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Exosomes are a subpopulation of extracellular vesicles (EVs) that naturally originate from endosomes. They
play a significant role in cellular communication. Tumor-secreted exosomes play a crucial role in cancer
development and significantly contribute to tumorigenesis, angiogenesis, and metastasis by intracellular
communication. Tumor-derived exosomes (TEXs) are a promising biomarker source of cancer detection
in the early stages. On the other hand, they offer revolutionary cutting-edge approaches to cancer
therapeutics. Exosomes offer a cell-free approach to cancer therapeutics, which overcomes immune
cell and stem cell therapeutics-based limitations (complication, toxicity, and cost of treatment). There
are multiple sources of therapeutic exosomes present (stem cells, immune cells, plant cells, and
synthetic and modified exosomes). This article explores the dynamic source of exosomes (plants,

mesenchymal stem cells, and immune cells) and their modification (chimeric, hybrid exosomes,
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Accepted 3rd September 2024 exosome-based CRISPR, and drug delivery) based on cancer therapeutic development. This review also

highlights exosomes based clinical trials and the challenges and future orientation of exosome research.
We hope that this article will inspire researchers to further explore exosome-based cancer therapeutic
platforms for precision oncology.
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1. Introduction

Cancer has became a major global health challenge, causing
a significant number of deaths each year.' Extracellular vesicle
(EV)-based cancer investigation has introduced a new dimen-
sion to cancer research.” EVs subpopulation exosomes have
played a significant role in cancer development.® They originate
from endosomes.” Exosomes retain the properties of their
source and are unique in their mRNA, proteins, lipids, and
miRNA contents.® The cellular cargoes of exosomes, which
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include proteins, cell receptors, and miRNAs, can be used to
develop cancer biomarkers and thus result in cancer therapy
development.® The DNA present in the exosomes can also be
used as biomarkers for detection of cancer.” Exosomes are
a promising tool for anti-cancer drug delivery.® Therapeutic
exosomes can be derived from several sources such as stem
cells,” immune cells, and plants.” Tumor cell-derived (TEXs)
exosomes have a dual nature in cancer theranostics applica-
tions (due to the enrichment of oncogenic cargos), they are not
recommended for therapeutic applications.’** TEXs show
some cancer-healing properties via tumor growth inhibition.*
Exosomes can be used for anti-cancer vaccine. Another way
exosomes can be used as a drug delivery system is because of
their non-toxicity, lack of immune reactivity, and stability
within biological systems. Electrochemical sensor-based exo-
somes detection an impressive initiative for early cancer
indenfication.™ Modified exosomes are expected to play a role
in cancer therapeutic applications. This modification can be
a surface modification, chemical modification, genetic modifi-
cation or synthetic modification.'>*” However, the downside of
using exosomes in therapeutic applications is the heterogeneity
(this regulated via several factors such as origin, size, and
molecular diversity). This problem can be solved using single
exosome profiling.*® Single exosome profiling, exosome bar-
coding and a combination of advanced nanotechnology-based
exosome profiling pave the way for us to reach the exosome-
based precision oncology era.’* The timeline of exosome-
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based cancer therapy development summarized in Fig. 1. In this
review, we explore the therapeutic applications of exosomes and
their modifications based promising clinical outcomes in
cancer therapy, clinical trials and future prospects in this field.

2. Exosome biogenesis

Exosomes are associated with cellular signalling. Exosome
biogenesis (Fig. 2) occurs dependently or independently of the
endosomal sorting complex required for transport (ESCRT). The
ESCRT complexes, which include ESCRTO to III along with
proteins like vacuolar protein sorting 4 (VPS4) are primarily
involved in regulating exosome biogenesis. Other ubiquitinated
proteins are recognized and sorting is initiated by ESCRT-0,*
while the ESCRT-1 and ESCRT-2 are responsible for the induc-
tion of membrane deformation and cargo processing.*” The
ESCRT-3 forms spiral-shaped bundles to drive vascular scission
and budding with the help of complexes like C-terminal resi-
dues of the human CHMP4 proteins (CHMP4).>* The VPS4
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recycles the ESCRT-3 after the vascular scission. This synchro-
nous process regulates the intraluminal vesicle formation and
hence, facilitates cellular communication. The ESCRT-
independent mechanisms provide diverse paths for the
formation of exosomes one of which is in the form of lipid
components like ceramide and lipid rafts.”* The accumulation
of ceramide initiates the budding of exosomes after fusion of
multivesicular bodies (MVBs) with plasma membrain. In ESCRT
independent pathway tetraspanin proteins® has significal role
in exosomes biogensis.”* However, evidence of crosstalk
between the two pathways has been observed. For example, the
CHMP4C component of the ESCRT-III has interactions with the
lipid rafts that are associated with proteins like syntenin.*”
Another example is the involvement of syndecan-syntenin-ALIX
which is responsible for the release of exosomes and indicates
connections between the components of the ESCRT
machinery.”® A dysregulation in the ESCRT-dependent or inde-
pendent pathway can lead to aberrant production of exosomes.

