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modification on silica supported Ti
catalysts for cyclohexene oxidation with vapor-
phase hydrogen peroxide†

Sol Ahn, *a Sarah K. Friedmanb and Justin M. Notestein *bc

Surfacemodification via grafting of organic moieties on a Lewis acid catalyst (silica supported Ti catalyst, Ti-

SiO2) alters the activation of H2O2 in vapor-phase cyclohexene epoxidation. Grafting a fluorous group

(1H,1H-perfluoro-octyl) suppresses activity of Ti-SiO2. Conversely, grafting either a nonpolar group

(octyl) or a polar aprotic group (triethylene glycol monomethyl ether) enhances rates and shifts

selectivity toward trans-1,2-cyclohexanediol.
Post-synthetic modication provides an opportunity to tune the
surface properties (e.g. hydrophilicity/hydrophobicity) of
previously-synthesized, supported catalysts. For example, surface
modication to remove surface hydroxyls and to increase
hydrophobicity of a surface is an effective way to reduce the
negative effects of water in liquid-phase selective oxidation
chemistry.1,2 This increase in hydrophobicity is particularly
useful when water adsorbs onto the active metal site competingly
with a reactant. Beyond altering surface hydrophilicity/
hydrophobicity, other post-synthetic modications include
overcoating of metal oxide layers,3,4 graing of functional organic
groups,5,6 and depositing additional active metal oxide sites.7,8

For liquid phase reactions, any surface modications must
compete against the solvent for any changes to the local envi-
ronment around the active site. Here, we report graing of
organic molecules to change surface properties for vapor phase
cyclohexene epoxidation with vaporized H2O2, where we
hypothesized that surface modication might have a more direct
impact on the elementary steps of catalysis. By condensing the
corresponding terminal alcohols with surface silanols, we graed
(Scheme 1) three different types of functional groups on a pre-
synthesized Ti-SiO2 Lewis acid catalyst: octyl groups (Ti-SiO2-o,
nonpolar), triethylene glycol monomethyl ether (Ti-SiO2-tg, polar
aprotic), and 1H,1H-peruoro-1-octyl (Ti-SiO2-F, uorous).

We prepared a highly dispersed silica supported Ti catalyst
(Ti-SiO2) via liquid-phase graing of tri-
chloro(pentamethylcyclopentadienyl)titanium(IV) onto
hung-Ang University, 84 Heukseok-ro,
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a mesoporous silica support at 0.2 Ti atoms per nm2, followed
by calcination, which is known to give high specic activity in
H2O2 activation.9 Wemodied the parent Ti-SiO2 by graing the
corresponding terminal alcohol in reuxing toluene for 24 h,
Soxhlet extraction for 24 h in toluene to remove any ungraed
species,2 and drying at 100 °C under vacuum.

Successful graing is indicated by slight decreases in BET
surface area (Fig. 1(a) and Table 1) without changes to the shape
of physisorption isotherm and by mass losses in thermogravi-
metric analysis (Fig. 1(b)). Mass losses beyond the low-
temperature desorption of water are due to combustion or
decomposition of the graed species. The water desorption
temperatures of modied catalysts are similar, which agree with
the previous study.2 Mass losses beyond the shaded regime in
Fig. 1(b) correspond to loadings of 0.75, 0.42, and 0.30 groups
per nm2, for Ti-SiO2-o, Ti-SiO2-tg, and Ti-SiO2-F, respectively.
Graing 1-octanol on a Ta-SiO2 catalyst was previously reported
to give 0.39–0.64 groups per nm2.2 Most importantly, all these
values are higher than the surface Ti loading of parent sup-
ported catalyst, which is 0.2 Ti atoms per nm2, so that they
should be sufficient to affect catalytic behavior of Ti-SiO2.

We performed vapor-phase cyclohexene epoxidation at 120 °
C, 3 kPa of cyclohexene, and 3 kPa of vaporized H2O2 employing
our custom built reactor.10 Here, we used H2O2 in acetonitrile,
dried over MgSO4, to minimize initial water content.11 In this
study, products were detected with online GC-FID and an in-jet
methanizer. We do not observe any C6 derived products other
than cyclohexene epoxide (epoxide) and trans-1,2-cyclo-
hexanediol (diol), consistent with our previous work with Ti-
SiO2 at similar conditions.10 In these systems, cyclohexene rst
converts to epoxide, and then hydrolyzes to the trans-diol
(Scheme 2). This stepwise conversion of cyclohexene is consis-
tent with our previous studies,7,10 as we do not observe any cis-
diol that is the product of direct cis-dihydroxylation of cyclo-
hexene. Radical oxidation to cyclohexenone or cyclohexenol is
RSC Adv., 2024, 14, 25425–25428 | 25425
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Scheme 1 Schematic diagram of grafting of 1-octanol (nonpolar), triethylene glycol monomethyl ether (polar aprotic), and 1H,1H-perfluoro-1-
octanol (polar protic) on Ti-SiO2.

