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Efficient synthesis of amides from secondary
alcohols and CH3zCN promoted by Fe(NOz)3-9H,O
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The Ritter reaction is the most attractive method for synthesizing amides, and various acids have been used
to promote this reaction. Compared to these acids, Fe(NOs)3-9H,O is less toxic and costly, and it shows
relatively high Lewis acidity and great catalytic activity. In this study, a simple and efficient protocol
involving Fe(NOs3)3-9H,0 as an additive for the synthesis of amides was developed. Various secondary
alcohols could be reacted with CH3zCN to obtain their corresponding products, with CH3CN being used
as a reactant and solvent. This protocol was found to be applicable to a wide range of alcohols and
nitrile substrates. In general, it was found that substrates containing electron-donating-groups offered
the corresponding amides in good to excellent yields, while those with electron-withdrawing groups
offered low to moderate yields. Meanwhile, this approach was scalable to the gram level, offering an

rsc.li/rsc-advances

Introduction

The amide group is an important functional group in medicinal
and synthetic chemistry. It is used as a functional molecule in
bioactive natural products, clinical drugs, organic catalysts,
DNA damage probes, and macromolecules.' The conventional
protocol to form amide bonds involves acylation of amines by
various species such as carboxylic acids, acid chlorides, and
anhydrides.” There are alternative protocols to prepare amides,
such as the Schmidt reaction,® Schotten-Baumann reaction,*
Ugi reaction® and Ritter reaction.® Among these, the Ritter
reaction is the most attractive method and involves the reaction
of a nitrile with an alcohol or olefin promoted by a strong acid,
like sulfuric acid.” The major drawback of the traditional Ritter
reaction is that it is promoted under harsh conditions with
a strong Bronsted acid or a Lewis acid, which results in a narrow
substrate scope and side reactions. To avoid the need of using
a strong mineral acid, various homogeneous and heteroge-
neous catalysts have been developed.® A variety of acidic
reagents have been developed for the Ritter reaction from
secondary alcohols, such as FeCl;/AgSbFg,** Ca(OTf),/Buy-
NPF,,* BiBr;,* zirconium perfluorooctanesulfonate,® FeClO,/
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attractive opportunity for further application in organic synthesis.

Si0,,%  y-Fe,0;@8Si0,-HClO,,¥  2,4-dinitrobenzenesulfonic
acid,® tropylium,” MWCNT-CSP,* Amberlyst®-15(H),¥ TfOH,*
L,* and PMA-SiO, (ref. 8m) (Table 1). However, many of these
catalysts suffer from at least one of the following or other issues:
being corrosive, moisture-sensitive, flammable, expensive,
complex to use, and difficult to prepare; requiring extended
reaction times; and yielding competing side reactions.
Recently, iron catalysis has been considered as an alternative
not only because of its lower toxicity and cost compared to other
metals but also because its useful properties that have been
utilized in many transformations.® Iron-catalyzed C-C,"* C-N*"
and C-O" bond-forming reactions have recently been devel-
oped. In 2009, Sébastien Reymond reported that FeCl;-6H,0
(10 mmol%) could catalyze the reaction of alcohol with nitrile to
form amide in a sealed tube at 150 °C with H,O (2 equiv.)." In
2012, Basavaprabhu and Sureshbabu described the reaction of
cyanamide with alcohol catalyzed by FeCl; (30 mol%) in
dichloromethane.™ Further, an efficient and mild methodology
was reported for the synthesis of amides through the reaction of
nitriles with esters catalyzed by Fe(ClO,);-H,0.*
Fe(NO3);-9H,0, in particular, displays several advantageous
features. It shows relatively high Lewis acidity and great cata-
Iytic activity, and it is an inexpensive, non-toxic and readily
available inorganic oxidant; it has been used as an efficient
oxidant,'® nitro source and catalyst in cross-coupling reac-
tions.*® Meanwhile, in 2009, Jonathan M. J. Williams reported
that Fe(NO3);-9H,O could catalyze the formation of amides via
the addition of amines to nitriles."” Thus, we proposed that
Fe(NO3);-9H,0 might have the potential to induce the Ritter
reaction for alcohols and nitriles. Compared with the previous
reports of reactions with other additives, this study shows that

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Reaction conditions in previous reports on 1-phenylpropanol with CHzCN

Entry Additive Reaction conditions Yield/% Reference
1 FeCl, (25 mol%), AgSbF, (75 mol%) DCE, 100 °C 87 8a