This can establish a microenvironment which is pro-
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tumorigenic.” Hence, understanding this crosstalk could pave
the way for further development of therapeutics which may offer
avenues for the modulation of the vesicular cargo.** During
cancer development, exosome secretion depends on the low pH
of the tumor microenvironment (TME) and ESCRT-independent
pathways.**

3. Exosome isolation and
characterization

Exosomes can be isolated via several methods such as ultra-
centrifugation, density gradient centrifugation, and various
affinity chromatography techniques which separate them on
the basis of size and density.*® While ultracentrifugation is
widely used, it is limited by high equipment costs. Dynamic
light scattering provides information on the size distribution of
exosomes and zeta potential measurements indicate the surface
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charge of exosomes (in tumor exosomes the surface charge is
more negative compared to healthy individual exosomes).
Molecular expression of exosomes can be assessed via flow
cytometry. Transmission electron microscopy captures exosome
images and provides size information, and Raman spectroscopy
supports molecular expression analysis in exosomes.** Chal-
lenges related to measuring the size and quantity of the exo-
some can be addressed using devices based on microfluidics
that track exosomes based on antibody fluorescence. Nano-
particle Tracking Analysis (NTA), magnetic and surface plasmon
resonance (SPR) principles for individual exosome screening,
and advanced and highly sensitive flow cytometry are also
utilized for exosomes detaction. Exosome molecular profiling
techniques are crucial for unveiling the diverse functional cargo
of bioactive molecules within exosomes.*® Exosome RNA
profiling has became a prominent area of cancer research.* The
integration of droplet digital polymerase chain reaction
microfluidic technology, a chip system, and the electrochemical
principle-based microRNA profiling of exosomes offers an
innovative perspective towards understanding the cancer
complications. Multi-omics approach supports in under-
standing the molecular diversity of exosomes.***” By incorpo-
rating machine learning into the single-cell exosome profiling
approach, we enhance precision in the development of cancer
markers investigation. These technological advancements
collectively contribute to the evolution of the next-generation
cancer theranostic era, centered around exosomes.*’”*®* Exo-
some isolation and characterization are summarized in Fig. 3.

4. Role of exosomes in cancer

During cancer development, phage exosome-based cell-to-cell
communication can reprogram the cell system in different
ways. Immune suppression is crucial in cancer development.*
In this event, tumor-derived exosomes (TEXs) mediated miRNA-
1 promote M2 polarization in liver cancer.** This process
promotes angiogenesis and myeloid-derived suppressor cells-
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Timeline of Exosome from establishment to application and
clinical trial cancer therapy
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Fig. 1 Timeline of exosome-based therapeutics (reproduced with permission under Creative Commons CC BY 4.0 license from ref. 20

Copyright@2022 The Authors).
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Fig.2 Exosome biogenesis (reproduced with permission under Creative Commons CC BY 4.0 license from ref. 6 Copyright@2020 The Authors).

based immune suppression.*” TEXs based multiple angiogenic
factors enhances the angiogenic event in cancer.*® Dendrite
cells play a key role in cell-mediated immune response devel-
opment. TEXs-mediated dendritic (DC) cell signalling during
cancer reduces anti-cancer cytotoxicity against tumor cells.** T
cells in the major cell population develop anti-cancer responses

30810 | RSC Adv, 2024, 14, 30807-30829

in cancer. TEXs medicated PDL1 expression reduce Tell activity
against cancer.*” Tumor exosomes develop dysfunctionality in B
cells during cancer development.*® TEXs mediate natural killer
(NK) cell complex reprogramming in several aspects such as
inhibiting NK cell proliferation, reducing cytotoxic effects and
downregulation of receptor proteins, such as IFN-y, TNF-o.*

