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P2-type layered materials (Na,TMO,) have become attractive cathode electrodes owing to their high
theoretical energy density and simple preparation. However, they still face severe phase transition and
low conductivity. Current research on Na,TMO, is mostly focused on the modification of bulk materials,
and the application performances have been infrequently addressed. This review summarizes the
materials and discusses their

information on current common P2-Na,TMO, sodium-storage
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Accepted 19th July 2024 mechanisms. Furthermore, modification strategies to improve their performance are addressed for

practical applications based on a range of key parameters (output voltage, specific capacity, and

DOI: 10.1039/d4ra04790g lifespan). We also discuss the future development trends and application prospects for P2 cathode
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1. Introduction

To date, lithium-ion batteries (LIBs) have been extensively
developed and applied in many areas, thus playing a key role in
supporting the development of society. However, the low
abundance (20 ppm), difficult exploitation and low recovery
rates of lithium resources limit LIBs from meeting the
requirements of wearable equipment, electric cars (ECs), smart
grids and plant-scale energy-storage devices. SIBs have emerged
as an alternative and have attracted widespread attention owing
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to the abundance of Na resources. SIBs are expected to replace
LIBs in many fields, and research on them is growing rapidly.

Cathode materials profoundly affect the prime costs and
capability of SIBs; therefore, researching and developing low-
cost and long-life cathode materials is crucial for the develop-
ment of SIBs. Such cathode materials include layered transition
metal oxides (LTMOs)," ™ tunnel-type oxides,**** iron-fluorine-
based Prussian blue analogues (PBAs)>'**'*° and polyanionic
compounds.’®*** Among these, LTMOs have a higher specific
capacity and energy density (Table 1).

Layered Na,TMO, (Co, Fe, Mn, Ni, Ti, and Cr) is an embedded
or intercalated compound. Delmas et al first proposed the
arrangement of Na' between TMO layers and divided it into P
phase and O phase.*® As shown in Fig. 1, the number following O
or P represents the stacking arrangement of oxygen elements,
where Na' in P-phase Na,TMO, occupies the triangular prism
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Table 1 Comparison of some selected cathodes
1st capacity

Materials Voltage (V) (mAhg™ Lifespan (%@cycles) Ref.
Nay ,Nig 33M1g 6,0, 2.5-4.35 150 90%@100 41
Nay.44MnO, 2.0-3.8 113 82.3% @200 42
Na,Mn[Fe(CN)g] 2.0-4.2 154 43.2% @100 43
Na,V,(PO,); 2.3-4.1 85.6 65.5%@100 44
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Fig. 1 Classification of Na-TM-0O electrodes with TMOg-octahedra
and phase transformation. Adapted with permission from ref. 46,
Copyright {2014} American Chemical Society.*¢

gap position, while Na" in O-phase Na,TMO, occupies the octa-
hedral gap position between TMOg layers.*® Compared with other
materials, P2 layered materials have a higher discharge
capacity,””*® better cycling stability, and superior ionic conduc-
tivity at low Na® concentrations.*** Na,TMO, is commonly
prepared via solid-phase, sol-gel and hydrothermal methods.
The most common method is the high-temperature solid-phase
method, through which powder particles are prepared without
agglomeration via a good filling and simple preparation process.
However, the powder is not fine enough and is easily mixed with
impurities. When constructing the P2 phase, this may cause
a slippage of the layer interface. Compared to the solid-phase
method, the sol-gel method allows for an easier chemical reac-
tion and requires a lower synthesis temperature. Further,
homogeneous mixing between reactant molecules during the
formation of a gel leads to the better air stability of Na,TMO,. The
hydrothermal method is less common as it requires higher
humidity, temperature and pressure. However, it yields a product
with high purity, which is favorable for the cyclic stability of
Na, TMO,. In operation, Ni-based P2 phase cathodes have a Ni*'/
Ni** redox couple with high voltage plateaus, such as P2-Na,;Niy,
3Mn,;30, with an average voltage of 3.6 V. Besides, an unfavor-
able P2-O2 phase transition will occur at a 4.22 V high voltage,

24798 | RSC Adv, 2024, 14, 24797-24814

which can lead to volume shrinkage and particle cracks appear-
ing during repeated cycling. Electrochemically active (Co** and
Fe’™) and inactive (Li*/Zn>*/Mg>*/AI**/Ti"") cationic substitutions
have been adopted to tackle these issues. This paper summarizes
the information on P2-Na,TMO, and the modification of such
materials containing unitary, binary, ternary, and multi-
components, with an aim to outline and clarify the current
research and look forward to their further development trends
and future prospects (Fig. 2).