Fig. 1 (a) N2 physisorption isotherm and (b) mass loss profile by thermogravimetric analysis of catalysts (black: Ti-SiO2, blue: Ti-SiO2-o, green: Ti-
SiO2-tg, red: Ti-SiO2-F).

Table 1 Summary of catalyst properties and activities

Catalyst
BET surface area
[m2 g−1]

Organic surface
density [# nm−2]

Steady state TOFa

[molC6
molTi

−1 h−1]
Steady state selectivitya [%]
(epoxide/diol/COx)

Ti-SiO2 370 — 6.5 39/42/19
Ti-SiO2-o 340 0.75 15.5 6/86/8
Ti-SiO2-tg 270 0.42 11.0 4/85/11
Ti-SiO2-F 290 0.30 1.6 18/32/50

a TOF values of production of epoxide and diol values at 600 min. Steady state operation is reached aer 200–400 minutes at these conditions.
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Scheme 2 Reaction network of cyclohexene epoxidation to cyclo-
hexene oxide (epoxide), and its hydrolysis to yield trans-1,2-cyclo-
hexane diol (diol). Surface modifications near the active site can alter
the strength of adsorption of reactants and intermediates, altering
product selectivity.

Fig. 2 Time-on-stream turnover frequency (TOF) and selectivity (inset) o
C6 products, grey: TOF of COx/6, green: epoxide selectivity, yellow: dio

© 2024 The Author(s). Published by the Royal Society of Chemistry
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not observed. Background over-oxidation to CO and CO2 occurs
at a rate of approximately 1.2 to 4.1 molcyclohexene molTi

−1 h−1 or
0.2 to 0.8% conversion at these conditions, regardless of
catalyst.

The parent Ti-SiO2 shows an initial turnover frequency (TOF
= mol(epoxide+diol) molTi

−1 hr−1) of 19.6 h−1 at 50 min time-on-
stream (TOS), which decays to a steady-state rate of 6.5 h−1 at
600 min TOS. As seen mostly clearly in the selectivity plot,
steady-state is reached aer ∼200 minutes, with only slow
catalyst deactivation thereaer (Fig. 2). The steady state selec-
tivity is 39%/42% to epoxide and diol respectively, with the
remainder going to background overoxidation to COx. Graing
of a uorous group (Ti-SiO2-F) almost totally suppresses C6

product formation. The small amount of remaining C6 forma-
tion has a selectivity of 18%/32% to epoxide and diol, relatively
similar to the parent catalyst and suggesting the existence of
small patches of unfunctionalized surface. Otherwise, the
f (a) Ti-SiO2, (b) Ti-SiO2-o, (c) Ti-SiO2-tg and (d) Ti-SiO2-F (blue: TOF of
l selectivity, black: COx/6 selectivity).
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conclusion is that the uorous surface makes binding and
activation of cyclohexene unfavorable by inhibiting the
adsorption of cyclohexene on the surface. Conversely, graing
of either nonpolar octyl or polar aprotic tri(ethylene glycol)
groups on Ti-SiO2 increases rates by at least 1.7-fold at steady-
state, relative to the parent catalyst. These enhanced catalytic
rates have two effects. First, the loss of C6 to background over-
oxidation drops dramatically, from 19% in the parent catalyst to
8–11% in the modied catalysts. Moreover, the C6 selectivity
shis to substantially favor hydrolysis of the epoxide to the diol,
giving approximately 5%/85% for epoxide and diol, respectively,
at steady state.

This behavior is quite different from that observed in the
condensed phase, where graing groups to remove surface
silanols tends to decrease yields slightly and increase epoxide
selectivity relative to diol by suppressing water sorption at the
active site.2 In the vapor phase and for these wide-pore mate-
rials, the lack of a liquid solvent phase means that surface
modication can more directly inuence the stability of reac-
tion intermediates. As suggested in Scheme 2, the surface
modications appear to be strengthening the adsorption of
cyclohexene and the intermediate epoxide, leading to corre-
sponding increases in rate and selectivity to the hydrolysis
product. In addition, a recent study by Leonhardt et al.
proposed computationally that an epoxide molecule can remain
adsorbed to one facet of the Ti-OH site while still leaving
another coordination site available for oxidation of an incoming
cyclohexene.12 In that mechanism, enhancing epoxide adsorp-
tion at the active site increases hydrolysis to the diol without
inhibiting – or even enhancing – overall product formation
rates, such as we have observed with the octyl- and tg-modied
surfaces. Overall, these observations show that surface graing
can play a signicant role in modifying the reactivity of catalysts
in the nascent eld of selective oxidation with vaporized H2O2.
Also, the results presented here contribute/expand to the
current design strategy of post-modication of heterogeneous
catalysts with simple method. Additional studies will be carried
out to understand the precise mechanistic origins of these
changes in rate and selectivity and develop further strategies to
tune catalyst surface properties.
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