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Exosome isolation and characterization. (a) Contact-free exosom

e sorting, (b) schematics of a microfluidic chip that enables continuous

mixing and isolation of EVs using immunomagnetic beads, microscopy images of the device: (c) Y-shaped injector, (d) serpentine fluidic mixer for
immunomagnetic binding, (e) magnetic aggregates, and (f) bound EVs on immunomagnetic beads. (g) Transmission electron microscopy (TEM)
image of exosomes, (h) scanning electron microscopy (SEM) image of exosomes, (i) atomic force microscopy (AFM) image of exosomes, (j) cryo-

electron microscopy (cryo-EM) image of exosomes, (k) western blotting
permission from ref. 5 Copyright@2018 American Chemical Society), and
39 Copyright@2022 American Chemical Society.).

Tumor-released cells related to ECM and cells become motile
and promote EMT.*®* TEXs are also associated with cancer
drug and therapeutic resistance development.* The tetraspanin
protein of TEXs regulates several aspects of cancer development
such as immune suppression, angiogenesis, and metastasis.*®
Circulating cancer cells migrate to specific organs and develop
secondary tumors based on TEXs integrin expression. These
phenomena lead to organ-specific metastasis in cancer. The
exosome-based cancer development is depicted in Fig. 4.

5. Therapeutic exosomes

Exosomes are cell signalling molecules in the cellular system.
Based on their parental cell type, they show promising thera-
peutic potential against cancer.> Tumor cell-derived exosomes
in general are not used in cancer therapeutic applications due
to the enrichment of oncogenic cargos. Several sources of
therapeutic exosomes and their modification approaches are
described in Fig. 5.

© 2024 The Author(s). Published by the Royal Society of Chemistry

based EVs protein expression analysis (figure (a) to (k) reproduced with
(1) single EV profiling approaches (reproduced with permission from ref.

5.1. Immune cell-derived exosomes

Immune cells are essential for the immune system to protect
the human body against disease. However, during cancer,
immune cells can be reprogrammed and promote cancer. It is
expected that cancer immunotherapy will play a significant role
in cancer prevention. Exosome-based immunotherapeutic
developments are very impressive. In the immune system,
several cells secret exosomes such as T cells, B cells, dendritic
cells, NK cells, macrophage cells, mast cells, and neutrophils.
Mast cells are part of innate immunity. Mast cell-derived exo-
somes are related to miRNA and support cellular communica-
tion and cell maturation.®”>* These cell population-derived
exosomes promote cancer development and enhance EMT
events in cancer.”*® Mast cell device exosomes are also capable
of developing an immune response.’” Mast-cell exosome-based
cancer therapy requires further research. Natural killer (NK)
cells are a major population of cells involved in the immuno-
surveillance system in the human body and develop an anti-
tumor response.”® NK cells release cytotoxic EVs and play

RSC Adv, 2024, 14, 30807-30829 | 30811
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a role in the inhibition of tumor growth.*** NK cell-derived treatment is impressive.*® Tumor associated macrophage-
exosomal miRNA-186 suppresses tumor development.®® The derived exosomes promote cancer development.®® In pancre-
therapeutic potential of NK cell-derived exosomes in cancer atic cancer, miRNA-510 transported via macrophage exosomes
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tumor xenografts after treatment with the indicated CAR exosome treatment with or without blocking recombinant antigen, and (h) cancer cell
lines or patient-derived tumour tissue fragments established as subcutaneous xenografts (reproduced with permission under Creative Commons

CC BY 4.0 license from ref. 74 Copyright@2019 The Authors).

enhances cancer development.*”” The most interesting fact
about macrophage exosomes is related to drug resistance
development.®® In cancer, M2 polarization (a subpopulation of
macrophages) promotes angiogenesis and metastasis. One
interesting fact is that M1 (a subpopulation of macrophages)
derived exosomes show anti-cancer activity.*® Neutrophil-
derived exosomes inhibit cancer proliferation and metas-
tasis.” B-cell-derived exosomes are an unexplored domain of
exosome biology. Myeloid suppressor cell-derived exosomal
miRNA-126 develop chemoresistance and promote metastasis.”
Dendritic cells (DCs) are a major cell population for antigen
presentation in the immune system and activate the T cell-
mediated immune response. DCs-derived exosomes have been
used in cancer vaccine development.” T cells are a vital cell
population in cell-mediated immunity in humans. T cell-
derived exosomes enhance the anti-tumor response via Tc
(cytotoxic T cell).” CAR T cell therapy is a promising approach

© 2024 The Author(s). Published by the Royal Society of Chemistry

in cancer therapy. CAR T cell-derived exosomes (cell-free
therapy) overcome several limitations of CAR T therapy

(toxicity) (Fig. 6).

