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Fabrication of a novel graphene oxide based
magnetic nanocomposite and its usage as a highly
effectual catalyst for the construction of N,N’-
alkylidene bisamidesT
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At first, a novel graphene oxide-based magnetic nanocomposite namely Si-propyl-functionalized
N NLN? N2-tetramethylethylenediamine-N%, N2-diium hydrogen sulfate anchored to graphene oxide-
supported FezO4 (nano-[GO@FesO4@R-NHMe;][HSO,4]) was fabricated. After full characterization of the
nanocomposite, its catalytic performance was examined for the solvent-free construction of N,N'-
alkylidene bisamides from aryl aldehydes (1 eq.) and primary aromatic and aliphatic amides (2 eq.), in
which the products were acquired in short times (15-30 min) and high to excellent yields (89-98%).
Nano-[GO@Fez04@R-NHMe,][HSO,4] could be magnetically isolated form the reaction medium, and

rsc.li/rsc-advances

1. Introduction

Graphene oxide (GO) is made from flat sheets with hydroxyl,
epoxide and carboxylic acid groups; in these sheets, carbon
atoms with sp” and sp® hybridization are placed into a honey-
comb network. Besides the unique characteristics of GO such as
high structural strength, appropriate durability (chemical and
thermal), safety, high adsorption capacity, high hydrophilic
nature, high thermal conductivity and suitable mechanical
properties, it can be readily functionalized using inorganic
(magnetic/non-magnetic) and organic components to fabricate
GO derivatives for different uses.* For example, GO and its
functionalized derivatives (magnetic nanocomposites, etc.) have
been used for treatment of hazardous environmental contami-
nants," targeted delivery of quercetin to cancer cells,” sustain-
able water purification,® extracting and determining metoprolol
in exhaled breath condensate,* removing dyes from wastewater®
and cancer therapy.® They have been also applied as adsor-
bents,” heat exchangers,® bioinks for three-dimensional
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reused three times without remarkable loss of catalytic activity.

mesenchymal stem cell printing® and biosensors.' In organic
synthesis, GO and its derivatives have been utilized as effica-
cious catalysts.">*

The high importance and numerous applications of
magnetic nanomaterials have been reported in the
literature.*”">* Some advantages of these materials include
safety, suitable thermic and chemical durability, easy detaching
from the process reactor, non-corrosiveness, effectiveness and
aptitude to graft with diverse inorganic and organic compo-
nents for a wide range of usages.>”*”>* It is worth noting that in
magnetic nanocomposites based on GO, the advantages of
magnetic nanomaterials and graphene oxide have been studied.

A valuable, useful, advantageous and applicable protocol,
which has been extensively utilized for the construction of
numerous organic substances, is the use of solvent-free
conditions.>*® Utilization of this protocol not only is in accor-
dance with the principles of green chemistry, but it can also
lead to cleaner reaction medium, easier workup, increasing
yield, decrement of reactor size and decreasing energy
consumption, time and cost.*

Bisamide scaffolds exist in the structure of numerous
industrial and bioactive compounds.”*” For instance, these
compounds have been applied for selective dye uptake,*
selective detection of metal ions,* removal of Hg*" and Pb**
ions** and ampere sensing.*> Moreover, they have been utilized
as additives to control formation of methane hydrate for gas
storage and flow assurance,* highly stable MRI contrast,*
tyrosinase inhibitors,* antitumor®® and antiviral®’ agents. A
group of these compounds is the N,N'-alkylidene bisamides,
which have been manufactured through the condensation of
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Scheme 1 The fabrication of NGFRNH.

aryl aldehydes (1 eq.) with primary amides (2 eq.) using
a catalyst.***’

Having the above issues in mind, developing a novel gra-
phene oxide-based magnetic nanocomposite as a catalyst for
the construction of N,N'-alkylidene bisamides can be valuable
and desirable. Herein, we have developed Si-propyl-
functionalized N',N',N* N’-tetramethylethylenediamine-N",N’-
diium hydrogen sulfate anchored to graphene oxide-supported
Fe;0, (nano-[GO@Fe;0,@R-NHMe,|[HSO,] or NGFRNH) to
catalyze the construction of N,N'-alkylidene bisamides.

