. It showed a 9-10-fold decrease in binding
affinity, reflecting the detrimental effect of the 4-methoxy group
at the para-position on the N3-phenyl moiety.

4.4. Cell cycle analysis

The cell cycle involves a series of events in development and
growth that culminate in DNA replication and cell division.”™
Flow cytometry is used to evaluate cell proliferation at several
cell cycle phases (subG1, G1, S, and G2/M).**’*7® Cell cycle

1200 Diploid 100%
e %DIP G1 55.17%
800 - mam %DIPG2/M  8.65%
n s %DIPS 36.18%
o
E 600 %CV 176
Aggregates : 1.92%
400 Cell debris : 2.46%
200
0 T T T
0 40 80 120 160 200
FL2H

1200 ] Diploid 100%
B %DIP G1 43.93%
800 B %DIP G2/M  19.54%
- I %DIPS 36.53%
o
E 600 %ev 152
] Aggregates : 1.81%
300 Cell debris : 2.04%
200 |
° ' ¥ T T
0 a0 80 120 160 200
FL2H

Fig. 3 Effect of 4 (left panel) and DMSO as a control (right panel) on DNA-ploidy flow cytometric analysis of HCT-116 cells after treatment for

24 h.
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Fig. 4 Compound 4 affects the percentage of annexin V-FITC-positive staining in HCT-116 cells. The cells were treated with DMSO as control
and 4 for 24 hours. Dead (necrotic) cells exist in the Q1 quadrant; late apoptosis is represented in the Q2 quadrant; live cells are shown in the Q3

quadrant; early apoptosis is depicted in the Q4 quadrant.
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Apoptosis (HCT116)

apoptosis/necrosis

B 4 /HCT116
B Cont. HCT116

Total early Late
Apoptosis Necrosis
Apoptosis .
Comp. no Total Early Late Necrosis
4 46.53 26.34 16.5 3.69
Control 2.15 0.62 0.21 1.32

Fig. 5 Total, late and early apoptosis induced by 4 compared to DMSO control.

distribution and apoptosis induction on HCT-116 cells were
investigated using propidium iodide staining, compared to
DMSO as control, to gather additional data about the mecha-
nism of 4 in cancer cell growth inhibition.”” HCT-116 cells were
treated with 4 (using a concentration at the ICs, value for
inhibition of this cell line) for 24 hours before being stained
with propidium iodide (PI) and analyzed using a flow cytometer
(FCM). The results (Table 3 and Fig. 3) demonstrated that 4
treatment resulted in a significant increase in the ratio of HCT-
116 cells in the GO/G1 phase to 55.17% compared to 43.93%
(untreated cells).

4.5. Detection of apoptosis

One of the promising strategies for cancer treatment is
apoptosis targeting and the creation of apoptosis inducers.”””
To measure the proportion of apoptosis produced by 4 in HCT-
116 cells, a double staining flow cytometry test utilising Annexin
V-FITC/propidium iodide was performed. 4 causes early
apoptosis in HCT-116 cells by (26.34%) over control DMSO-
treated cells (0.62%), as depicted in Fig. 4. Furthermore, it
induces late apoptotic by 16.5% compared to untreated control
(0.21%). 4 triggered total apoptosis with 46.53%, higher than
the apoptotic effect in control untreated cells (2.15%). In addi-
tion, 4 showed necrosis by only 3.69% compared to untreated
cells (1.32%) (Fig. 4 and 5).

5. Molecular modeling study

The molecular modeling method explores all 3D structures of
ligands and molecular targets to predict plausible binding
interactions within the putative active site of the protein of

© 2024 The Author(s). Published by the Royal Society of Chemistry

interest and study the molecular properties of the target
compounds.****”®”® This methodology bridges experimental
and theoretical models, thus enabling the design of more
potent compounds.®***

5.1. Molecular docking

5.1.1 Molecular docking studies with the EGFR using 4, 11,
and 20. The docking study of 4, 11, 20, and co-crystallized ligand
(lapatinib) with the EGFR enzyme provides insightful data for
the comparative analysis of these potential inhibitors. Lapatinib
demonstrates a compelling binding profile with a notably high
affinity docking score (—10.69 kcal mol ). Lapatinib, the co-
crystallized inhibitor, showed several interactions, such as
regular hydrogen bonds, extensive hydrophobic contacts, and Pi
interactions, indicating a stable interaction with EGFR (Fig. 6
and Table S17). In the context of interactions of the target
compounds with EGFR, each compound demonstrates unique
binding characteristics that could potentially inform their effi-
cacy as inhibitors, as evidenced by their IC5, values. 4 exhibits
the highest affinity for EGFR among the tested compounds (ICs,
= 0.049 pM). The potent inhibition could be attributed to its
favorable binding energy (—9.58 kcal mol ) and two crucial
hydrogen bonds formed with amino acid residue ASP855,
a residue within the DFG motif essential for ATP binding and
kinase activity (Fig. 6 and Table S1t). The extensive hydrophobic
interactions and the unique Pi-sulfur interaction with the
amino acid residue MET1002 likely contribute to the
compound's high affinity and specificity for EGFR. These
observations suggest that 4 might block the ATP binding site,
function as a competitive inhibitor, and be a promising candi-
date for further drug development.®
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Fig. 6 Visual representation of molecular interactions within the EGFR active site. This 3D model showcases the comparative binding patterns of
investigated 4 (in pink), 11 (in yellow), 20 (in cyan), and reference compound LPB (in metallic hue). Each compound exhibits distinct confor-
mational orientations and interactions within the kinase domain, highlighting their potential differential impacts on EGFR's (PDB: 1xkk) enzymatic
activity and signaling pathways.