2 Progress of P2-type materials
2.1 Unitary Na,TMO,

Initially, researchers studied single transition metal oxide
cathode materials, such as NaCo0O,,*** NaCr0O,,***” and
NaNiO,,***® drawing on such cathode materials that are widely
used in LIBs (LiC00,,**" LiCrO,,** and LiNiO,,*** etc.). Because
of the larger radius of sodium ions (Na': Li" = 108:76 pm), Na"
diffusion is harder and can result in structure collapse. There-
fore, designing a more suitable structure (e.g., larger lattice
parameters) for Na* (de)intercalation would be desirable.*®
P2-type Na,CoO, is endowed with a simple structure and
competitive capacity.” More importantly, compared to
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Fig. 2 Schematic of the modification strategies for P2-Na,TMO,
cathode materials for SIBs.
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commercial LiCoO,, the Na" diffusion (Dy,') for the Na,CoO,
electrode (0.5-1.5 x 10~ " em™ s ") is better than Li" diffusion in
the LiCo0, electrode (1 x 10~ '" cm™> s").%® Therefore, increasing
Dna' in this type of material has become a research hotspot.
Microspherical P2-Na,CoO, (S-NCO) possesses an inferior specific
surface (~2.82 m*> g~') area and layered structure,” and also
exhibits competitive electrochemical stability (82.2 mA h g~ ' @300
cycles@720 mA g~ ). For obtaining single-phase domains in P2-
NaCrO,, Gan et al. constructed Na" vacancy ordering by a deiodi-
nation method, demonstrating the system's multiple voltage
mechanism.” They also proved that structural relaxation as well as
electron transfer were responsible for the de-anodization energy.
Na,MnO, materials possess the great advantage of the high
abundance of sodium resources. Recently, Zuo's team designed an
efficient water-mediated system to synthesize P2-Nagys,MnO, (S-
NMO) with a shale structure (Fig. 3),”* and reported it could
regulate the Dy," effectively. Further, the SNMO electrodes dis-
played high cycling (>3000 cycles) and rate capabilities
(100 mA h g '@960 mA g ); proving that the superior Dy, has
a great influence on the performances of electrodes.

= B

Clearing NaHCO, & Dehydration

Hydration

Nag;MnO, S-NMO

Fig. 3 Synthetic route for preparing S-NMO. Adapted with permission
from ref. 71, Copyright {2021} Springer Nature.
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2.2 Binary Na,TMO,

To address the problems of unitary Na,TMO, (e.g., inferior
cycling, poor structural stability, unsatisfactory specific
capacity),”” doping a new TM ion to construct a binary-TM system
is an effective strategy. The resulting synergistic effect of the ions
can improve the electrochemical/structural stabilities.”® The Ni**/
Ni** redox couple can provide a higher working voltage. However,
P2-Nay 67Nip 33Mny 6,0, usually exhibits disappointing cycle/rate
abilities, because of drastic phase transformation and its
vulnerable Dy,".”* When charged to 4.2 V, Na, ¢,Nij ;3Mn ¢,0,
can undergo P2 — 02 phase transition, which could be observed
by the appearance of a new (002') diffraction peak in the XRD
analysis (Fig. 4a).”® For P2-Nay4,Nip33Mng6,0,, Yang's group
systematically studied the optimal synthesis parameters via
orthogonal experiments,”” and reported that an excess Na content
(3%) is able to effectively improve the capacity (159.3 mA h g™ %).
Another research study found that the cut-off voltage (up to 4.5V
or low to 1.5 V) could influence the P2—02 transition and Mn**/
Mn®" redox reaction.”® Yet another study reported a one-pot
method to obtain porous P2-Nay ¢,Nig 33Mng 6,0, microcuboids
with the {010} plane exposed,”” which exhibited good perfor-
mance (94.6%@1500 cycles@850 mA g~ *). Moreover, it was also
reported that the design of porous hierarchical P2-Na,;;Ni;;;Mn,,
30, nanofibers could primarily stabilize the structure as well as
stimulate electrochemical reactions,® thereby facilitating superb
rate abilities (73.4 and 166.7 mA h g ~' at 3.4 and 17 mA g ',
respectively) and significantly improved cycling performance
(81%@500 cycles). The highly reversible changes in the structure
and Ni/Mn redox during cycling were studied by in situ XRD and
XPS, and it was found that the improved capacity was derived
from the Ni>"** as well as Mn*"?" redox reactions (1.5-4.0 V).
Since nickel and cobalt are relatively expensive and toxic, the
use of these elements is not conducive to reducing battery costs
or for the application of such batteries for large-scale energy
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(a) Ex situ XRD of Nag 67Nig 33MNg 670> in the initial cycle.” (b) Calculated lattice parameters from in situ XRD; (c) GITT and Dy," of P2-

Nap 67MnO; and P2-Nag 67;Cug 1Mng ¢O; electrodes; (d) ex situ XPS of P2-Nag ¢7Cug 1Mng 9O, electrodes in pristine, fully charged and discharged
states. Adapted with permission from ref. 76, Copyright {2021} American Chemical Society.
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storage. Therefore, Chen's group first investigated the cheap
and non-toxic Cu®>*/Cu®" redox couple as an alternative with
good electrochemical activity.** They synthesized P2-Nag gg-
Cuy 3sMny 660, by a solid-state method, which showed an initial
specific capacity of 74.5 mA h g ~'. Although the specific
capacity of this material was slightly low, their work was
significant for motivating the exploration of other low-cost and
high-specific-capacity cathode materials; for instance, in
another study, Nag¢,Cuo1Mn, 0, was reported to be able to
deliver a high capacity of 222.7 mA h ¢ '@10 mA g~ '@1.5-
4.5V, and 76% capacity retention @1 A g~ @300 cycles.” Here,
it was reported that the doping of Cu®" could inhibit the
consecutive structural transformation and alleviate Jahn-Teller
distortion (Fig. 4b-d), thus improving the whole electro-
chemical performance. This strategy provides a new idea for the
development of P2-Na,TMO, materials with structural stability
and high energy density.
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2.3 Ternary and multi Na,TMO,