2. Experimental
2.1. Materials and instruments

The details of the materials and instruments used have been
described in the ESL{

25236 | RSC Adv, 2024, 14, 25235-25246
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2.2. Fabrication of NGFRNH

GO and GO@Fe;0, (I) were constructed through the reported
protocols.**** (3-Chloropropyl)trimethoxysilane (3 mmol, 0.596
g) and toluene (30 mL) were added to I (1.5 g), and stirred in
reflux conditions for 12 h; the solid was magnetically isolated,
washed with toluene (2 x 5 mL), and dried under vacuum (at
100 °C) to furnish II. Thereupon, N*,N',N* N*-tetramethylethy-
lenediamine (3 mmol, 0.349 g) and compound II were stirred
and refluxed in toluene (30 mL) for 12 h; the solid was separated
by an external magnet, washed with toluene (2 x 5 mL), and
dried under vacuum (at 100 °C) to produce III. Lastly, H,SO,
(3 mmol, 0.16 mL) was gradually added to III in CH,Cl, (20 mL)
at ambient temperature, and stirred for 5 h at the same
temperature and 2 h under reflux conditions; the solid was
magnetically separated, washed by CH,Cl, (2 x 5 mL), and
dried at 100 °C (under vacuum) to fabricate NGFRNH
(Scheme 1).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The elemental mapping images of NGFRNH.
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Fig. 3 The FE-SEM pictures of the nanocomposite.
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Fig. 4 The FT-IR spectrum of NGFRNH.

Note: Before each stage, the reaction mixture was irradiated
with ultrasound waves to disperse it.

2.3. The construction of N,N'-alkylidene bisamides (general
protocol)

A mixture of an aldehyde (0.5 mmol), amide (1 mmol) and
NGFRNH (0.040 g) in a reaction vessel was strongly stirred at
110 °C using a glass rod. After observing consumption of the
aldehyde and amide by TLC, the mixture was cooled to
ambient temperature, warm EtOAc (10 mL) was added to it,
and stirred for 1 min; then, NGFRNH was magnetically iso-
lated (this action was done two times); the recycled NGFRNH
was washed with EtOAc (2 x 3 mL), dried and used for next
run. The acquired solutions after the double extraction of the
product were collected and distilled; the remaining solid was

25238 | RSC Adv,, 2024, 14, 25235-25246

recrystallized from ethanol (95%) to construct the pure

bisamide.

Note: Selected original spectra of the bisamides are provided

in the ESL.}

Table 1 The results on interpreting the FT-IR spectrum of NGFRNH

Peak (cm ™) Bond or functional group

464 Si-O (rocking)

590 Fe-O (stretching vibration)

1125 SO, of HSO,™ (symmetric stretching)
1249 SO, of HSO, ™ (asymmetric stretching)
1470 Aliphatic C-H (bending)

1630 C=C of GO (stretching vibration)

1714 C=0 of GO (stretching vibration)

2926 Aliphatic C-H (stretching vibration)
~2570-3630 OH groups of HSO,~ and GO (stretching)

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The XRD spectrum of NGFRNH.

Table 2 The XRD data of for NGFRNH

Interplanar Rel. int. Crystalline
26 (°) FWHM (°) distance (nm) (%) size (nm)
5.197 0.2952 1.7006 100.00 26.96
8.658 0.1968 1.0213 71.04 40.52
11.373 0.1476 0.7780 27.83 54.13
15.793 0.2952 0.5611 23.25 27.19
18.993 0.3936 0.4673 48.69 20.48
25.137 0.3936 0.3543 42.09 20.70
26.920 0.3936 0.3312 42.21 20.77
31.997 0.3936 0.2797 18.55 21.01
35.909 1.5744 0.2500 13.94 5.30
38.717 0.9840 0.2326 8.49 8.56
43.779 2.3616 0.2068 2.83 3.63
63.014 0.5904 0.1475 8.53 15.79

2.4. Selected spectral data of the constructed bisamides

Bisamide 3. "H NMR (300 MHz, DMSO-d): 6 (ppm) 7.20 (t, ]
= 7.1 Hz, 1H, methine CH), 7.50-7.62 (m, 6H, Hy,), 7.73 (t,J =
7.9 Hz, 1H, Hy,), 8.00 (d,J = 7.7 Hz, 5H, Hy,,), 8.23 (d,J = 8.0 Hz,
1H, Hy,), 8.42 (s, 1H, Hy,), 9.32 (d, J = 7.2 Hz, 2H, 2NH); *C
NMR (75 MHz, DMSO-de): 6 (ppm) 59.1, 121.9, 123.3, 128.1,
128.8, 130.4, 132.2, 134.1, 134.2, 142.9, 148.3, 166.5.