2 Ca(OTf), (5 mol%), Bu,NPF, (5 mol%) 5 min, MW, 120 °C 94 8b

3 BiBr; (10 mol%) H,0 (30 pL mmol %), 48 h, 120 °C 86 8¢

4 Bis(pentamethylcyclopentadienyl) zirconium-perfluorooctanesulfonate (5 mol%) Solvent-free or DCE, 6 h, 80 °C 88 8d

5 v-Fe,0;@8Si0,-HClO, (12.5 mmol%), and 2.5 mol% of HCIO, 4 h, RT 96 8e

6 SiO,-supported FeClO, (100 mol%) 5 min, 100 °C 95 8f

7 2,4-Dinitrobenzenesulfonic acid (10 mol%) 14 h, 80 °C 82 8g

8 Tropylium (10 mol%) Water, 150 °C, MW 92 8h

9 MWCNT-CSP (50 mg) 24 h, 100 °C 75 8i

10 Amberlyst®-15(H) (5 g) 4.5 h, 80 °C 88 8f

11 TfOH (20 mol%), SDS (10 mol%) Water, 200 °C, 5 h 82 8k

12 1, (20%) H,0 (2 eq.), 110 °C, 4 h 85 8l

13 Phosphomolybdic acid-SiO, (0.5 mol%) 70°C, 5.5 h 86 8m

14 Fe(NO3);-9H,0 (100 mol%) 3 h, 80 °C 98.8 This work

the synthesis of amides from secondary alcohols and CH;CN
proceeded at a relatively low temperature (80 °C) and short time
(3 h) with Fe(NO;);-9H,O as the additive, giving the corre-
sponding products in high to excellent yields for substrates
containing electron-donating groups and low to moderate
yields for substrates containing electron-withdrawing groups.
In addition, this protocol was readily scaled up to 0.5 grams
without loss in its efficiency.

Results and discussion

In our initial studies, we chose to compare the performances of
various loadings of Fe(NO;);-9H,0 for the reaction of 1-phe-
nylethanol (0.5 mmol) in 3 mL CH;CN. Amide was formed in
89.4%, 98.8%, and 94.6% GC yield for catalyst loading of,
respectively, 0.375 mmol, 0.5 mmol and 0.625 mmol at 80 °C
with a reaction time of 3 h (Table 2, entries 1-3). That is, loading
too much or too little catalyst resulted in a lower yield of
product (Tables 2 and S1t). Then we modified the reaction
temperature; compared to that at 80 °C, a sharply lower yield
occurred at 65 °C. We also tested other ferric salts; FeBr; offered
a low yield and FeCl; offered a similar level of catalytic activity
as did Fe(NO3);-9H,O (Table 2, entries 7-8). Other types of
metallic nitrates were also tested. Some other nitrates could
convert 1-phenylethanol to amide. For example, when using
Cr(NOs);5-9H,0 as the additive, amide was produced but with
a yield of 69.2%, which is lower than the yield obtained when
Fe(NO3);-9H,O0 is used as the additive (Table 2, entry 9). Simi-
larly, Ce(NO3);-6H,0 and Cu((NO3);-2.5H,0 successfully con-
verted the 1-phenylethanol to amide but their catalytic
performance was significantly decreased (Table 2, entries 10,
12). Co(NO3);-6H,0 and Cd(NO);-9H,0 showed no catalytic
activity (Table 2, entries 11, 13). The order of activity of the
different tested nitrates was Fe(NO3);-9H,0 > Cr(NO3)3-9H,0 >
Ce(NO;);-6H,0 > Cu((NO3);-2.5H,0 > Co(NO;);-6H,0 =
Cd(NO);-9H,0. We tested the reaction under either an O, or N,
atmosphere; it proceeded smoothly in each case (Table 2,
entries 14-15). Overall, Fe(NOs);-9H,0 was found to be the best
additive, and the best reaction conditions involved carrying out

© 2024 The Author(s). Published by the Royal Society of Chemistry

the reaction at 80 °C for 3 h with 100 mol% Fe(NO;);-9H,0 in
open air.

With the standard conditions in hand, we then turned our
attention to expanding the scope of this protocol, initially
investigating the reaction of various types of secondary alcohols
with CH;CN. In general, it was found 1-phenylethanol, having
an electron-donating group, offered the corresponding amides
in good to excellent yields, while having an electron-
withdrawing group offered low to moderate yields.

Analogues with different lengths of the alkyl group at the p-
position of the methyl group were successfully transformed to
the corresponding products with good to excellent yields
(Table 3, entries 1-3). The results also showed that the length of

Table 2 Optimization of reaction conditions®

OH HN/L

0]