As a typical P2-type layered structure material, Nag¢,;Nig33-
Mny 6,0, (NNMO) has the advantages of a high theoretical
specific capacity (173 mA h g ") and working voltage. However,
when charged to 4.2 V, the existence of P2-O3 transition leads to
volume changes, resulting in a poor cycle stability.** Pahari and
coworkers synthesized P2-Nag ¢,Nip 17Tip.16MNg 6,0, via a solid-
state reaction method, and reported an initial excellent
discharge capacitance (167 mAh g '@16 mA g ') at 3.7 V.% Also,
Nay ¢,Fey sMn, 3C00 40,(NFMC) displayed an excellent cycling
performance (retaining 85.5%@100 cycles@160 mA g~ '), and
high rate capabilities (136.7 and 81.1 mA h g ' at 34 and
850 mA g ').* The NFMC cathode delivered higher voltage
plateaus (3.3 V) than that for NFM (2.7 V) as noted through
comparing the charge-discharge curves (Fig. 5a). Further, the
polarization of the NFMC electrode was greatly decreased (Fig. 5b
and c) as the Co substitution increased the Dy," in the structure.
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Fig. 5 (a) charge—discharge curves of NFM and NFMCO.4 at 1C. CV curves of (b) NFM and (c) NFMCO0.4 at 0.1 mV s~ Adapted with permission
from ref. 84, Copyright {2018} Elsevier B.V. (d) Powder XRD Rietveld refinement pattern; (e) SEM pattern; (f) HRTEM image, and (qg) in situ XRD at
first charge/discharge of P2-NRM at 0.2C. (h) GITT results and the Dy, * coefficient of the NRM material in the first cycle. Adapted with permission

from ref. 85, Copyright {2020} American Chemical Society.
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In addition, this study revealed that Co substitution could not
only effectively enhance the electronic conductivity, but also
relieve the polarization of the electrode to some extent.*®

The electrical performance of NNMO could be effectively
promoted to a new and higher level by the co-substitution of two
or more transition metals. Compared with NNMO, Cu/Mo co-
substituted P2-type Nag ¢,Nig.33Mng 5,CU0.05sM0g 050, could
effectively inhibit the P2/0O2 phase transition, leading to an
improvement in the electrochemical performance
(142 mA h g7'@2-4.5 V@34 mA g '@91.5% capacity reten-
tion).*” Peng et al. synthesized [Nay ;200 05|Nip 15CU01MnNg 6,0,
by doping Cu' at the transition metal site (2a) and the
uncommon Zn" at the Na site (2d), achieving stable cycling and
moisture resistance for the first time.* Significantly, in situ XRD
characterization, and measurements of the charge-transfer
kinetics and ion diffusion, as well as microstructural analyses
after deep cycling, indicated that the specific two-site doping
method could successfully reduce the activation energy of Dy,"
in the bulk material, and suppress the formation of O, at the
end of charging. Doping Zn" at the Na site could effectively
reduce d(o-na-0) and enhance the ‘pillar’ effect of 0> -Zn*'-0>~
electrostatic cohesion, thus strengthening the layered cathode
structure, and inhibiting the generation of cracks, leading to
a superior cycle stability and excellent rate performance. P2-
Nay 75Niy3Ruy6Mn;,0,(NRM) presented a gratifying capacity
(161.5 mA h g "), and excellent cyclic performance (79.5%@500
cycles@10C).* The XRD (Fig. 5d) and HRTEM (Fig. 5f) analyses
indicated that the material had a layered hexagonal structure of
pure P2. As shown in Fig. 5e, NRM particles with diameters in
the range of 1-2 um were uniformly distributed. It could be seen
that the (002) and (004) peaks returned to their original posi-
tions (Fig. 5g) after the first charging and discharging cycle,
indicating the good cycle performance. The maximum diffusion
coefficient of Na* was 2.05 x 107'° em® s™" (Fig. 5h), which is
higher than that of most P2 materials reported previously,*®
revealing its faster (de)sodiation process and superior rate
performance. A comparison of unitary, binary, and multi Na,-
TMO, is given in Table 2.

3 Problems and optimization of P2-
structured materials

3.1 Problems with P2-structured materials

View Article Online
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Na', there are obvious kinetic barriers in the migration process
and possible effects of structural collapse during the
deintercalation/intercalation process, resulting in a poor rate
performance and rapid capacity fading in cycling. Besides, the
majority of P2-phase materials produce phase transformation
when they are charged above 4.2 V, resulting in structural and
volume changes.*® For example, for the P2-Na, ¢;Nig 33Mng 6,0,
(P2-NNMO) material, Wang et al. found that the main reason for
the performance decay was the repeated P2-O2 transitions,
which produced an outstanding density of intracrystalline
cracks, ultimately destroying the primary grains.”