11 exhibits slightly less inhibitory activity than 4 (IC5, = —8.80 kcal mol~". The interaction of 11 with CYS797 and the
0.049 puM) with an ICs, of 0.117 uM and demonstrates signifi- DFG motif's ASP855, primarily through hydrogen bonds, is
cant binding affinity, as evidenced by its docking score of noteworthy (Fig. 6 and Table S1t). These interactions and its

Fig. 7 Visual representation of molecular interactions within the VEGFR-2 active site. The 3D model showcases the binding patterns of the
investigated 4 (in pink), 11 (in yellow), 20 (in cyan), and the reference compound SRB (in green). Each compound exhibits unique conformational
orientations and interactions within the kinase domain, highlighting their potential differential impacts on VEGFR-2's enzymatic activity and
signaling pathways (PDB: 3wze). This visual representation offers valuable insights into the compounds’ molecular mechanisms and potential
effects on VEGFR-2 and its associated signaling pathways.
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extensive Pi and hydrophobic interactions could contribute to
its potency as an EGFR inhibitor. Interestingly, the interaction
of 11 with residues in both the N-lobe and C-lobe suggests
a potential influence on the kinase's overall conformation and
activation state, indicating a sophisticated mechanism of inhi-
bition beyond mere competitive ATP blockage.

The least inhibitory 20 (ICs, of 0.362 uM), despite its favor-
able docking score (—8.67 kcal mol™ '), might be the specificity
of interactions within the ATP binding site or the molecular
conformation that accounts for this relative decrease in activity.
The hydrogen bond with ASP855 and multiple hydrophobic
interactions, including those with critical residues like LEU844,
CYS797, and LYS745, suggest a strong affinity for the binding
site (Fig. 6 and Table S1t). Still, the overall orientation and
interactions might not induce the same level of inhibition as
observed with 4 or lapatinib.®

5.1.2 Molecular docking studies with the VEGFR2 using
compounds 4,11, and 20. The docking studies of 4,11, 20, and
sorafenib with the VEGFR2 kinase domain present a profound
understanding of the molecular interaction governing these
compounds' binding affinity and inhibitory potential. Each
compound exhibits a distinct interaction profile with the VEGFR2
active site, correlating somewhat with their biological inhibitory
effect (ICs0s) against VEGFR2. Sorafenib, the reference drug,
showcases the most potent inhibition with an ICs, of 0.041 uM,
supported by its extensive interaction network within the VEGFR2
active site. Essential hydrogen bonds with critical residues like
ASP1046 and GLUS885 and its halogen bonds due to the fluorine
constituent underpin its high affinity and potent inhibitory action
(Fig. 7 and Table S2t). The hydrophobic interactions, especially
within the HYD II region, and its strategic occupation of the ATP
site underscore sorafenib’s mechanism of locking the kinase in
an inactive DFG-out conformation, a commonality it shares with
the test compounds.

The following, 4, has an ICs, of 0.054 uM, which strongly
inhibits VEGFR-2. Its hydrogen bonding with ASP1046 and
GLU885 is reminiscent of Sorafenib’s interaction profile, high-
lighting the significance of these residues in high-affinity
binding. An exciting feature is the sulfur-X interaction,

— EGFR_Apo
— EGFR_Comp4

c v 1 s Ll = Ll o ]
0 20 40 60

Time (ns)
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a unique aspect suggesting an additional avenue for binding
that could be explored for novel inhibitory mechanisms (Fig. 7
and Table S27). Like sorafenib, the hydrophobic interactions of
4 play a crucial role in its stability within the catalytic cleft,
albeit with a different set of residues. This compound's affinity,
although slightly lower than sorafenib, coupled with its unique
binding features, makes it a promising scaffold for further
optimisation.*®

11 exhibits moderate VEGFR2 inhibition with an IC5, of
0.156 puM. Its hydrogen bonds with GLU885 and ASP1046
emphasize the universal importance of these residues in
inhibitor binding. The presence of Pi-alkyl interactions points
towards a reliance on hydrophobic forces for stability within the
active site, a strategy employed by all discussed compounds
(Fig. 7 and Table S2t). However, the reduced number of these
interactions, especially in the HYD regions, may account for its
lower affinity relative to sorafenib and 4.

20, despite its lowest affinity (IC5, of 0.474 uM), demonstrates
a binding profile that combines features observed in sorafenib
and the other compounds. While less extensive, its hydrogen
bonding involves critical residues like GLU885 and ASP1046
(Fig. 7 and Table S27). Furthermore, its Pi-anion and hydrophobic
interactions suggest an attempt to stabilize within the VEGFR2
active site similarly to the higher affinity compounds. The
comparative lack of these interactions, possibly in the ATP or DFG
site, could partially explain its reduced inhibitory potency.

5.2. The Molecular Dynamics Simulation (MDS)

The Molecular Dynamics Simulation (MDS) results and
discussion reveal insightful information about the conforma-
tional dynamics and interactions of EGFR and VEGFR2 with 4.
Analyzing the root mean square deviation (RMSD) for both the
apo (unbound) and 4-bound states of EGFR, a pronounced rise
in RMSD was observed in the initial phase, with the apo form
experiencing a more significant increase than the bound form
and suggesting that 4 may induce structural dynamics or rear-
rangements in EGFR. Towards the end of the simulation, both
states exhibit analogous RMSD values, but fluctuations are
more evident in the apo form. A similar trend is observed in

— VEGFR2_Apo
VEGFR2_Comp4

c v T v | v 1 v 1
40 60 80

Time (ns)

100

Fig.8 Root Mean Square Deviation (RMSD) trends for EGFR and VEGFR2 in its apo form (depicted in red and black, respectively) and when bound
to 4 with EGFR and VEGFR2 (illustrated in blue and green, respectively) over the simulation time. The plot highlights the dynamic conformational

changes of EGFR and VEGFR2 in both states.
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VEGFR2, indicating that 4 introduces variability in the struc-
ture, though the protein-ligand complex remains relatively
stable (Fig. 8).

The Root Mean Square Fluctuation (RMSF) analysis provides
detailed insights into local flexibility. In EGFR, 4 stabilizes
regions near the N-lobe, increasing flexibility in the o-helix C
segment. In VEGFR2, 4 influences hydrophobic regions, the
linker, and the DFG motif, suggesting its potential role as a type
II inhibitor (Fig. S11). The Solvent Accessible Surface Area
(SASA) analysis indicates that 4 binding results in a more
compact conformation for both EGFR and VEGFR2, with
reduced variability in the complex (Fig. S21). The radius of
gyration (Ry) trends also supports the idea of 4 inducing a stable
and compact structure in both receptors (Fig. S37).