5.2. Stem cell-derived exosomes

Exosomes derived from mesenchymal stem cells (MSC-Exo) are
known for their anti-inflammatory, regenerative, and immu-
nomodulatory properties. MSCs perform tissue healing and
immunoregulatory tasks by secreting paracrine substances
such as exosomes and MVs.”>”® Stem cell-derived exosomes
represent a cell-free approach in cancer therapeutic develop-
ment (this is more effective compared to stem cell therapy).””
Exosomes derived from umbilical cord MSCs, adipose MSCs
also have huge therapeutic benefits, such as tissue regeneration
and even tumor progression. The analysis of exosomes from the
umbilical cord and MSCs has led to important information,
which states that exosomes from these sources have an

RSC Adv, 2024, 14, 30807-30829 | 30813
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Fig.7 Stem cell-derived exosomes in cancer therapy. (a) Schematic overview of the exosome production process, (b) western blot of cell lysate
(cells) and exosomes (exo). To confirm the purity of the exosomes, positive exosomal markers CD63, syntenin and CD9 and negative exosomal
markers vinculin (Vinc.) and calreticulin (Calr.) and B-Actin (actin) were analyzed, (c) scanning electron micrograph of purified exosomes, and (d)
size distribution of exosomes determined by insights showing that the highest abundance of particles was below 200 nm. (e) Hoechst-stained
MenSC on BioNOC Il carrier, showing a typical confluence for exosome production. (f) Yield of purified exosomes in PBS as particles (part) per mL
of initial cell culture supernatant. Tumor growth and angiogenesis is significantly reduced by exosome treatment. (g) Scheme of experimental
design. Tumors were induced with four weeks of DMBA treatment and four injections of exosomes were administered every 3—4 days, (h) and (i).
Tumor growth in mm? tumor volume and relative tumor growth indicating days of exosome treatment. Control tumors are shown as triangles
and exosome treated tumors as circles. (j) Histological sections of tumors at day 25 (end-point) with Hematoxylin and eosin stain (H&E), and (k)
Dextran-Fitc (green), VE Cadherin (red) and Hoechst (blue) stained histological sections of tumors at day 25 (end-point) (Reproduced with

permission under Creative Commons CC BY 4.0 license from ref. 93 Copyright@2019 The Authors).

immunomodulatory effect. Taxol-treated exosomes from
MSC544 exhibited cytotoxicity in cancer cells and showed
significant tumor growth inhibiting activity.”® Adipose stem cell
derived exosome-mediated miRNA-124 exhibited wound heal-
ing activity via Wnt signalling pathways.” Exosomes loaded
with paclitaxel that were extracted from prostate cancer showed
relatively higher cytotoxic levels than autologous prostate
cancer cells.*** During cancer development, TME-related MSCs
and exosome-mediated cell-to-cell communication develop
a complex relationship (cancer-promoting and cancer heal-
ing).*> MSCs are used in inflammation-related to colon cancer
treatment.®® Inflammation is a key event in tumor develop-
ment.** Escaping immune surveillance promotes cancer devel-
opment.** In cancer, TME-related MSCs promote cancer stem
cell development.®*® MSCs derived exosomes miRNA-16 suppress
angiogenesis via down relation of VEGF.* In the in vitro model,
MSCs-mediated miRNA100 transport inhibits the angiogenesis
of breast cancer.®® Bone marrow MSCs-derived exosomes
miRNA-23 promote breast cancer.** In prostate cancer, exo-
somes from MSCs carrying miR-145 suppress cancer cell
proliferation and enhance apoptosis.” Bone marrow MSCs-
derived exosomes reduce lung cancer metastasis.”® Research

30814 | RSC Adv, 2024, 14, 30807-30829

into MSCs exosomes indicates that modified stem cell-derived
exosomes are more promising for cancer therapeutic develop-
ment.”” Stem cell exosome-based cancer healing is depicted in
Fig. 7.