3.2 Lattice doping

Currently, lattice doping can address structural changes by sup-
pressing phase transitions.”*! For example, Li' doping can
improve the Na-storage capacity of cathode materials.'® For
instance, Wang et al. engineered large-sized K" into the prismatic
Na' sites of P2-Nag 415K 056MNO,, resulting in more favorable
Na' vacancies,'® which exhibited the highest specific capacity
(240.5 mA h g '@20 mA g ') and energy density (654 W h kg™ )
based on the redox of Mn**/Mn**. Cheng’s group reported an Al-
doped P2-type Na,¢Nip3Mn, ;0, cathode material and investi-
gated the corresponding charge-compensation mechanism.'**
Compared to Na, ¢NiysMn, ;0,, Al doping facilitated the revers-
ible oxygen redox reaction through the reductive coupling reac-
tion between the lone O 2p state in the localized configuration of
Na-O-Al and Ni*". In addition, aluminum doping increased the
interlayer spacing and suppressed the disadvantageous P2 — 02
transition during the deiodination/iodination process, which
greatly improved the cycling and rate performances. The Nag ;-
Nij 31Mnyg 67Y0.020, material synthesized by Kim et al. was found
to have strong Y-O bonding, leading to a very stable structure.’®®
In addition, it was encased by Y,O3, which acted as a protective
layer. Due to the large ionic radius of the Y ion (0.90 A), the
atomic charges of Ni, Mn, and O were altered. The Y ion was also
used as a protective layer. Meanwhile, Rb** doping in Nag g
Nig3,Mng 50, enhanced the mobility of Na' and induced
atomic-scale surface reorganization, which prevented the transi-
tion metals from dissolving into the electrolyte during cycling
(Fig. 6a). In particular, it can be seen that it exhibited superior
performance with 76% capacity retention at —40 °C (1800
cycles@368 mA g ') (Fig. 6b). According to the Zn/Mg dual-
doping strategy with bifunctional effects, Huang and coworkers

At present, there are still some problems to be solved with P2-  synthesized Nage;Mng;Zng15Mgo150, via a facile co-

cathode materials. For instance, due to the large radius of precipitation method.*”

Table 2 Comparison of unitary, binary, and multi Na,TMO,

Type Materials 1st capacity (mA h g ™) Lifespan (%@cycles) Ref.

Unitary Na,Co0, 175 82%@300 70
N2y 6;MnO, 181 79%@3000 71

Binary Nag ¢7Nig 33Mng 670, 122 94.6%@1500 79
Na,,3Ni;3Mn,30, 166.7 81%@500 80
Nag.6,Cly Mg o0, 222 76%@300 72

Multi Nay_¢,Feo Mg 3C00.40, 136.7 85.5%@100 84
Nay,67Nip 33Mng 57CUg.0sMO0g 050, 142 91.5%@500 85

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 (a) Schematic showing the protective effect on the main structure via surface modification. (b) Long-cycling stability at rates of 92 and
368 mA gt at —40 °C. Adapted with permission from ref. 106, Copyright {2022} Springer Nature. Charge/discharge profiles of (c) NMMT at 0.1C
during the first 15 cycles in the voltage range of 2.0-4.3 V; (d) rate performances of the NMMT cathode; (e) in situ XRD tests upon charging/
discharging of the NMMT cathode between 2.0 and 4.3 V versus Na*/Na. Adapted with permission from ref. 107, Copyright {2022} American
Chemical Society. (f) In situ XRD patterns of NaNMTig sOF during the first charge/discharge process. Adapted with permission from ref. 108,
Copyright {2022} Elsevier B.V.

24802 | RSC Adv, 2024, 14, 24797-24814 © 2024 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra04790g

Open Access Article. Published on 08 August 2024. Downloaded on 8/19/2025 6:08:09 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Review

Compared with P2-Nay,MnO, and single-ion (Zn/Mg)-
doped specimens, Zn/Mg dual-doping broadens the distance
between the crystal planes and supplies a spacious ion-diffusion
channel for rapid Dy,". It also has less Mn**/Mn*" and a higher
lattice oxygen content, which is instrumental for increasing the
structural stability. It was proved that the Zn/Mg dual-doped
electrode displayed excellent rate performance
(67.2mAh g '@1.7 Ag ") and a decent cycling stability (93.8%
capacity retention@170 mA g ‘@100 cycles). This work thus
provides a promising avenue for perfecting the performance
enhancement of layered cathode materials. Based on the
synergistic effect of Mg and Ti co-doping,*®” Li's group designed
and investigated Na,/3[NiyoMgi/0Mns/oTii9]0, (NMMT), which
displayed an apparent capacity activation during the first cycles
(113 mAhg'@17 mA g ) (Fig. 6¢) and outstanding rate ability
(50 mA h g '@850 m A g '@500 cycles) between 2.0-4.3 V
(Fig. 6d). Furthermore, as shown by the in situ XRD character-
ization (Fig. 6e), single-phase electrochemical reactions
occurred during the Na" deintercalation.

Based on the Ti*'/F~ co-doping strategy, P2-Na, ¢,Nig 33
Mny 3;Tip301.9Fo.1 showed a much strengthened sodium-
storage performance within the 2.0-4.4 V range, including
a certain cycling ability (77.2%@300 cycles@300 mA g~ ') as well
as an excellent rate capability (87.7 mA h g '@1.02 A g~ ").» In
situ XRD (Fig. 6f) analysis showed that the Ti*'/F~ co-doping
could inhibit both P2 — 02 transitions and Na'/vacancy
ordering, resulting in fast Na" diffusion and a stable phase
structure. This study offers a novel idea for the development of
layered cathode materials with anion-cation synergetic contri-
butions (Table 3).