Bisamide 8. "H NMR (300 MHz, DMSO-d): 6 (ppm) 7.10 (t, ]
= 6.6 Hz, 1H, methine CH), 7.51-7.60 (m, 6H, H,,), 7.85 (t,J =
8.5 Hz, 2H, Hy,), 7.97 (d, ] = 7.6 Hz, 4H, H,,), 8.24 (s, 1H, Hy,),
9.27 (d, J = 6.6 Hz, 2H, 2NH); "*C NMR (75 MHz, DMSO-d,):
0 (ppm) 58.7, 124.4, 124.6, 128.2, 128.8, 132.0, 132.2, 132.8,
134.0, 141.8, 148.0, 166.5. Mass: m/z 409 (M").

Bisamide 10. "H NMR (300 MHz, DMSO-ds): 6 (ppm) 7.12 (t, ]
= 7.5 Hz, 1H, methine CH), 7.25 (t, J = 8.8 Hz, 2H, H,,), 7.49-
7.61 (m, 8H, Hy,), 7.98 (d, J = 7.0 Hz, 4H, H,,), 9.12 (d, J =

© 2024 The Author(s). Published by the Royal Society of Chemistry

7.6 Hz, 2H, 2NH); >C NMR (75 MHz, DMSO-d,): 6 (ppm) 58.9,
115.4, 115.7, 128.0, 128.8, 129.1, 129.2, 132.1, 134.3, 137.1,
160.6, 163.8, 166.2.

3. Results and discussion

3.1. Characterization of NGFRNH

At first, GO was produced by oxidation of graphite using
a rectified Hummers' protocol. Then, Fe;O, nanoparticles was
supported on GO nanosheets using co-precipitation method to
synthesize GO@Fe;0,4. In continue, GO@Fe;0, was function-
alized by (3-chloropropyl)trimethoxysilane, N',N',N*,N*-tetra-
methylethylenediamine and sulfuric acid to fabricate nano-
[GO@Fe;0,@R-NHMe,][HSO,] (NGFRNH) as a novel graphene
oxide based magnetic nanocomposite. The structure of
NGFRNH was proposed on basis of the reported structures for
this category of materials."***** Energy-dispersive X-ray spec-
troscopy (EDX), elemental mapping, field emission scanning
electron microscopy (FE-SEM), FT-IR, X-ray diffraction (XRD),
thermogravimetric (TG), derivative thermogravimetry (DTG)
and vibrating-sample magnetometery (VSM) analyses were used
to characterize the nanocomposite.

The EDX (Fig. 1) and elemental mapping (Fig. 2) analyses of
nano-GO@Fe;0,@R-NHMe,][HSO,] showed carbon, which is
pertained to GO and the organic moiety anchored to Fe;O,. The
analyses indicated oxygen, which is ascribed to GO, Fe;0, and
HSO, . Observation of the peak related to iron in the EDX
spectrum, and observing iron in the elemental mapping images
confirmed existing Fe;O, in the nanocomposite structure. Both
analyses verified existing silicon, which is belong to Si-propyl-
functionalized N',N',N* N*-tetramethylethylenediamine-N",N?-
diium moiety. The peak assigned to nitrogen of N',N',N* N*-

tetramethylethylenediamine-N",N>-diilum  component  was

RSC Adv, 2024, 14, 25235-25246 | 25239
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Fig. 7 The VSM diagram of the magnetic nanocomposite.

observed in the EDX spectrum; nitrogen was also seen in the
elemental mapping analysis. The chlorine (related to Cl™) was
observed in both analyses. Observation of S in the EDX and

Cl CHO

NGFRNH

elemental mapping analyses approved existing HSO,  in the
structure of NGFRNH. Furthermore, the elemental mapping
images demonstrate good distribution of the elements in the
nanocomposite surface.

Fig. 3 illustrates the FE-SEM pictures of NGFRNH; the
pictures showed nanosheets of GO with diameter of 35.4, 50.3,
51.1 nm, etc. and crumpled structure in their edges, and also the
nanoparticles of the functionalized Fe;O, supported on GO.