The hydrogen bond analysis of 4 with EGFR and VEGFR2
reveals a dynamic interaction with multiple residues, including
those crucial for ATP binding (Fig. S41). 4 exhibits a hybrid
mechanism, interacting with residues associated with type I and
type II inhibitors. The diverse hydrogen bond network, stability,
and relatively high number of hydrogen bonds (H-bonds) suggest
that 4 may have enhanced solubility and could be biologically
relevant. Overall, these findings shed light on the structural
dynamics, flexibility, and interaction mechanisms of EGFR and
VEGFR2 in the presence of 4, providing valuable insights for
understanding the compound's potential therapeutic applications.

6. Conclusions

4-27 are designed and synthesized as novel N3-phenyl-2-S-alky-
lated quinazolinones to explore the fragmented nature at the 2,3-
positions on the quinazolinone core. The biological efficacy of our
synthesized compounds was confirmed through in vitro anti-
tumor efficacy, EGFR/VEGFR-2 inhibition, and apoptotic induc-
tion. 4, 11, and 20 were the most active against HepG-2, HCT-116,
and MCF-7 cancer cell lines with ICs, values of 1.5-9.43 uM,
which was comparable to sorafenib activity (IC5, = 5.4-9.18 uM).
4 showed potent inhibition for EGFR and VEGFR-2, equivalent to
the control drug, with an ICs, value of 0.049 pM and 0.054 pM,
respectively. The most potent analog 4 induced apoptosis in HCT-
116 cancer cells to 46.53% (DMSO-treated cells showed only
2.15%), and the cell cycle ceased at the G1 phase. The anti-tumor
and EGFR/VEGFR-2 inhibitory properties of 4, 11, and 20 were
further explained using molecular docking and dynamic simula-
tion. Molecular Dynamics Simulations revealed that 4 induces
structural dynamics, stabilizes specific regions, and influences
the conformational flexibility of EGFR and VEGFR2, suggesting its
potential as a versatile inhibitor with implications for therapeutic
applications. The prompt information gathered from docking
and dynamic simulation can be utilized for further lead optimi-
zation to design and rationalize novel and more effective
inhibitors.

7. Experimental
7.1. General chemistry

Melting values (°C) are uncorrected and calculated with the
Stuart apparatus (SMP 30). The FT-IR 200 spectrophotometer
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(0 em™) at the Faculty of Pharmacy, Mansoura University,
Egypt, was used to record the IR spectra (KBr). Using TMS as an
internal standard, the "H-NMR (400 MHz) and ">C-NMR (100
MHz) spectra were measured in (DMSO-dg) at the NMR Unit,
Faculty of Pharmacy, Mansoura University, Egypt. At the
Regional Center for Mycology and Biotechnology (RCMB), Al-
Azhar University in Egypt, mass spectra were obtained using
a Thermo Scientific Gas Chromatography-Mass Spectrometry
(GCMS) model L.S.Q. on the direct inlet portion of the mass
analyzer. For a GC/MS analysis, Electron Ionization (EI) was
employed in full scan mode. The mass spectrometer operates
over a mass-to-charge (m/z) range of 40-1000, with an electron
energy set at 70 electron volts (eV). The chemicals and reagents
were bought from commercial sources, including Aldrich
Chemicals Co. in the United States. The essential precursors,
thiols (1a-c), ethyl esters (2a—c), and hydrazides (3a-c), could be
easily prepared according to the previously described literature
procedures.*”"*

7.1.1 Synthetic procedures

General procedure for the synthesis of 3,4-dihydroquinazolin-(2-
yl)thioacetylhydrazinecarboxamides (4-27). A mixture of hydra-
zide derivatives 3a-c (0.2 mmol) and appropriate substituted
phenyl isocyanate (1.1 eq.) in DMF (2 mL) was stirred at 80 °C
overnight. Then, the reaction mixture was poured into ice to
afford precipitates filtered off, washed with water, and recrys-
tallized with ethyl acetate to give target products of 4-27.

2-(2-((4-Ox0-3-(p-tolyl)-3,4-dihydroquinazolin-2-yl)thio)acetyl)-
N-phenylhydrazinecarboxamide (4). White solid (0.065 g,
71%). M.p. 235-237 °C. IR (Vmax cm ™~ Y): 3330, 3280, 2985, 2925,
1700, 1620, 1545, 1260. *"H NMR (400 MHz, DMSO-d,) 6 10.08 (s,
1H), 8.67 (s, 1H), 8.18 (s, 1H), 8.10 (d, / = 7.5 Hz, 1H), 7.85 (d, ] =
7.2 Hz, 1H), 7.68 (d,J = 8.1 Hz, 1H), 7.50 (t,/ = 7.5 Hz, 1H), 7.44-
7.38 (m, 4H), 7.35 (d, ] = 8.3 Hz, 2H), 7.25 (t, ] = 7.8 Hz, 2H), 6.96
(t,J = 7.3 Hz, 1H), 3.99 (s, 2H), 2.43 (s, 3H). *C NMR (100 MHz,
DMSO-dg) 6 167.4,161.2, 157.5, 156.4, 147.6, 140.3, 139.4, 135.3,
133.6, 130.6, 129.6, 128.6, 127.0, 126.7, 126.6, 126.0, 125.7,
120.0, 35.2, 21.1. GC-MS EI m/z (%): 459.28 (M", 20.69).