3.3 Surface modification

Currently, energy-storage systems with greatly reduced costs
and higher stability and safety can be developed via doping
cations or anions. However, the large structural change in the
cycle process can result in rapid capacity deterioration and an
inferior cycle life. In addition, the high air sensitivity of systems
can have a negative impact on the electrochemical perfor-
mance. Therefore, researchers have modified the electrode
surface to reduce the side reactions between the cathode
material and electrolyte during cycling process, so that struc-
tural stability, ion diffusion ability and electronic conductivity
are improved.'*"*° For instance, a carbon coating can be used to

Table 3 Typical dopants in P2-type materials
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enhance the electrochemical performance, but the inferior
mechanical properties of carbon make it harder to improve the
cycle stability."**

Applying a TMO coating on the surface of a P2 cathode is
another active method, which can raise the conductivity and
electrochemical performance. It was reported that P2-type Na,,
sFe;»Mn,,0, materials can be synthesized by ultrasonic jet
pyrolysis followed by solid-state sintering.™** In addition, a thin
Al,O; layer can be formed on the surface of Na,;;Fe/; ,Mny,,0,,
which inhibits the formation of Na,CO;-H,O and avoids its
exposure to air, thus improving the storage performance. Yang
et al. coated ZnO, a semiconducting material with excellent
electrical conductivity, on a P2 layer of Na,/3Ni;;3Mn,,30,, which
could significantly inhibit the peeling phenomenon and main-
tain the morphology and structure of the electrode well."* In
addition, part of the Zn>" could finds its way into the transition
metal oxide (TMO,) layer, realizing in an improvement of the
crystal stability. Based on the synergistic effect of the ZnO
coating and Zn>" doping, the material exhibited excellent
cycling performance (75%@200 cycles) and rate performance.
To address the defects of the P2-Nagg,Nig17C0017MnNg 6605
cathode, a dual modification method incorporating Mg/Ti co-
doping and MgO surface coating was reported.'** The results
showed that the P2 structure could be stabilized by Mg>*/Ti**
co-substitution, and that the MgO layer could effectively prevent
the surface from being corroded by HF, while promoting Na*
migration. It displayed a 111.6 mA h g ' initial discharge
capacity and retained 90.6% of this at a high current density of
100 mA g ', which evidently surpassed the performance of
Nay ¢7Nip.17C00.17Mng 660,. The obvious improvement could be
attributed to the synergistic effect of Mg®"/Ti*" co-substitution
and the MgO surface coating.

In addition, coating a conductive polymer could also effec-
tively enhance the electrochemical performances. Applying
a polydopamine-derived carbon coating was reported to be
a significant strategy to improve the interfacial stability of P2-
type Nag goNig.22Zng 0sMng 6602."** The application of consecu-
tive and homogeneous carbonized PDA (C-PDA) layers with
a thickness of ~5 nm could inhibit Na* extraction from the
surface of P2-Nay goNip2Zn0.0sMnNg 660, particles during the
electrode fabrication process and the formation of electro-
chemically harmful Na,CO;/NaOH species. Compared with
pristine samples, the material exhibited a higher discharge
capacity (124 mA h g '@12 mA g '), superior rate capability

1st capacity

Materials Dopant Voltage (V) (mAhg™) Lifespan (%@cycles) Ref.
Nag 67[Lig.22Mng 75]0, Ni** 1.5-4.6 160 73%@300 96

Nag.¢;MnO, K" 1.8-4.3 240.5 98.2%@100 103
Nay ,Nig 33M10 6,0 AP 1.5-4.5 213.6 58.7%100 104
Nay 67Nig 33Mng 670, Y 2.0-4.5 126.4 63.4%60 105
Nay 7sNig 35M1 6505 Rb>* 2.4-4.15 96.6 76%@1800 106
Nag ¢;MnO, Zn**/Mg* 2.0-4.5 166.2 93.8%@100 97

Na,/3Ni; 3Mn,,;0, Mg /Ti" 2.0-4.3 113 84.3%@500 107
Nay 67Nig 33Mno 670, Ti*"/F~ 2.0-4.4 140.3 77.2(300) 108

© 2024 The Author(s). Published by the Royal Society of Chemistry
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(62mAh g '@1536 mAg '), and excellent cycle stability (90.7%
capacity retention@100 cycles). These results show that proper
surface protection can prevent the formation of side products,
which is crucial to improving the performance of P2 oxide
materials. Without sacrificing the high-voltage performance,
Yuan et al. stabilized the lattice oxygen in a composite material
by applying a small amount of Sn substitution and by further
protecting the particle surface with a polypyrrole (PPy)
coating."® The prepared Nagq;Nip33Mng635N0.040,@PPy
(3.3 wt%) composite displayed superb rate performance (137.6/
120.0 mA h g '@10/100 mA g~ ') with 82.5% capacity retention
(100 mA g '@100 cycles). The surface particles of the Nag g,-
Nig 33Mng 635N0.040,@PPy (3.3 wt%) composite did not fall off,
indicating that the conductive PPy coating could not only
improve the cycling stability, but also played a role as a capsule
shell, inhibiting particles from falling off and protecting parti-
cles from electrolyte erosion. A NASICON-type NaTi,(PO,);
(NTP) nanoshell was coated on the surface of P2-Nag ¢,C0y -
Mn, 30, (NCM) (Fig. 7a) to promote its performance as a new
cathode.'” The NCM®@NTP7 sample displayed outstanding
electrochemical charge/discharge profiles, with a high capacity
(152.4 mA h g '@34 mA g~ ') and 86.7% capacity retention
(85 mA g '@150 cycles) at room temperature. The optimized
coating could effectively inhibit side reactions and greatly
improve the cyclic stability. Meanwhile, the NTP could accel-
erate the Na'-migration kinetics of the host material, providing
perfect Dy," channels and a higher electronic conductivity (R
= 26.4 Q, Fig. 7b, Dg = 4.04 x 10 ~'° ecm® s, Fig. 7¢). It is
apparent that PPy coating is a viable method for developing
stable outstanding voltage transition metal oxide cathode