5.3. Plant-derived exosomes

Plant-derived exosomes are a natural source of exosomes.
Multiple fruits, vegetables, and several parts of plants are the
source of plant exosomes. Plant-derived exosomes (PDExo) carry
large amounts of anti-oxidant, anti-inflammation, and anti-
tumor regulatory molecules.®* In cancer, CRISPR-based gene
editing shows a significant outcome. PDExo-based CRISPR
transport develops an impressive cancer therapeutic
approach.®® PDExo-based drug delivery for targeting cancer cells
is very impactful.®® Toxicological expect PDExo is better
compared to stem cells and immune cells-derived exosomes.*®
Black grape derived exosome-based oral cancer therapeutics are
showing effective results in a clinical trial.” PDExo metabolites
have a significant role in anti-cancer activity.”® Ginseng-derived
EVs promote M1 polarization-based anti-cancer activity.*® Den-
dropanax morbifera and Pinus densiflora plant extract-derived

EVs show effective anti-cancer potential against breast

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Plant-derived exosomes in cancer inhibition. (a) Plant exosomes in the sucrose gradients after ultracentrifugation, (b) TEM imaging (scale
bar: 100 nm), (c) AFM imaging, (d) hydrodynamic particle size distribution, (e) lipid compositions, (f) protein summary, (g) KEGG annotated
statistical charts, (h) Go secondary classification statistical charts of plant exosomes, (i) flavonoids, and (j) polyphenols in plant exosomes. In vitro
anti-tumor effects of plant exosomes, (k) cytotoxicity of plant exosomes against various tumor cell lines after co-incubation with plant exo-
somes, () pro-apoptotic properties of TLNTSs after co-incubation with plant exosomes, (m) CLSM images of 4T1 cells stained with DCFH-DA after
co-incubation with plant exosomes for 4 and 8 h, (n) ROS fluorescence intensity of 4T1 cells after co-incubation with plant exosomes for 4 and
8 h, respectively. (o) Mitochondrial membrane potential changes in 4T1 cells (scale bar: 50 um), (p) TLNTSs restrained cell cycle progression in 4T1
cells after co-incubation with plant exosomes for 12 and 24 h, respectively, (q) western blot analysis of 4T1 cells receiving the treatment of plant
exosomes for 48 h. Cyclin A, cyclin B and cyclin D proteins were probed. GAPDH was probed to ensure the equal loading of total proteins in each

lane (reproduced with permission under Creative Commons CC BY 4.0 license from ref. 103 Copyright@2023 The Authors).

cancer.'® Citrus limon-derived exosomes inhibit tumor cell
growth via activation of the tumor necrosis factor (TNF)
receptor.’” PDExo-mediated miRNA17 transport shows effec-
tive anti-brain cancer activity in mice models.'*> Plant exosome-
based hybrid exosome development becomes a smart approach
for therapeutic development.”® Some of the questions are still
unsolved such as the environmental impact on PDExo and
PDExo phytochemical cargos working principle. Ongoing clin-
ical trials determine the future clinical therapeutic applications
of plant-derived exosomes. The plant exosome-based anti-
cancer activity is depicted in Fig. 8.

5.4. Bacteria-derived exosomes

Bacteria-derived exosomes (Fig. 9) are a new chapter in cancer
therapeutic development. The high-purity cellulose-based BC +
Exos membrane displayed a three-dimensional interconnected
structure and exhibited acceptable mechanical characteristics.
Degeneration was not observed. The BC + Exos membrane
demonstrated biocompatibility in vivo and no cytotoxicity. Both

© 2024 The Author(s). Published by the Royal Society of Chemistry

peridural adhesions and epidural fibrosis might be prevented
by the BC + Exos film. According to the latest research, post-
operative epidural fibrosis and adhesion can be avoided by
using the BC + Exos membrane.'*

6. Exosomes in drug delivery

EVs are lipid-bound vesicles that originate from cells and play
diverse roles in regulating biological processes.'” Exosomes,
a subtype of EVs, originate from endosomes. It is an efficient
cellular transporter in the cellular system for the genetic
material of drug delivery.'*® Exosome loading approaches are
classified into major groups such as active and passive
methods.’ In breast cancer, exosome-based drug delivery
shows promising results in an in vitro and in vivo model.'*®
Exosome-based cancer-specific antigen delivery promotes
a strong immune response against cancer.'® Exosome-based
drug delivery comes with several advantages (Fig. 10).
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Exosomes loaded with herbal drugs have potential anti- approach.'*® Still, this approach required more research for