N-(4-Fluorophenyl)-2-(2-((4-oxo0-3-(p-tolyl)-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide (5).
White solid (0.06 g, 63%). M.p. 235-237 °C. IR (Vmax cm ™~ *): 3335,
3280, 2985, 2925, 1700, 1625, 1545, 1260. *"H NMR (400 MHz,
DMSO-dg) 6 10.07 (s, 1H), 8.72 (s, 1H), 8.21 (s, 1H), 8.09 (d, J =
7.3 Hz, 1H), 7.87-7.83 (m, 1H), 7.67 (d, ] = 7.6 Hz, 1H), 7.51-7.34
(m, 7H), 7.10 (d, J = 8.2 Hz, 2H), 3.99 (s, 2H), 2.43 (s, 3H); °C
NMR (100 MHz, DMSO-d¢) 6 167.5, 161.2, 159.1 (d, Jo_r = 240.0
Hz), 155.8, 147.6, 140.2, 136.2, 135.3, 133.6, 130.6, 129.6, 127.0,
126.7 (d, Jo_p = 12.0 Hz), 126.5, 120.9, 120.0, 115.7 (d, Jo_p = 20.0
Hz), 115.5, 35.1, 21.3. GC-MS EI m/z (%): 477.23 (M", 22.19).

N-(4-Chlorophenyl)-2-(2-({(4-oxo0-3-(p-tolyl)-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide (6).
White solid (0.069 g, 70%). M. p. 239-241 °C. IR (Vpax cm™'):
3340, 3200, 3025, 2920, 1695, 1615, 1550, 1260; "H NMR (400
MHz, DMSO-dg) 6 10.08 (s, 1H), 8.82 (s, 1H), 8.27 (s, 1H), 8.10 (d,
J=8.1Hz, 1H), 7.86 (t, ] = 7.2 Hz, 1H), 7.68 (d, ] = 8.1 Hz, 1H),
7.56 (d, J = 8.4 Hz, 2H), 7.48 (s, 1H), 7.40 (d, J = 8.4 Hz, 2H),
7.39-7.30 (m, 4H), 3.99 (s, 2H), 2.43 (s, 3H); *C NMR (100 MHz,
DMSO-dg) 6 167.5,161.2, 157.4, 156.4, 147.6, 140.2, 139.2, 139.0,
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135.3, 133.6, 130.5, 129.6, 128.9, 127.0, 126.7, 126.5, 125.9,
120.6, 35.1, 21.4. GC-MS EI m/z (%): 493.83 (M", 18.68).
2-(2-((4-Ox0-3-(p-tolyl)-3,4-dihydroquinazolin-2-yl)thio)acetyl)-
N-(p-tolyl)hydrazinecarboxamide (7). White solid (0.068 g,
72%). M.p. 240-242 °C. IR (vmax cm1): 3335, 3200, 3020, 2920,
1690, 1615, 1550, 1260; 'H NMR (400 MHz, DMSO-d;) 6 10.06 (s,
1H), 8.55 (s, 1H), 8.12 (s, 1H), 8.10 (d, J = 7.9 Hz, 1H), 7.85 (t,] =
7.5 Hz, 1H), 7.69 (d,J = 7.9 Hz, 1H), 7.50 (t,] = 7.2 Hz, 1H), 7.38—-
7.21 (m, 6H), 7.06 (d, J = 7.9 Hz, 2H), 3.98 (s, 2H), 2.43 (s, 3H),
2.23 (s, 3H); "*C NMR (100 MHz, DMSO-d,) 6 167.5,161.2, 157.4,
155.7, 147.6, 140.2, 137.3, 135.4, 133.6, 131.3, 130.6, 129.6,
129.5, 127.0, 126.7, 126.6, 120.0, 119.2, 35.0, 21.3, 20.8. GC-MS
EI m/z (%): 473.73 (M", 20.61).
N-(4-Methoxyphenyl)-2-(2-((4-oxo-3-(p-tolyl)-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide (8).
White solid (0.071 g, 72%). M.p. 237-239 °C. IR (Vpax cm ™ ):
3335, 3290, 2985, 2925, 1695, 1620, 1545, 1260; 'H NMR (400
MHz, DMSO-d,) 6 10.04 (s, 1H), 8.49 (s, 1H), 8.12 (s, 1H), 8.10 (d,
J = 8.1 Hz, 1H), 7.85 (t, ] = 7.5 Hz, 1H), 7.67 (d, ] = 8.1 Hz, 1H),
7.50 (t, J = 7.5 Hz, 1H), 7.40 (d, J = 7.9 Hz, 2H), 7.35 (d, ] =
7.9 Hz, 2H), 7.31 (d,J = 8.8 Hz, 2H), 6.84 (d, / = 8.8 Hz, 2H), 3.98
(s, 2H), 3.71 (s, 3H), 2.43 (s, 3H); "*C NMR (100 MHz, DMSO-d)
6 167.5, 161.2, 157.4, 155.9, 155.0, 147.6, 140.2, 135.3, 133.5,
132.9, 130.5, 129.6, 127.0, 126.7, 126.5, 121.0, 120.0, 114.3, 55.6,
35.1, 21.3. GC-MS EI m/z (%): 489.40 (M, 25.69).
N-(2,6-Dimethylphenyl)-2-(2-((4-oxo0-3-(p-tolyl)-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide (9).
White solid (0.063 g, 65%). M.p. 241-243 °C. IR (Vmax cm ™ '):
3320, 3280, 2990, 2925, 1700, 1630, 1545, 1260; *"H NMR (400
MHz, DMSO-de) 6 10.07 (s, 1H), 8.45 (s, 1H), 8.15 (s, 1H), 8.10 (d,
J=7.8 Hz, 1H), 7.86 (t, ] = 7.5 Hz, 1H), 7.20-7.13 (m, 6H), 7.04-
7.00 (m, 2H), 6.63-6.59 (m, 1H), 4.01 (s, 2H), 2.43 (s, 3H), 2.20 (s,
6H); "*C NMR (100 MHz, DMSO-d;) 6 167.6, 161.2, 157.5, 155.6,
147.6, 140.3, 139.7, 138.0, 135.4, 133.6, 130.6, 129.6, 127.0,
126.7, 126.6, 124.1, 120.0, 116.8, 35.1, 21.5, 21.3. GC-MS EI m/z
(%): 487.65 (M", 28.60).
N-(2-Chloro-4-(trifluoromethyl)phenyl)-2-(2-((4-oxo-3-(p-tolyl)-
3,4-dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide (10).
White solid (0.079 g, 71%). M.p. 230-232 °C. IR (Vmax cm ™ '):
3340, 3220, 2980, 2920, 1700, 1620, 1550, 1260; *H NMR (400
MHz, DMSO-de) 6 10.11 (s, 1H), 9.16 (s, 1H), 8.52 (s, 1H), 8.10 (d,
J=7.6 Hz, 1H), 8.05-8.02 (m, 1H), 7.85 (t,/ = 7.3 Hz, 1H), 7.77-
7.73 (m, 1H), 7.68 (d, J = 8.0 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H),
7.50 (t, ] = 7.4 Hz, 1H), 7.41 (d, J = 7.8 Hz, 2H), 7.35 (d, J =
8.0 Hz, 2H), 4.00 (s, 2H), 2.43 (s, 3H); "*C NMR (100 MHz,
DMSO-d;) 6 167.6,161.2, 157.4, 155.6, 147.6, 140.3, 139.7, 135.3,
133.6, 132.4, 130.5, 129.6, 127.0, 126.9, 126.7, 126.5, 124.6,
123.8, 122.9, 121.9, 120.0, 35.0, 21.3. GC-MS EI m/z (%): 561.93
(M", 15.55).
N-Benzyl-2-(2-((4-oxo0-3-(p-tolyl)-3,4-dihydroquinazolin-2-yl)
thio)acetyl)hydrazinecarboxamide (11). White solid (0.072 g,
76%). M.p. 242-244 °C. IR (vmax cm1): 3360, 3220, 2980, 2920,