The FT-IR spectrum of nano-[GO@Fe;0,@R-NHMe,|[HSO,]
is represented in Fig. 4, and the interpretation of the spectrum
is given in Table 1. The spectrum showed the peaks related to all
bonds and functional groups presented in the nanocomposite
structure (graphene oxide, Fe;0,, OSi-R’-NHMe, and HSO, );
thus, the spectrum confirmed successful fabrication of the
catalyst, i.e. supporting Fe;0, on GO to produce GO@Fe30,,
and functionalization of GO@Fe;0, by the organic component
and HSO, .

The XRD pattern of nano-{GO@Fe;0,@R-NHMe,|[HSO,] is
displayed in Fig. 5. The peak located at 11.37° can be related to
GO; the low intensity of the peak is because of supporting Fe;0,
on GO nanosheets and also functionalization by Si-R'-NHMe,

Cl

NH, H,N

) (@)

Scheme 2 The model reaction to acquire the best conditions.
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Table 3 Optimization of the reaction conditions
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Entry Catalyst Catalyst amount (g) Temp. (°C) Time (min) Yield® (%)
1 NGFRNH 0.035 110 25 93
2 NGFRNH 0.040 110 15 98
3 NGFRNH 0.045 110 15 98
4 NGFRNH 0.040 90 35 76
5 NGFRNH 0.040 100 25 91
6 NGFRNH 0.040 115 15 98
7 — — 110 15 <10
8 GO 0.040 110 15 27
9 Material IT 0.040 110 15 38
10 Material III 0.040 110 15 42

“ Isolated yield.

and hydrogen sulfate. The diffraction lines appeared at 31.99,
35.91, 38.72, 43.78, 53.39, 58.38 and 63.01° verified existing
Fe;0, (a cubic spinel form) in the nanocomposite structure, and
consequently, successful supporting Fe;O, on GO nanosheets.
The other data obtained from the XRD pattern, such as FWHM
(width at half maximum), interplanar distance, relative inten-
sity of the peaks and crystalline sizes of the particles, are illus-
trated in Table 2; the crystalline sizes, which were calculated by
Debye-Scherrer equation, were in the range of 3.63-54.13 nm,
and are in acceptable compliance with the sizes gained from the
FE-SEM analysis (Fig. 3).

Thermal durability of NGFRNH was determined by TG and
DTG analyses (Fig. 6); the corresponding diagrams demonstrate
weight losing in three stages. The weight loss occurred up to
175 °C (with Tpax at 166.5 °C in the DTG diagram) can be related
to thermal desorption of water and solvents adsorbed on the
nanocomposite surface. The second and third stages of the
weight losing which took place at 175-320 °C (with T at
265.7 °C in the DTG diagram) and 320-600 °C (with Ty, at
513.2 °C in the DTG diagram) can be due to the decomposition
of oxygen-containing groups in GO (carboxylic acid, hydroxyl
and epoxide) and the organic constitute grafted with GO@Fe;0,

Table 4 The construction of various derivatives of N,N'-alkylidene bisamide using NGFRNH

O
Ar—H O Ar O
R )R e I L
Solvent-free, 110°C R H N R
0] @]
NH, H,N
Product no. Ar R Time (min) Yield” (%) M.p. (°C) [lit.]
1 CeH; Ce¢H; 20 94 222-225 (220-221)"
2 2-O,NCeH, CeH; 20 93 255-257 (257-259)"
3 3-0,NCgH, CeH; 25 97 226-228 (228-230)"
4 4-0,NCg¢H, CeHs; 20 96 260-262 (261-263)"
5 2-CIC¢H, Ce¢Hs 15 97 243-245 (242-244)"
6 4-CIC¢H, CeH; 15 98 256-259 (258-261)"
7 2,4-Cl,C¢H, Ce¢H; 25 97 203-205 (201-203)**
8 4-Cl,3-0,NC¢H;, CeHs 25 94 247-249 (250-252)%*
9 4-BrC¢H, Ce¢Hs 15 97 254-257 (252-254)"
10 4-FC4H, CeH; 15 97 230-233 (227-229)**
11 4-MeOCgH, CeH; 30 89 220-222 (223-225)*
12 4-MeCgH, Ce¢Hs; 15 95 241-244 (241-244)"
13 4-O,NCg¢H, CH, 25 97 257-260 (260-265)>°
14 4-CIC¢H, CH, 15 96 254-257 (252-255)%*
15 4-MeOCgH, CH; 20 92 213-215 (215-217)*°

“ Isolated yield.