cancer activity against ovarian cancer in both in vitro and in vivo
models.”® Tumor-derived exosome-based chemotherapeutic
(DOX) drug delivery has shown effective anti-cancer activity.***
The tripartite motif 3 (TRIM3) protein found in the serum of the
gastric cancer exosome is a potential biomarker and acts as
a therapeutic agent for cancer treatment.”” Lung cancer
antigen-loaded dendritic cell (DC) derived exosome-based
vaccines have shown stability in treatment in clinical trials
(phase I).'** Exosome-based drug delivery to the brain is very
effective.’™ In ovarian cancer, exosome-mediated miRNA-99
developed an aggressive tumor population."*® Exosomes and
magnetic nanoparticle-based modified exosome-based DOX
delivery show promising antitumor activity."*®* RBC-derived EVs
are a promising RNA drug transporter.*”” This approach also
shows effectiveness in cancer therapy. Phosphatidylcholine-
based exosome engineering enhances better exosome uptake
efficiency in tumor cells.*® Dendritic cell-derived exosomes are
the most successful cell-free cancer immunotherapeutic

30816 | RSC Adv, 2024, 14, 30807-30829

better immune response development. This domain carries the
hope of future cancer vaccine-developed efficiency.”*® Anti-
CTLA-4 functionalized DC cell-derived exosomes promote T
cell-mediated anti-tumor response in cancer.** The exosome-
based drug delivery approach is depicted in Fig. 11.

7. Modified exosomes in cancer
therapy

7.1. Exosome surface modification

Modified surface-engineered EVs provide enhanced specificity
with low immunogenic and toxicity for drug transport in target
cells.’***** Exosome release and uptake are influenced by pH."**
Research evidence suggests that tumor derived exosomes
(TEXs) carry a high negative charge on their surface. Surface
modification of EVs holds great promise for clinical applica-
tions.”® DNA aptamer-based exosome surface modification is
an effective clinical theranostic approach.”” Click chemistry

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Advantages of exosome-based drug delivery (reproduced with permission under Creative Commons CC BY 4.0 license from ref. 20

Copyright 2022 The Authors).

offers a promising exosome surface functionalization
method.*”® In this process, the alkaline group is used and is not
affected by surface charge and size of the exosome. The fusion
of click chemistry and exosomes opens new possibilities to
versatile biomedical applications of exosomes.’*® Exosome
surface modification can be conducted via aptamers and gold
nanoparticles to promote cancer cell apoptosis.* In in vitro
imaging and specific drug transportation exosome surface
modification shows a promising impact.”*® Engineered
exosome-based miRNA transport provides a potential cancer
therapeutic tool.”** Interleukin-6 (IL-6) and programmed cell
death ligand-based exosome modification develops a T cell-
mediated anti-cancer response.” Biological and chemical
surface modification approaches for exosomes are described in
Fig. 12.1%

© 2024 The Author(s). Published by the Royal Society of Chemistry

7.2. Chimeric exosomes in cancer therapy

Exosome modification is essential for enhancing specificity,
biocompatibility, stability, and efficiency.'** Modified exosomes
are a smart platform which offer a promising approach for
exosome-based cancer immunotherapy.’** CD47 is an inter-
esting protein that inhibits the accumulation of exosomes on
the tumor side, CD47 knockdown cell-derived exosomes show
promising therapeutic activity against cancer.'*® CD47 is found
on the surface of RBC and it plays a crucial role in anti-
phagocytic response development.**'¥” Exosomes serve as
messengers in the cellular system,*® and are effective drug
delivery tools,"”® but for large-scale production purposes,
scientists have developed the Artificial Chimeric Exosomes
(ACEs) concept.****** Zhang et al.*® developed an innovative
approach by isolating CD47 proteins from the RBC surface and
fusing them with a laboratory synthesised phospholipid bilayer

RSC Adv, 2024, 14, 30807-30829 | 30817
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Fig. 11 Exosome-based drug delivery. (a) The main composition of the EGFP-C1-iRGD-Tyr7-Lamp2b plasmid and an image of iRGD/blank-
Tyr7-EGFP-293T cells using fluorescence microscopy (scale bar =100 um). Representative TEM images and particle size distribution of (b) blank-
Exos, (c) iRGD-Exos, (d) western blotting analysis of exosome marker proteins (TSG101, CD9 and Alix) of blank-Exos and iRGD-Exos, (e) blank-
Exos-131l, (f) iRGD-Exos-131l and (g) Dox@iRGD-Exos-131l, in vitro targeting of iRGD-Exos. (h) Confocal microscopy images of 8505C cells
incubated with PKH26-blank-Exos and PKH26-iRGD-Exos at 4 h. Nuclei were stained with DAPI (blue). Fluorescence from PKH26 (red) and DAPI
(blue) was observed. The scale bar is 10 um. (i) Flow cytometric analysis of PKH26-iRGD-Exos binding to 8505C cells. Exosomes were labelled
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concentrations of iRGD-Exos, (1) 8505C and (m) Hth7 cells were incubated with control medium, iRGD-Exos, Nal31l, blank-Exos-131l, iRGD-
Exos-131l, Dox, Dox@ iRGD-Exos, or Dox@iRGD-Exos-131l. A CCK-8 assay was used to assess cell viability in each group (reproduced with
permission under Creative Commons CC BY 4.0 license from ref. 122 Copyright @ 2022 The Authors).