(a)

(b)2s0

——=NCM
= NCM@NTP7
200 Ma

-Z"/ohm

0 50 100

Z'/ohm

150

200

250

Fig. 7

View Article Online

Review

materials. Some typical reported modifications of P2-type
materials are listed in Table 4.

3.4 High entropy modification

Recently, the method of building high entropy oxides has been
proven to be another possible strategy to improve the perfor-
mance of O3-layered oxide cathodes.”®'** The use of high
entropy P2-Nag ¢(Tip,Mng,C00,Nip,RUy,)0, can tune the
entropic stabilization of the crystal structure and the diffusion
activation energy barriers, leading to superior rate performance
at a very high rate (68 mA h g™* at 86C).”*® This work demon-
strated an advanced fast-charging layered oxide cathode for
SIBs. The entropy-tuned P2-NagMnge7Nig23CUg.05ME0.07-
Tip.010, could expose more {010} active facet and improve the
structural stability.*** The cathode exhibited outstanding elec-
trochemical performance, especially cycling stability (75%
capacity retention@2000 cycles@1.2 A g™ 1). In situ HEXRD tests
(Fig. 8a) were performed, revealing that no new phase formation
or phase transition occurred. Also, the structure evolution was
highly reversible during the charging and discharging Na* (de)
intercalation process (Fig. 8b), leading to a superior electro-
chemical performance. Therefore, high entropy modification
represents a new method for advanced P2-layered cathode
materials (Table 5).

3.5 Composite phase modification

A composite phase strategy*>*° (such as P2/P3, P2/03, and P2/
P3/03) has also been proposed to enhance the electrochemical
performance of P2-Na,TMO, (Table 6).

NCM@NTP7 —E(V)
i —o— Log(D/em*s™) [-4
£ -
o°°o°0¢¢ % ® °o 'S LN
o8
7.5 g o
. 2 .
° o
-12
6.0 ) ik I E
Ez ol = I
S, -16
4.5 = 2.00 18005 &5 =
AN -
63000 70000
3.0 Time (s =20
1.5 -24
0.000 1.650x10°  3.300x10°
Time(s)

(a) Interface model of the NCM@NTP7 material; (b) EIS plot, and the inset image shows the equivalent circuit for NCM and NCM@NTP7;

GITT curves and corresponding D values of (c) NCM@NTP7. Adapted with permission from ref. 117, Copyright {2020} Elsevier B.V.
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Table 4 Typical modifications in P2-type materials

View Article Online

RSC Advances

Materials Dopant Coating 1st capacity (mAh g™ ") Lifespan (%@cycles) Ref.
Na,sFe;,Mn, 50, ALO; 146.7 84.7%@40 112
Nay3Ni; 3Mn, 50, Zn*" ZnO 162 75%@200 113
Nay.¢7Nig 17C00.17MNg 6605 Mg /it MgO 111.6 90.6%@300 114
Nay oNip.26M1o 6605 Zn* C-PDA 124 62%@100 115
Nag,¢,Nip 33Mng 670, sn* PPy 137.6 82.5%@100 116
Nay 6,C00 ,Mn 0, NaTi,(PO,); 152.4 86.7%@150 117
(a) (b)
a +Na oAl s 2.88 —@@® @
(= = - @ 0, @
. S . . . =l o9 0.74% oo®
z S PRAR AL LI TP PP Y PYY T YT I L LA
2r 284 |
ol 11.4
_ % O lattice ¢ @©®®©®©®@®®©©@@®®@©®®®®
%s» 5 13f @/@@ ) ®e
e o® [091&/\, IR
Tep 112-@/@@"> ®e
- 81.0
‘I's F O unitcell volume v
.l ‘8 80.7 -@@ ) @
wil - Pzeseeede 1057% _ ,e80%®s0ge®
A ‘ 804 | ©©©©©©©®®©©©
2 3 410 15 20 25 5.0
Voltage (V) 26 (degree, 1=0.1173A) «—— charge > discharge ——»
Fig. 8 (a) Waterfall plot of the in situ HEXRD patterns for CuMgTi-571 within the range 2.0-4.3 V. (b) Evolution of the cell parameters and cell

volume during the charge/discharge process. Adapted with permission

Table 5 Typical high-entropy P2-type materials

from ref. 124, Copyright {2022}, Springer Nature.