1695, 1615, 1550, 1260; "H NMR (400 MHz, DMSO-d;) 6 9.99 (s,
1H), 8.06 (d, J = 7.9 Hz, 1H), 8.02 (s, 1H), 7.83 (t,/ = 7.3 Hz, 1H),
7.63 (d, J = 7.9 Hz, 1H), 7.48 (t, /] = 7.3 Hz, 1H), 7.40 (d, J =
7.6 Hz, 2H), 7.36-7.25 (m, 4H), 7.25-7.10 (m, 3H), 6.86-6.82 (m,
1H), 4.16 (d,J = 5.1 Hz, 2H), 3.92 (s, 2H), 2.43 (s, 3H); **C NMR
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(100 MHz, DMSO-d;) 6 167.6, 161.1, 158.5, 157.6, 147.5, 140.7,
140.2, 135.3, 133.5, 130.5, 129.6, 128.5, 127.2, 127.1, 127.1,
127.0, 126.5, 120.0, 42.9, 35.1, 21.3. GC-MS EI m/z (%): 473.23
(M7, 25.75).
2-(2-((3-(4-Chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)
acetyl)-N-phenylhydrazinecarboxamide (12). White solid (0.07 g,
75%). M.p. 239-241 °C. IR (¢max cm ™ *): 3340, 3200, 2985, 2915,
1695, 1625, 1545, 1260; “H NMR (400 MHz, DMSO-d;) 6 10.08 (s,
1H), 8.66 (s, 1H), 8.13 (d,J = 8.1 Hz, 2H), 7.86 (s, 1H), 7.92 (d, ] =
7.6 Hz, 2H), 7.61 (d, J = 7.6 Hz, 2H), 7.51-7.2 (m, 6H), 6.96 (s,
1H), 4.01 (s, 2H); *C NMR (100 MHz, DMSO-dg) 6 167.4, 161.1,
156.7, 155.6, 147.6, 139.9, 135.5, 135.3, 135.1, 131.9, 130.2,
129.1, 127.0, 126.7, 126.6, 122.5, 120.0, 119.1, 35.3. GC-MS EI m/
z (%): 479.63 (M', 22.69).
2-(2-((3-(4-Chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)
acetyl)-N-(4-fluorophenyl)hydrazinecarboxamide (13). White solid
(0.072 g, 72%). M.p. 238-240 °C. LR. (ymax cm'): 3320, 3200,
3020, 2920, 1690, 1615, 1560, 1260; *"H NMR (400 MHz, DMSO-
dg) 6 10.08 (s, 1H), 8.72 (s, 1H), 8.15 (s, 1H), 8.10 (d, J = 7.8 Hz,
1H), 7.85 (t, J = 7.9 Hz, 1H), 7.76-7.38 (m, 8H), 7.10 (d, J =
8.0 Hz, 2H), 4.02 (s, 2H); **C NMR (100 MHz, DMSO-d) 6 167.4,
161.1, 156.8 (d, Jo_r = 242.0 Hz), 155.7, 147.6, 136.2, 135.4,
135.3,135.1, 131.9, 130.2, 127.1, 126.7 (d, Jc_p = 8.0 Hz), 126.6,
121.3,120.2, 116.3, 115.5 (d, Jo_p = 22.0 Hz), 35.1. GC-MS EI m/z
(%): 497.63 (M", 24.09).
N-(4-Chlorophenyl)-2-(2-((3-(4-chlorophenyl)-4-oxo0-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide  (14).
White solid (0.067 g, 65%). M.p. 244-246 °C. IR (Vmax cm ™ '):
3330, 3220, 2985, 2920, 1700, 1615, 1550, 1260; ‘H NMR (400
MHz, DMSO-de) 6 10.09 (s, 1H), 8.83 (s, 1H), 8.29 (s, 1H), 8.10 (d,
J=7.8 Hz, 1H), 7.87 (t,] = 7.9 Hz, 1H), 7.72-7.66 (m, 3H), 7.61-
7.45 (m, 5H), 7.34-7.30 (m, 2H), 4.02 (s, 2H); "*C NMR (100 MHz,
DMSO-d¢) 6 167.4,161.1,156.7, 155.5, 147.6, 139.0, 135.5, 135.3,
135.1, 131.9, 130.2, 128.9, 127.0, 126.7, 126.6, 126.0, 120.6,
120.0, 35.1. GC-MS EI m/z (%): 514.30 (M", 21.61).
2-(2-((3-(4-Chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)
acetyl)-N-(p-tolyl)hydrazinecarboxamide ~ (15). ~White  solid
(0.069 g, 70%). M.p. 242-244 °C. IR (yma cm™'): 3340, 3220,
2985, 2925, 1695, 1615, 1550, 1260; "H NMR (400 MHz, DMSO-
de) 6 10.08 (s, 1H), 8.56 (s, 1H), 8.12 (s, 1H), 8.10 (d, J = 7.8 Hz,
1H), 7.66-7.60 (m, 7H), 7.24-7.16 (m, 4H), 4.02 (s, 2H), 2.24 (s,
3H); "*C NMR (100 MHz, DMSO-d;) 6 167.4, 161.1, 157.3, 155.7,
147.6, 137.3, 135.5, 135.3, 135.1, 132.0, 131.3, 130.3, 129.5,
127.0, 126.7, 126.6, 120.0, 119.1, 35.1, 20.8. GC-MS EI m/z (%):
493.92 (M", 15.22).
2-(2-((3-(4-Chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)
acetyl)-N-(4-methoxyphenyl)hydrazinecarboxamide (16). White
solid (0.075 g, 74%). M.p. 239-241 °C. IR (Ve cm '): 3335,
3200, 3020, 2920, 1700, 1615, 1550, 1260; "H NMR (400 MHz,
DMSO-dg) 6 10.05 (s, 1H), 8.48 (s, 1H), 8.15 (s, 1H), 8.10 (d, ] =
7.8 Hz, 1H), 7.86 (t,] = 7.9 Hz, 1H), 7.69-7.65 (m, 3H), 7.56-7.50
(m, 3H), 7.30 (d, J = 7.4 Hz, 2H), 6.84 (d, ] = 7.7 Hz, 2H), 4.01 (s,
2H), 3.71 (s, 3H); *C NMR (100 MHz, DMSO-d,) 6 167.4, 161.1,
157.7, 155.9, 155.1, 147.6, 135.5, 135.3, 135.1, 133.7, 132.1,
130.2, 127.0, 126.7, 126.6, 121.0, 120.0, 114.3, 55.6, 35.1. GC-MS
EI m/z (%): 509.75 (M, 18.69).
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2-(2-((3-(4-Chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)
acetyl)-N-(2,6-dimethylphenyl)hydrazinecarboxamide (17). White
solid (0.069 g, 68%). M.p. 250-252 °C. IR (Vmax cm *): 3360,
3230, 2985, 2915, 1695, 1620, 1550, 1260; “H NMR (400 MHz,
DMSO-dg) 6 10.07 (s, 1H), 8.45 (s, 1H), 8.15 (s, 1H), 8.10 (d, ] =
7.8 Hz, 1H), 7.86 (t,/ = 7.5 Hz, 1H), 7.69 (d, / = 8.4 Hz, 3H), 7.58-
7.52 (m, 3H), 7.02 (s, 2H), 6.60 (s, 1H), 4.01 (s, 2H), 2.20 (s, 6H);
3C NMR (100 MHz, DMSO-d;) 6 167.4, 161.1, 156.8, 155.6,
147.6, 139.7, 138.0, 135.5, 135.3, 135.1, 131.9, 130.2, 127.1,
127.0, 124.1, 120.0, 116.9, 35.1, 21.5. GC-MS EI m/z (%): 507.89
(M", 19.55).