membrane to develop chimeric exosomes. ACEs-based DOX CRISPR/Cas9 loaded in EVs via the incubation method.™*
(doxorubicin) drug delivery shows effective anti-cancer activity ~Cancer cell-derived exosome-based CRISPR/Cas9 delivery
(Fig. 13.).'***>'%* ACEs show promising anticancer activity in in  promotes cancer cell apoptosis.'*®* However, caution should be

vitro and in vivo models. exercised when using cancer-derived EVs as they may contain
various molecules that could promote tumor growth and
7.3. [Exosome-based CRISPR delivery metastasis. Compared to tumor exosomes, epithelial exosomes-

CRISPR/Cas9 is a promising gene editing tool."* This method mediated CRISPR/Cas9 delivery is safer and more effective.'>
s EVs-based CRISPR/Cas9 transport has shown promising

outcomes in liver disease.”™ CAR EVs and CRISPR/Cas9
combination has shown significant effects against B cell
malignancy.*** Exosome based CRISPR delivery is described in
Fig. 14.

has some limitations such as developing potential mutations,
non-specificity, and immunogenicity."*® EVs-based CRISPR/
Cas9 transport gives effective outcomes in in vitro and in vivo
models.** The cell-free loading method (EVs loading) effectively
delivers drugs and CRISPR/Cas9 in the targeted cells.**” The
electroporation method used RNA molecules loading in EVs.*®

30818 | RSC Adv, 2024, 14, 30807-30829 © 2024 The Author(s). Published by the Royal Society of Chemistry
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T —— In cancer therapy, liposomes are a promising drug delivery
DiA vaccine(e.g-COE3-OVA) tool.”® The exosome and liposome hybrid concept arises from
the need for more specific cancer targeting. Exosome and
liposome hybrids develop effective cellular transport which
carries some impressive features such as low toxicity, biocom-
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Popids” 8. Clinical trials
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Several exosome-based clinical trials are ongoing worldwide.
Based on this review article theme, we have listed only thera-

Fig. 12 Exosome surface modification (reproduced with permission . .
peutic exosome trials (Table 1).

under Creative Commons CC BY 4.0 license from ref. 123 Copyright @
2021 The Authors).
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0. Challenges and future prOSpeCtS of their appropriate accuracy requires supplementation with

. h methods like immunocapture and density gradient centrifuga-
€xosomes In cancer researc tion.”” Enriched clinical protocols are essential for phase II

trials to evaluate exosomes' efficacy on a larger scale. Diverse
standards across industries for exosomes products highlight
the significance of purification methods, which impact miRNA
and the composition of their surface proteins. Exosomes’
heterogeneity is regulated with the help of molecular variation,
dynamic origin, and size.*” To resolve problems associated with
heterogeneity,* used a microfluid**® based platform for proper
exosomes isolation. Single exosome profiling and exosome
barcoding uncover the overall diversity of exosomes. Single
exosome assays, pertaining to point-of-care testing principles,
offer a high performance with simplicity and make it easy for
clinical adoption and commercialization on multiple

The intricate nature of exosomes presents opportunities for the
development of clinical-grade products, yet their diverse
subgroups require comprehensive studies for their character-
ization and definition as biomarkers. Standardizing the analysis
and manufacturing of exosomes for clinical use remains
a challenge due to the unresolved irregularities in isolation
methods and experimental procedures. In spite of their poten-
tial in regenerative medicine, challenges persist for exosomes,
particularly concerning their informative value, which pivots
around their concentration. While methods like ultracentrifu-
gation and tangential flow filtration can successfully be used,
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platforms.™ Exosomes carry diverse molecular cargo as

a reflection of their parental cell properties. However, under-
standing their effects and mechanisms of their action remains
challenging. The applicable and accurate delivery of exosomes
as therapeutics is obstructed by their short half-life, poor zeta
potential, and uncertain optimal doses.'®® Hence, comparing
exosome types, properties and cargo for therapeutic effective-
ness is necessary for forthcoming applications.'*