Materials Voltage (V) 1st capacity (mAh g™ ") Lifespan (%@cycles) Ref.
Nay ¢(Tio ,Mng ,C0p ,Nig ,RUg ,)0, 1.5-4.5 164 70%@40 123
Nag ;Mg 6,Nig 23CUo.05Mgo.07Ti0.0102 2.0-4.3 148 75%@2000 124
Nay/3[NiysMny,Tiyj6Zny/1,]0, 2.5-4.5 114 100%@40 125
Nay,3Li; 6Fe1/6C01/6Niy gMny /50, 2.0-4.5 171 89.3%@90 126
Table 6 Typical multi-phase layered materials for sodium-ion batteries

Materials Voltage (V) 1st capacity (mA h g™*) Lifespan (%@cycles) Ref.
P2/P3-Nag ¢;Mng 6,C00 30Alp 0602 1.5-4.0 160 81%@200 130
P2/P3-Na sMgo ,C0q.15Mn 650, 1.5-4.3 136 89%@100 131
P2/03-Nay 76Ni 33Mng 50F€0 10Tio.0702 2.2-4.3 144 82%@100 132
P2/03-Nag gLio»Nio 33Mno 6705 2.0-4.3 133 80%@120 133
P2/03-Nay goLio 15Ni 20F€0.10Mng 5705 2.0-4.5 172 89%@100 134
P2/03-NaoNi,oMny oFe; oMgy oLi; 60, 2.0-4.4 170 72.1%@400 135
P3/P2/03-Nag 674Nio.310Mo 50005 2.0-4.2 100 67%@200 136

Attributed to the fast Na" diffusion and stable crystal struc-
ture, P2/P3-Nag 6;Mng ,C00 30Al0.060, displayed an outstanding
rate capability (83 mA h g~ at 1700 mA g~ ') and distinguished
cycling stability (81% @200 cycles@1000 mA g~ *).** In situ XRD
tests confirmed there were no new peaks except for the P2/P3
phases and that the Jahn-Teller effect was largely relieved

© 2024 The Author(s). Published by the Royal Society of Chemistry

during the charge/discharge process, thus realizing a superior
long cycling ability. Wang's group explored the sodium-storage
mechanism of the P2/03-Nag,¢Nig33MnNg50F€0.10Tig.0702
cathode.” In operando XRD measurements revealed the
reversible structural transformation of P2/03-P2/03/P3-P2/P3-
P2/Z/03'-Z/03', attributed to the Ni*'/Ni*®*, Fe®'/Fe?", and
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(a) HRTEM images of P2/P3/O3-NNMO; (b) ex situ XRD patterns (right) of P3/P2/O3-NNMO at different voltages between 2.0 and 4.2 V

during the first charge/discharge process. Adapted with permission from ref. 136, Copyright {2022}, Wiley-VCH.

Mn*#/Mn*" redox couples during the Na*-(de)intercalation
process. This also led to its high capacity (144 mA h g™" at
42 mA g ') and dramatic rate performance (82 mA h g™ ' at
210 mA g ). This work provides a novel idea for the design of
high-performance layered multi-phase structures. Because of
the staggered arrangement of different phase structures, the P3/
P2/03-Nag 674Nig 310MnNg 5000,(NNMO) cathode displayed an
improved rate performance (100 mAh g ' at 750 mA g~ *).** The
HRTEM image of P3/P2/O3-NNMO clearly showed the co-
existence of P2 and O3 phases (Fig. 9a), while ex situ XRD
(Fig. 9b) revealed that P3/P2/O3-NNMO experienced a reversible
conversion process of P3/P2/O3—P3/P2—P3/P2/P3'—P3/P2/
03'—P3/P2/P3'—P3/P2—P3/P2/03 during the first cycle. Also,
the P2-O2 phase transition was inhibited, leading to the
improved cycling stability (80 mA h g '@200
cycles@30 mA g~ '). The work offers a model to investigate the
independent influence of the structure of the electrode on its
electrochemical performance. Therefore, the strategy of
composite phase modification provides a new approach to
suppress irreversible phase transitions and enhance the
performance of layered oxide cathodes.”

In summary, the modification methods broadly include
structural lattice doping, applying a coating on the surface of
the material particles, and composite phase modification. In
particular, surface coating can improve the interfacial stability
of a material, mitigate the side reactions at the electrode/
electrolyte interface, and improve the ionic/electronic conduc-
tance at the interface. The drawback is that cladding cannot
modulate the lattice, ie., it cannot regulate the spatial and
electronic effects of the internal structure of the material.
Conversely, ion doping of the lattice of the electrode material
with ions with a different valence and radius can play a role in
expanding the ion-diffusion channels, improving the conduc-
tivity of the bulk phase of the material, and enhancing the
structural stability. Moreover, multi-doping has significant
superiority over single doping, such as an enhanced effect from
synergistic mechanisms, providing multiple ions with a richer
electron cloud density, and the different radii of the different
ions, which can endow the structure with stronger toughness.

24806 | RSC Adv, 2024, 14, 24797-24814

4 Conclusion and future perspectives

SIBs have developed rapidly in the past decade, but their energy
density is still not as good as that of LIBs. Compared to P2-
Na,TMO,, 03-Na,TMO, has a higher initial sodium content,
which can provide more specific capacity in the same voltage
range, making it more suitable for full-cell applications. For
now, using a composite phase is optimal for a full battery. In
addition to this, the dual-modification strategy can promote the
electrochemical performance of the material more than
a single-modification strategy. For example, the combination of
elemental doping and surface capping can not only improve the
structural stability, but can also further enhance the conduc-
tivity of the material and reduce energy losses during charging
and discharging. It is also an effective strategy for full battery
performance improvement. Another problem to solve is the
problem of high cost of materials. Here, the use of abundant
raw materials and simple preparation make P2 layered cathode

Energy density/Wh kg™!