©)\ additive ©)\

+ CHsCN -

T/Time

Entry Catalyst (mmol) T/°C Time (h) Yield (%)
1 Fe(NO3);-9H,0(0.375) 80 3h 89.4
2 Fe(NO3);-9H,0 (0.5) 80 3h 98.8/96.2”
3 Fe(NO;);-9H,0 (0.625) 80 3h 94.6
4 Fe(NO3);-9H,0 (0.5) 65 3h 71.9
5 Fe(NOs);-9H,0 (0.5) 80 2h 81.7
6 Fe(NO3);-9H,0(0.5) 80 4h 95.3
7 FeBr; (0.5) 80 3h 74.7
8 FeCl; (0.5) 80 3h 98.3
9 Cr(NO;);-9H,0 (0.5) 80 3h 69.2
10 Ce(NO;);-6H,0 (0.5) 80 3h 39.7
11 Co(NO3);-6H,0 (0.5) 80 3h NR
12 Cu((NO3);2.5H,0 (0.5) 80 3h 19.1
13 Cd(NO);-9H,0 (0.5) 80 3h NR
14 Fe(NO3);+9H,0(0.5) 80 3h 93.5°
15 Fe(NO;);-9H,0 (0.5) 80 3h 94.3¢

“ Conditions: substrate (0.5 mmol), CH;CN (3 mL), GC yield. ” Isolated
yield. ¢ Under O,. ¢ Under N,.
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Table 3 Ritter reaction of various secondary alcohols with CHsCN using Fe(NO3)s-9H,0 as an additive®
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OH HNg
Fe(NO3)3.9H,0
X X
R0 Re . CHON ——— > f Rz

[¢]

= =
Entry Substrate Product/yield
OH
HN/KO
1 ©)\
96.2%
OH
©)\/ HNLO
2 ©/k/
95.1%
OH
HN/gO
3 ©)\N
93.5%
OH
HN/gO
“ CO
85.7%
OH
HN/gO
5 ©)Y
87.5%
OH
©)< HN/kO
6 o
77.1%
OH
O OJ\NH O
7 ®
O 43.1%
OH
/@)\ HN/KO
8 /@)\
HsCO
HiCO 86.5%/96.5%"
OH
@f\ HN/KO
9 @\)\
OCHs
OCHs 81.6%/85.6%"
OH
HsCO HN/kO
10 Hsco\©/K
67.2%/83.4%"
OH
HN/kO
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OH o}
T
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Table 3 (Contd.)

OH
Fe(NOs3)3.9H,0
R1—©)\R2 © OHON ———p L R
= =

Entry Substrate Product/yield

w

J

I
zZ

%

OH
95.6%
OH
HN/KO
: Jon
97.1%
OH
HN/kO
15 é/K
93.7%
OH
\©)\ HN/kO
16 \©)\
95.2%
OH
jon .
v o
Cl
cl 61.3%
OH
HN/kO
. jon
CF;
CF3 <1%
OH
= =
90.1%
OH /L
HN o}
MeO 49.2%/88.7%"
OH
HN/KO
21

3
)

76.4%
OH

. foge!
Cl

OH

>/._

I
z
o

!

C151.0%

I
>4
J

W
3
)

17.4%

OH

. "

“ Conditions: substrate (0.5 mmol), Fe(NO;);+9H,O (0.5 mmol), CH;CN (3 mL), 80 °C, 3 h, isolated yield. ? 65 °C, GC yield. ¢ Substrate (4.1 mmol),
Fe(NO;);-9H,0 (4.1 mol), CH;CN (15 mL), 80 °C, 3 h, isolated yield.

Q}_

94.6%°
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alkyl group did not show any obvious effect on the reaction: that
is, when increasing the alkyl-group length, the yield of corre-
sponding product did not show an apparent decrease (Table 3,
entries 1-3). 1,2,3,4-Tetrahydronaphthalen-1-ol, ie., the
substrate with a cyclic substituent, offered an 85.7% yield of the
desired product (Table 3, entry 4).

Meanwhile, steric hindrance did apparently affect the reac-
tion: 2-methyl-1-phenylpropanol, with a sterically hindering
group, was transformed into the desired product in a relatively
low yield (87.5%, Table 3, entry 5); the yield when using 2-
phenyl-2-propanol was even lower (77.1%, Table 3, entry 6) due
to an even stronger steric hindrance effect. For the analogue
with another type of substituent at the position B to the methyl
group, the Fe(NO3);-9H,0-catalyzed Ritter reaction led to the
expected amide in low yield (Table 3, entry 7).

Our results show that reactions with secondary alcohols
having strongly electron-donating groups should be carried out
at a lower temperature. We observed relatively low product
yields when reacting 1-(4-methoxyphenyl) ethanol, 1-(3-
methoxyphenyl) ethanol, and 1-(2-methoxyphenyl) ethanol as
substrates under the standard conditions (Table 3, entries 8-
10), with some unwanted side reactions having occurred. When
this transformation was carried out at 65 °C, the desired
product was obtained in a satisfactory yield (Table S2%). This
result was similar to that for one-pot synthesis of amides cata-
lyzed by Zn(ClO,),-6H,0.* For the substrates substituted with
aromatic groups, the yields of the desired amides were more
than 90%. The substrates 1-(2-naphthyl) ethanol, 1-(1-naphthyl)
ethanol and 1-(4-biphenylyl) ethanol were converted to their
corresponding products with high yields of 97.3%, 90.2% and
95.6%, respectively (Table 3, entries 11-13). The improved
reactivities for these substrates may be attributed to the
electron-donating effect of the phenyl group linked to the aryl
ring.