© 2024 The Author(s). Published by the Royal Society of Chemistry

RSC Adv, 2024, 14, 25235-25246 | 25241


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra04136d

Open Access Article. Published on 13 August 2024. Downloaded on 2/8/2026 12:02:23 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

RSC Advances

)o]\ NGFRNH

Ar H

@wvaHMez o-

/L -
Step 1

O \H
I /
ﬁ—o

NGFRNH

o)

o @wﬁHMezéso
_0

0 o’ /\J\ O A O

View Article Online

Paper

O Ar

N

R N OH

NGFRNH )]\ )A\ H

\

H
@NmNHM o— s o

O

=0

o=

_— —>
—HyO R N Ar “Sar Step3 R N N R
Step2 H H
The bisamide
+ —
NGFRNH = @MNHMeZ HSO,
Scheme 3 The mechanism.
M Time (min) Yield (%) Considering the VSM diagram, saturation magnetization (M) of
the nanocomposite was ~5.4 emu g~ '. Lower My of NGFRNH
9_8 97 95 91 compared to Fe;O, is due to supporting Fe;O, on graphene
1 82 nanosheets and functionalization with the organic component
and hydrogen sulfate. Nevertheless, NGFRNH had sufficient
magnetic property to recycle from the reaction mixture by an
external magnet.
15 15 15 20 20
3.2. Application of NGFRNH as catalyst for manufacturing
/_. . - — N,N'-alkylidene bisamides
Investigating catalytic property of nano-{GO@Fe;0,@R-
Run1l Run 2 Run 3 Run 4 Run 5 gaung vt property [CO@Fe;0,@

Fig. 8 The recoverability results of NGFRNH.

(i.e. Si-R'-NHMe,). The weight loss after 470 °C is related to
decomposition of GO nanosheets.

Magnetic behavior of nano-[GO@Fe;0,@R-NHMe,][HSO,]
was studied by VSM analysis; Fig. 7 depicts the analysis result.

NHMe,][HSO,] was done on the construction of N,N'-alkylidene
bisamides from aryl aldehydes and primary amides. In this
regard, the condensation of 4-chlorobenzaldehyde (0.5 mmol)
and benzamide (1 mmol) was tested using 0.035, 0.040 and
0.045 g of NGFRNH at 90, 100, 110 and 115 °C in the absence of
solvent; Scheme 2 illustrates the model reaction, and Table 3
indicates the obtained results. The best results were attained

Table 5 The construction of bisamides 1, 6 and 12 using NGFRNH and some reported catalysts

Time (min) for Yield (%)

Catalyst Conditions products 1/6/12 for products 1/6/12 Ref.
NGFRNH Solvent-free, 110 °C 20/15/15 94/98/95 This work
Nano-[Mn-PSMP]CL,* EtOH, reflux —b1150/270 —>185/75 38
Ph,CCl EtOH, 60 °C —*/35/—" —*/90/—" 39
HPVAC-20° Solvent-free, 110 °C 35/25/40 93/96/90 40
Montmorillonite K10 Solvent-free, 100 °C 80/—/—* 85/—>|—* 41
GO@GL-S0,H? Solvent-free, 110 °C 15/10/15 91/96/90 42
3D-network polymer supported ionic liquid Toluene, reflux 30/25/30 85/83/87 43
Nano-[DSPECDA][HSO, ¢ Solvent-free, 90 °C 30/—"/30 91/—*179 44
ZnO/KIT-6@NiFe,0, Solvent-free, 60 °C 10/10/10 90/94/75 45
C/TiO,-SOzH Solvent-free, 100 °C 90/120/120 93/93/90 46
KH,PO, supported on silica Solvent-free, 80 °C 15/15/15 87/90/71 47

¢ Nano-Mn-[phenyl- sahcylaldlmlne methyl-pyranopyrimidinedione]Cl,.
immobilized on clay. ¢ GO grafted with SO;H-functionalized glycerin. °
dimethylaminium bisulfate.