N-(2-Chloro-4-(trifluoromethyl)phenyl)-2-(2-((3-(4-
chlorophenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)
hydrazinecarboxamide (18). White solid (0.08 g, 69%). M.p. 220-
222 °C. IR (Vmax cm 1)z 3350, 3230, 2985, 2920, 1695, 1620, 1550,
1260; "H NMR (400 MHz, DMSO-dg) 6 10.12 (s, 1H), 9.17 (s, 1H),
8.53 (s, 1H), 8.10 (d, J = 7.4 Hz, 1H), 8.06-8.03 (m, 1H), 7.85 (d, J
= 7.0 Hz, 1H), 7.76-7.72 (m, 1H), 7.73-7.66 (m, 3H), 7.63-7.49
(m, 4H), 4.03 (s, 2H); *C NMR (100 MHz, DMSO-d;) 6 167.4,
161.1, 156.7, 155.7, 147.6, 139.7, 135.4, 135.3, 135.1, 132.4,
131.9, 130.2, 127.2, 127.0, 126.9, 126.8, 126.6, 124.7, 123.9.9,
123.0, 120.0, 35.1. GC-MS EI m/z (%): 582.25 (M", 25.69).

N-Benzyl-2-(2-((3-(4-chlorophenyl)-4-oxo-3,4-dihydroquinazolin-
2-yl)thio)acetyl)hydrazinecarboxamide (19). White solid (0.073 g,
74%). M.p. 247-249 °C. IR (vmayx cm ™~ Y): 3355, 3230, 2985, 2915,
1695, 1620, 1550, 1260; *H NMR (400 MHz, DMSO-dq) 6 10.00 (s,
1H), 8.12-7.99 (m, 2H), 7.84 (s, 1H), 7.69-7.62 (m, 3H), 7.58-7.48
(m, 3H), 7.36-7.16 (m, 5H), 6.83 (s, 1H), 4.17 (s, 2H), 3.95 (s, 2H);
C NMR (100 MHz, DMSO-dg) 6 167.5, 161.0, 158.5, 156.9,
147.5, 140.7, 135.5, 135.3, 135.1, 131.9, 130.2, 128.5, 127.2,
127.1, 127.0, 126.6, 126.5, 119.9, 42.9, 35.1. GC-MS EI m/z (%):
493.76 (M', 26.07).