\ ® Unitary Na, TMO,

| \ ® Binary Na,TMO,

| \ 1 NagskigMeqosNigMnocO, - @ Tenery and multi Na, TMO,
\ Na, ;F¢, ;Mng3Co, ,0,

100 200 300 400 500

o~
1

Nag d)Z"a sNiglisCug MRy 703

\\ ) (17Niﬂ “?Mnﬂ WTiﬂ ?OZFH 1

NagNigs Mg Yor:0s @ . ./VNaaleostl?u1Cl.lo.osMooosoz
\ ® /Nau 7Nig 17Tig jMny 70,

[ ]
L N4 2,61C0p s Mg 50,

®

Nay Mng ;Zn, 15"420 1505 Nag sFeg Mg 750,

N o0 ®. © N0, Cuy M 0;

\ \ / .. °
T SN

W NagNigyMng ;0

Ave. voltage / V(vs. Na* /Na)
L

i@, MIiO, Nag gsRug 7Mng50,
5 \\ M 4
\ \\ \\\\
\\ he Rl
1 T T T T T —
0 50 100 150 200 250 300

Capacity(mAh g

Fig. 10 Gravimetric energy density (W h kg™) for P2-Na,MO, with
different numbers of transition metals in half-cell systems.
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materials one of the most competitive cathode materials.***
Compared with other cathode materials, P2 cathode materials
also have the advantages of volume and mass energy density
(Fig. 10). From the initial unitary to binary, ternary, and multi
metal oxides, the properties of the materials have been further
optimized by lattice doping and surface modification, which
can also be applied in industry.

Currently, one of the most urgent problems to be solved for
this kind of material is to improve the specific capacity of the
first charge. The redox reaction of O®~ in the structure is an
important consideration that could help solve this problem.**®
However, this could incur other problems, such as voltage
hysteresis, and poor cycling and rate performance with anionic
redox reactions.™® With the help of some characterization tools
(e.g., XANES, XRT, AFM'** and Cryo-TEM'*?), the redox reaction
mechanism of O®> was investigated to provide theoretical
guidance for further improving the energy density, cycling, and
rate performance of such materials.******

Although pure-phase P3 type oxides, such as Na,;;Mg;,3Mn,,
30, and Na,;3Ni, ;3Mn,,30,, have been reported, the P3 phase is
more commonly reported as an accompanying impurity for P2
and O3 types. P2-type and P-type Na, ¢;MnO, have been shown
to exhibit a high reversible capacity and good structural
reversibility. However, the initial Na content of P-type layered
oxides is relatively low, which is not conducive to assembling
the entire battery. Both O3-type and sawtooth-type NaMnO,
have a high initial Na content and specific capacity, but their
electrochemical reversibility is poor. The sawtooth-type
NaMnO, is generally accompanied by a mixture of O3-type
NaMnO, phases, and pure sawtooth-type NaMnO, has not
been reported yet.'*>1*¢

Designing high-entropy layered oxides is another strategy to
suppress the P2-O2 phase transition. A transition metal layer
composed of various different metal ions can accommodate the
local volume changes caused by Na* (de)intercalation. Also, the
phase transition of high-entropy layered cathodes is highly
reversible. Therefore, scientific adjustment of the components
and the structure of high entropy layered materials can also
contribute to the development of new high-performance
cathode materials for sodium-ion batteries. Besides, the low
Na content makes it difficult for P2-Na, TMO, to be used in high-
energy full-battery systems. So, introducing a certain amount of
sodium supplements (such as NaN; or NazP) can increase the
initial sodium content. This could considerably accelerate the
industrialization process of SIBs. Otherwise, their poor air
stability is another barrier for layered oxide cathodes to attain
greater commercialization. To solve this problem, strategies
such as nanostructure design, surface coating, and lattice ion
doping can be adopted to enhance the air stability and improve
the competitiveness of layered cathode materials for large-scale
application. Today, there are many other state-of-the-art solu-
tions available for modification. First, sodium-rich layered
transition metal oxide cathode materials can be tried out. In
these materials, sodium ions occupy the octahedral position of
the transition metal layer. In this way, more sodium ions can
participate in the reaction and provide more capacity. Second,
careful regulation of the ratio of each metal element could be an

© 2024 The Author(s). Published by the Royal Society of Chemistry

View Article Online

RSC Advances

effective way to improve the structural stability of layered tran-
sition metal oxides. Finally, complementary anodes, electro-
Iytes, diaphragms, additives and binders can be developed.
Among these optimization strategies, high-entropy doping
designs have been extensively adopted in the last two years,
mainly based on a cocktail of effects, entropy-increasing effects,
and poly-electron effects, moreover, we believe that a combina-
tion of high-entropy doping in different lattice sites with
a surface coating strategy may be a practicable solution to
simultaneously address issues related to the structural and
interface instability, thereby fundamentally making such
layered materials have greater practical value for future SIBs.
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