Reactions of the substrates each with a weakly electron-
donating group on the phenyl ring also gave the correspond-
ing products in excellent yields (Table 3, entries 14-16). The
results of ~-OCH;- and -CH;- substituted substrates (Table 3,
entries 9 and 15) show that the substituted group in the adja-
cent position might have decreased the reactivity to some
extent, owing to the steric hindrance effect.

For the two tested electron-withdrawing-group-containing
substrates, markedly decreased yields of the desired products
were observed; a lower yield was noted for the more strongly
electron-withdrawing group (Table 3, entries 17-18), which is
attributed to the reduction of electron density on the reactive
site of the substrate.

We further tested this protocol with diaryl secondary alco-
hols, and a similar trend as above was observed: the substrates
each with an electron-donating group offered the correspond-
ing amides in good to excellent yields, while the electron-
withdrawing group offered low to moderate yields. As shown
in Table 3, the diaryl secondary alcohol 1,1-diphenylmethanol
could be transformed to the amide in a high yield (90.1%). The
product yield for the diaryl secondary alcohol with a methoxyl
group on one side of the substrate was also high when using
a lower reaction temperature (Table 3, entry 19). Meanwhile,

29592 | RSC Adv, 2024, 14, 29588-29594
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moderate product yields were found when using a substrate
with a weakly electron-withdrawing group (-Cl) on one side and
when with this group was on both sides (Table 3, entries 21-22).
However, for the strongly electron-withdrawing group (-CFs),
the according product was offered in a low yield (Table 3, entry
23, 17.4%). Furthermore, we checked whether this approach
could be scaled up to a gram scale: a 94.6% isolated yield of
corresponding amide was easily prepared in one batch from
0.5 g of 1-phenylethanol when using Fe(NO3);-9H,O as an
additive under standard conditions.

Encouraged by the developed protocol for synthesizing
amides from various secondary alcohols with CH;CN, the scope
of the reaction was extended to other types of liquid nitriles. The
results, summarized in Table 4, showed that this protocol is
suitable to other types of liquid nitriles. Specifically, we initiated
this aspect of our study by performing the catalytic acetylation
of the representative substrate, 1-phenylethanol, using five
liquid nitriles as the solvent and reactant. A good range of
functional groups was tolerated in this reaction protocol,
including a double bond between carbons (Table 4, entry 1),
halide (Table 4, entry 4) and ether bond (Table 4, entry 5).
Meanwhile, a nitrile substrate containing an N-heterocyclic
system, namely pyridine, did not survive our reaction condi-
tions, giving the hydrolysis product to some extent
(picolinamide).

Based on our results, a possible albeit speculative mecha-
nism for the formation of the amides was derived and is shown
in Scheme 1. According to this mechanism, 1-phenylethanol
can be polarized by Fe(NO;3); to generate the benzylic

Table 4 Ritter reaction of 1-phenylethanol with various nitriles using
Fe(NO3)3-9H,0 as an additive “

R

OH HN/gO

Fe(NO3)3.9H,0
+ RRCN ———>

Nitrile Product/yield

B Q 91.0%
NCT X
1 @A\NJ\/
N
9 96.0%
OO
N
‘N\ CN Q N NR
3 - v
P
o
“~ l\NJ\/C] 93.4%
N

' J

o

¢ Conditions: substrate (0.5 mmol), Fe(NOs);-9H,0 (0.5 mmol.), nitrile
(3 mL), 80 °C, 3 h, isolated yield.

92.6%

5 H,CO” CN OCH;

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Possible mechanism for the formation of the amides.

carbocation B. Then, B would be trapped by MeCN to produce
intermediate C, which would further hydrolyse to the amide
with H,O.

Conclusions

We developed an efficient, green and convenient protocol for
synthesizing amides from secondary alcohols using Fe(NO3)s;-
-9H,0 as the mediator, with CH;CN as the N-source and
solvent. In this process, various alcohols were successfully
reacted with CH;CN to form the corresponding products. Here,
substrates with electron-donating group offered the corre-
sponding amides in good to excellent yields, while those with
electron-withdrawing groups offered low to moderate yields.
Additionally, the reaction proceeded smoothly when other types
of liquid nitriles were used as the solvent and reactant. More
importantly, this protocol is also applicable to gram-scale
synthesis. We are hopeful that this methodology will be very
useful in works involving organic synthesis in general and the
Ritter reaction specifically.
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