25242 | RSC Adv, 2024, 14, 25235-25246

In the research, this product has not been constructed. ¢ Hs[PV,W;,040]
Nano-2-[N',N'-dimethyl-N'-(silica-n-propyl)ethanaminium chloride]-N,N-
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when the reaction was performed using 0.040 g of the nano-
composite at 110 °C (entry 2); so, 0.040 g was chosen as the
optimal catalyst dosage, and 110 °C was selected as the opti-
mized temperature. To compare catalytic efficacy of nano-
[GO@Fe;0,@R-NHMe,][HSO,] with the precursors used for its
synthesis, and determine the role of graphene oxide, the model
reaction was examined without catalyst and also in the presence
of the precursors (GO, II and III) under identical conditions. As
Table 3 exemplifies, these conditions were not efficient, and
afforded low or moderate yields of product 6 (entries 7-10).
Thus, our plan to design nano-[GO@Fe;0,@R-NHMe,|[HSO,]
as catalyst for the fabrication of N,N'-alkylidene bisamides was
logical. Furthermore, considering the results acquired in
entries 7 and 8, GO role was not only as a support, but also it
could act as a co-catalyst. In another study, the gram scale
synthesis of product 6 was studied; for this purpose, 5 mmol
(0.703 g) of 4-chlorobenzaldehyde was reacted with 10 mmol
(1.211 g) of benzamide in the presence of 0.400 g of NGFRNH at
110 °C, in which the bisamide was obtained in 93% after
20 min.

After attaining the optimized conditions, the domain and
performance of the nanocatalyst for the construction of N,N'-
alkylidene bisamides were assessed through usage of miscel-
laneous aromatic aldehydes (carrying diverse electron-
attracting and electron-releasing substituents on their ortho,
meta or para positions), and also aromatic and aliphatic amides
in the reaction; the gained results are reported in Table 4. It was
found that all substrates afforded the relevant bisamides in
short times and high to excellent yields; these results confirmed
wide domain and high efficiency of NGFRNH to catalyze the
reaction.

On basis of the literature,*>*3*” a reasonable mechanism was
suggested for the construction of N,N'-alkylidene bisamides
(Scheme 3). Nano-[GO@Fe;0,@R-NHMe,|[HSO,] can catalyze
the reaction by its acidic group (hydrogen sulfate); its roles
involve: (i) activating the electrophiles in steps 1 and 3 to accept
nucleophilic attack of amide, and (ii) conversion of the hydroxyl
group to a good leaving group in step 2 for elimination of a H,O
molecule.

Capability of NGFRNH for recovering and reusing was
perused on the reaction of 4-chlorobenzaldehyde and benza-
mide (Scheme 2); it was recovered pursuant to the described way
in experimental section, and reused for three times without
remarkable loss of catalytic activity (Fig. 8). However, in fourth
recycling (run 5), the reaction yield was significantly decreased.

To compare NGFRNH with the reported catalysts, the
construction of bisamides 1, 6 and 12 was chosen, and the
catalysts were compared in terms the reaction conditions, time
and yield; Table 5 illustrates this comparison. The reaction
yields of our catalyst are higher than the reported ones, and the
reaction times are shorter than most of the reported catalysts
showed in Table 5. The reaction conditions of NGFRNH are
better than some catalysts, and are same with the others (in
terms of performing the reaction under solvent-free conditions
or in solvent). The reaction temperature of NGFRNH is as same

© 2024 The Author(s). Published by the Royal Society of Chemistry
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as some catalysts, and is higher than the others. The another
advantage of NGFRNH with respect to some catalysts reported
in Table 5 is ability to catalyze the reaction in the case of
aromatic and aliphatic amides.

4. Conclusions

Briefly, we have fabricated a novel graphene oxide-based
magnetic nanocomposite possessing an acidic group (HSO, );
it may catalyze organic transformations which require acidic
catalyst to carry out. In this research, we have successfully
applied the nanocomposite as catalyst to construct N,N'-alkyli-
dene bisamides from aryl aldehydes (1 eq.) and primary amides
(2 eq.); the privileges of this approach comprise wide domain,
high performance, construction of the products in short times
and excellent yields, efficiency of the protocol to fabricate the
bisamides from aromatic and aliphatic amides, utilization of
solvent-free conditions, magnetically recovering the catalyst,
recoverability of the catalyst for three times without significant
loss of its activity and good accordance with principles of green
chemistry.
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