2-(2-((3-(4-Methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)
thio)acetyl)-N-phenylhydrazinecarboxamide (20). White solid
(0.065 g, 68%). M.p. 220-222 °C. IR (ymax cm '): 3350, 3215,
2990, 2925, 1690, 1620, 1550, 1255; “H NMR (400 MHz, DMSO-
dg) 6 10.06 (s, 1H), 8.65 (s, 1H), 8.12 (s, 1H), 8.10 (d, J = 7.6 Hz,
1H), 7.85 (s, 1H), 7.68 (s, 1H), 7.49 (s, 1H), 7.43-7.66 (m, 4H),
7.26-7.24 (m, 2H), 7.16-7.12 (m, 2H), 6.98-6.64 (m, 1H), 3.99 (s,
2H), 3.86 (s, 3H); *C NMR (100 MHz, DMSO-d¢) 6 167.6, 161.4,
160.7, 155.6, 147.6, 139.9, 135.3, 131.1, 129.1, 128.6, 127.0,
126.7, 126.5, 122.5, 120.0, 119.1, 115.2, 115.1, 55.9, 35.1. GC-MS
EI m/z (%): 475.29 (M", 19.77).

N-(4-Fluorophenyl)-2-(2-((3-(4-methoxyphenyl)-4-oxo0-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide — (21).
White solid (0.074 g, 75%). M.p. 217-219 °C. IR (Vax cm ™ '):
3365, 3220, 2984, 2900, 1690, 1615, 1550, 1258; “H NMR (400
MHz, DMSO-d,) 6 10.05 (s, 1H), 8.70 (s, 1H), 8.19 (s, 1H), 8.09 (d,
J = 6.8 Hz, 1H), 7.84 (s, 1H), 7.66 (d, J = 7.0 Hz, 1H), 7.44-7.38
(m, 4H), 7.18-7.04 (m, 5H), 3.98 (s, 2H), 3.86 (s, 3H); *C NMR
(100 MHz, DMSO-d) 6 167.6, 161.4, 160.6, 157.8 (d, Jo_p = 237.0
Hz), 155.8, 147.6, 136.2, 135.3, 131.1, 128.6, 127.0, 126.7 (d, Jo_r
=12.0 Hz), 126.5, 121.0, 120.0, 115.7 (d, Jo_r = 22.0 Hz), 115.5,
115.2, 559, 35.1. GC-MS EI m/z (%): 493.33 (M*, 26.09).

N-(4-Chlorophenyl)-2-(2-((3-(4-methoxyphenyl)-4-oxo-3,4-

dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide — (22).
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White solid (0.065 g, 64%). M.p. 230-232 °C. IR (Vmax cm ™ '):
3350, 3220, 2984, 2910, 1700, 1615, 1550, 1260; ‘H NMR (400
MHz, DMSO-d,) 6 10.07 (s, 1H), 8.82 (s, 1H), 8.26 (s, 1H), 8.09 (d,
J=7.6 Hz, 1H), 7.85 (t,J = 7.1 Hz, 1H), 7.67 (d, ] = 7.9 Hz, 1H),
7.53-7.43 (m, 3H), 7.39 (d, J = 8.4 Hz, 2H), 7.30 (d, J = 8.4 Hz,
2H), 7.13 (d, J = 8.4 Hz, 2H), 3.98 (s, 2H), 3.86 (s, 3H); "*C NMR
(100 MHz, DMSO-dq) 6 167.6, 161.4, 160.7, 157.8, 155.6, 147.6,
138.9, 135.3, 131.1, 128.9, 128.6, 127.0, 126.7, 126.5, 126.1,
120.6, 120.0, 115.2, 55.9, 35.1. GC-MS EI m/z (%): 509.92 (M,
25.88).
2-(2-((3-(4-Methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)

thio)acetyl)-N-(p-tolyl)hydrazinecarboxamide (23). White solid
(0.071 g, 72%). M.p. 225-227 °C. IR (Vmax cm ™ *): 3355, 3220,
2984, 2900, 1690, 1615, 1550, 1258; *"H NMR (400 MHz, DMSO-
de) 6 10.05 (s, 1H), 8.54 (s, 1H), 8.10 (d, J = 8.7 Hz, 2H), 7.85 (t, ]
= 7.4 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H), 7.49 (t, ] = 7.4 Hz, 1H),
7.39 (d, J = 8.4 Hz, 2H), 7.29 (d, J = 7.9 Hz, 2H), 7.13 (d, ] =
8.4 Hz, 2H), 7.05 (d, J = 7.9 Hz, 2H), 3.98 (s, 2H), 3.86 (s, 3H),
2.23 (s, 3H); "*C NMR (100 MHz, DMSO-dg) 6 167.6,161.4, 160.7,
157.8, 155.7, 147.6, 137.3, 135.3, 131.1, 129.5, 129.4, 128.7,
128.6, 127.0, 126.7, 126.5, 119.2, 115.2, 55.9, 35.1, 20.8. GC-MS
EI m/z (%): 489.36 (M, 28.62).

N-(4-Methoxyphenyl)-2-(2-((3-(4-methoxyphenyl)-4-oxo0-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide  (24).
White solid (0.075 g, 74%). M.p. 220-222 °C. IR (Vax cm™):
3340, 3215, 2990, 2925, 1695, 1620, 1550, 1250; "H NMR (400
MHz, DMSO-dg) 6 10.02 (s, 1H), 8.47 (s, 1H), 8.12 (s, 1H), 8.09 (d,
J=7.9 Hz, 1H), 7.84 (t, ] = 7.1 Hz, 1H), 7.67 (d, J = 8.0 Hz, 1H),
7.49 (t, ] = 7.2 Hz, 1H), 7.39 (d, J = 8.3 Hz, 2H), 7.30 (d, J =
8.5 Hz, 2H), 7.13 (d, ] = 8.3 Hz, 2H), 6.84 (d, J = 8.5 Hz, 2H), 3.98
(s, 2H), 3.86 (s, 3H), 3.71 (s, 3H); "*C NMR (100 MHz, DMSO-dj)
6 167.5, 161.6, 160.7, 157.9, 155.9, 155.1, 147.6, 135.3, 132.9,
131.1,128.6, 127.1, 126.7, 126.5, 121.0, 120.0, 115.2, 114.3, 55.9,
55.6, 35.1. GC-MS EI m/z (%): 505.50 (M", 24.65).