10. Conclusions

In summary, the study of exosome-based therapeutics offers
significant promise for medical interventions. Exosomes, with
their unique biological properties, have versatile functions
across various medical fields. Their flexibility holds potential

© 2024 The Author(s). Published by the Royal Society of Chemistry

for groundbreaking advancements in cancer therapy and
multiple medical domains. Exosomes show immense potential
in targeted cancer interventions by delivering therapeutic cargo
directly to cancer cells. Mesenchymal stem cell-derived exo-
somes, known for their regenerative properties, also have
immunomodulatory effects and can be tailored for cancer
therapy. However, several challenges need to be addressed to
fully realize the potential of exosome-based therapies. These
include the standardization of isolation techniques and
heterogeneity in source, size, and molecular diversity. However,
these issues can be addressed through single exosome profiling,
exosome barcoding, and advanced nanotechnology, which
enable progress toward precision oncology. Additionally,
concerns regarding immunogenicity and ethical considerations
about the use of exosomes need to be addressed after careful
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Table 1 Clinical trials of therapeutic exosomes”
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Review

Clinical trial ID Status Cancer Exosomes source Clinically significant Funding
NCT01294072 Recruiting Colon cancer Plant exosomes Phase I clinical trial University of Louisville
investigating the ability of
plant exosomes to deliver
curcumin to normal and
malignant colon tissue
NCT03608631 Active, not Metastatic pancreas Mesenchymal stromal  Phase I study of M.D. Anderson cancer
recruiting cancer cells-derived exosomes  mesenchymal stromal center
(with KrasG12D) cells-derived exosomes
with KrasG12D siRNA for
metastatic pancreas cancer
patients harboring
KrasG12D mutation
NCT01159288 Completed Unresectable non small Vaccination with tumor Phase II trial of Gustave roussy, cancer
cell lung Cancer antigen-loaded a vaccination with tumor campus, Grand Paris
dendritic cell-derived antigen-loaded dendritic
exosomes cell-derived exosomes on
patients with unresectable
non small cell lung cancer
responding to induction
chemotherapy
NCT06245746 Not yet Acute myeloid leukemia Umbilical cord derived A single-center, prospective Wuhan Union Hospital,
recruiting (after achieving mesenchymal stem trial of the safety and China
complete remission) cells exosomes efficacy of UCMSC-Exo in
(UCMSC-Ex0) consolidation
chemotherapy-induced
myelosuppression in
patients with acute myeloid
leukemia after achieving
complete remission
NCT01668849 Completed Oral mucositis Edible plant (grape) Preliminary clinical trial University of Louisville

associated with
chemoradiation
treatment of head and
neck cancer

“ Source: https://clinicaltrials.gov/.

consideration. To resolve challenges like these, ongoing
research activities focus on refining isolation methodologies,
enhancing scalability, and developing standardized protocols.
Enhancements in engineering exosomes to optimize their
therapeutic cargo and improve targeting specificity also repre-
sent assuring opportunities. The therapeutic potential of exo-
somes derived from various sources like plant -cells,
mesenchymal stem cells, immune cells and other -cells
addresses numerous challenges in cancer therapy like toxicity
and immunogenicity etc. Hybrid exosomes offer effective
cellular transport with advantages such as low toxicity, high
biocompatibility, reduced immunogenicity, increased stability,
and the ability to cross biological barriers, opening new possi-
bilities in precision cancer medicine. The collective efforts of
researchers, clinicians, and stakeholders are crucial for estab-
lishing guidelines and forming ethical frameworks to ensure
the responsible integration of exosome-based therapies into
clinical practice. As the field progresses, it is crucial to adopt
interdisciplinary collaborations, and capitalize technological
innovations. The collaborative commitment to overcome these

30822 | RSC Adv, 2024, 14, 30807-30829

exosome

investigating the ability of
plant exosomes to abrogate
oral mucositis induced by
combined chemotherapy
and radiation in head and
neck Cancer patients

challenges will make way for exosomes as versatile and prom-
ising therapeutics in the field of medicine. In this process,
exosomes will revolutionize the way we approach disease
treatment and personalized medicine.
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