N-(2,6-Dimethylphenyl)-2-(2-((3-(4-methoxyphenyl)-4-oxo-3,4-
dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide  (25).
White solid (0.074 g, 73%). M.p. 219-221 °C. IR (Vjay cm '):
3350, 3215, 2990, 2925, 1690, 1620, 1550, 1255; 'H NMR (400
MHz, DMSO-d) 6 10.05 (s, 1H), 8.42 (s, 1H), 8.19-8.05 (m, 2H),
7.84 (t,J=7.3 Hz, 1H), 7.68 (d,] = 7.9 Hz, 1H), 7.49 (t,] = 7.3 Hz,
1H), 7.39 (d,J = 8.5 Hz, 2H), 7.13 (d,J = 8.5 Hz, 2H), 7.00 (s, 2H),
6.60 (s, 1H), 3.97 (s, 2H), 3.86 (s, 3H), 2.21 (s, 6H); ">*C NMR (100
MHz, DMSO-dq) 6 167.6, 161.4, 160.7, 157.9, 155.6, 147.6, 139.6,
138.0, 135.3, 131.1, 128.6, 127.0, 126.7, 126.6, 124.1, 120.0,
116.9, 115.4, 55.9, 35.1, 21.5. GC-MS EI m/z (%): 503.44 (M,
23.55).

N-(2-Chloro-4-(trifluoromethyl)phenyl)-2-(2-((3-(4-
methoxyphenyl)-4-oxo-3,4-dihydroquinazolin-2-yl)thio)acetyl)
hydrazinecarboxamide (26). White solid (0.08 g, 69%). M.p. 228-
230 °C. IR (vax cm): 3360, 3220, 2984, 2910, 1700, 1615, 1550,
1258; *H NMR (400 MHz, DMSO-d;) 6 10.09 (s, 1H), 9.15 (s, 1H),
8.49 (s, 1H), 8.09 (d, J = 7.7 Hz, 1H), 8.03 (s, 1H), 7.84 (t, ] =
7.3 Hz, 1H), 7.75-7.66 (m, 2H), 7.59 (d, J = 8.5 Hz, 1H), 7.49 (t, ]
= 7.0 Hz, 1H), 7.38 (d, J = 8.3 Hz, 2H), 7.13 (d, J = 8.3 Hz, 2H),
3.99 (s, 2H), 3.86 (s, 3H); ">*C NMR (100 MHz, DMSO-d,) 6 167.7,
161.4, 160.7, 157.8, 155.6, 147.6, 139.6, 135.3, 132.4, 131.1,
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128.6, 127.1, 126.7, 126.5, 124.6, 123.9, 123.0, 121.9, 120.0,
117.8, 115.2, 55.9, 35.1. GC-MS EI m/z (%): 577.85 (M", 24.29).
N-Benzyl-2-(2-((3-(4-methoxyphenyl)-4-0xo-3,4-

dihydroquinazolin-2-yl)thio)acetyl)hydrazinecarboxamide  (27).
White solid (0.06 g, 61%). M.p. 225-227 °C. IR (yyax cm™ '): 'H
NMR (400 MHz, DMSO-dg) 6 9.99 (s, 1H), 8.06 (d, ] = 7.9 Hz, 1H),
8.02 (s, 1H), 7.83 (t,/ = 7.3 Hz, 1H), 7.63 (d,J = 8.0 Hz, 1H), 7.48
(t,J = 7.2 Hz, 1H), 7.36-7.25 (m, 2H), 7.25-7.10 (m, 3H), 7.18 (d,
J = 8.3 Hz, 2H), 6.97 (d, J = 8.3 Hz, 2H), 6.83 (s, 1H), 4.16 (d, ] =
5.1 Hz, 2H), 3.92 (s, 2H), 3.86 (s, 3H); >*C NMR (100 MHz,
DMSO-dg) 6 167.6, 161.1, 158.5, 157.6, 155.8, 147.5, 140.2, 135.3,
133.5, 130.5, 128.8, 127.2, 127.1, 127.0, 126.5, 125.0, 120.0,
114.5, 42.9, 55.9, 35.1. GC-MS EI m/z (%): 489.53 (M", 28.68).

7.2. Biological assays

7.2.1 Anti-tumor screening. The in vitro evaluation for the
anti-tumour activity of the synthesized quinazolinone
analogues was carried out using MTT assay according to the
previously reported method.”®”*

7.2.2 In vitro EGFR/VEGFR-2 kinase inhibition assay. The
EGFR/VEGFR-2 enzyme assay was done following the steps
described in the previous report.”>”>

7.2.3 Flow cytometry analysis of the cell cycle distribution.
According to our previous report, cell cycle analysis was done
using a FACSCalibur flow cytometer on the HCT-116 cell lines
stained with propidium iodide (PI).”*"*

7.2.4 Analysis of cellular apoptosis. Apoptosis induction
was carried out using the HCT-116 cell lines, and the Annexin 5-
FITC/PI detection kit was used similarly to the previously re-
ported procedure.”>”?

7.3. Molecular modeling

7.3.1 Molecular docking procedure. Crystallographic data
of the protein structures were sourced from the RCSB Protein
Databank for VEGFR2, which complexed with Sorafenib, and
(PDB code 3wze) and EGFR, which was complexed with Lapa-
tinib (PDB code 1XKK). The molecular docking details of 4, 11,
and 20 are presented in the ESL{

7.3.2 Molecular Dynamics (MD) methodology. The binding
configurations of 4, showcasing strong affinity towards both
EGFR and VEGFR2, underwent MD analysis. Molecular
Dynamic simulation methods are shown in detail in the ESL{

7.4. Statistical analysis

The obtained data were plotted and analyzed to determine the
IC5, values of the tested compounds using nonlinear regression
with a variable slope. ICs, values were calculated based on the
mean and standard deviation (SD) for each concentration. All
analyses were performed using GraphPad Prism version 9.0
(GraphPad Software, San Diego, CA, USA).

Data availability
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