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Metal based catalysts and electrodes are versatile tools known for their redox properties, catalytic efficiency,

and stability under various conditions. Despite the absence of significant scientific hurdles, the utilization of

these methods in cholesterol detection, particularly in non-enzymatic approaches, has been relatively

underexplored. To this end, there is a pressing need to delve deeper into existing metal-based systems

used in non-enzymatic cholesterol sensing, with the goal of fostering the development of innovative

practical solutions. Various electrode systems, such as those employing Ni, Ti, Cu, Zn, W, Mn, and Fe,

have already been reported for non-enzymatic cholesterol detection, some of them elucidated sensing

mechanisms and potential in physiological detection. A detailed mechanistic understanding of oxide-

based cholesterol sensors, along with the methodologies for constructing such systems, holds promise

of advancing the exploration of practical applications. This review aims to provide a broad perspective on

metal oxide systems and their characteristics that are conducive to non-enzymatic cholesterol sensing. It

is intended to serve as a springboard with offering a guide to the design and development of efficient

and sensitive electrochemical cholesterol sensors.
Introduction

Cholesterol is essential for human life, yet when its levels
exceed a critical threshold within the body, it can become
a substantial hazard to human well-being. Maintaining
a controlled cholesterol intake is vital for supporting crucial
physiological functions. Nonetheless, lifestyle choices and die-
tary habits can contribute to an excessive accumulation of
cholesterol in the bloodstream, giving rise to signicant health
issues. Timely identication of cholesterol levels in the human
body, along with appropriate interventions, is of great impor-
tance for preserving health and safeguarding human lives. In
addition to traditional chemical techniques, enzymatic assay,
enzymatic calorimetry, microphotometry, gas chromatography,
liquid chromatography, and mass spectrometry are some of the
methods used to detect cholesterol.1–5 The majority of them
require expensive, time-consuming, and complex techniques
for the effective and precise detection of cholesterol. At the
same time electrochemical sensors are excellent substitutes
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over traditional analytical methods due to their quick response,
high reproducibility, low limit of detection (LOD), and wide
concentration range of application.6,7

When using an electrochemical sensor, the species on the
electrode's surface interact chemically with the analyte, in this
case cholesterol, and produces an electrical signal of either
current, potential, conductivity, or resistivity. Based on their
operating principles, these sensors are known as amperometric,
potentiometric, conductometric, or impedimetric sensors,
respectively.8 A component of the electrochemical biosensor,
i.e., the transducer, then transforms the signal into a detectable
format.

Many different materials have been investigated for the
construction of enzymatic, non-enzymatic, and redox-mediated
electrochemical biosensors.9–16 Non-enzymatic sensors are
receiving considerable attention due to their excellent charac-
teristics, such as the ability to incorporate metals, metal oxides,
and composites as electrocatalysts, and strong interaction
between the modied electrode and the analyte. This results in
high conductivity, biocompatibility, and facile device minia-
turization, while these structures are generally unaffected by
atmospheric conditions. Conductive polymer composites,17–19

carbonaceous materials,20–23 metal nanoparticles,24–29 metal
sulphides,30–32 metal oxides,29–36 and their composites are typical
choices of active material for electrochemical biosensors
including cholesterol sensors.37

Nanomaterials, as the electroactive component in electro-
chemical sensors, exhibit diverse mechanisms when employed
RSC Adv., 2024, 14, 24561–24573 | 24561
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for cholesterol detection. However, unlike enzymatic sensors,
active electrodes are the only essential component in non-
enzymatic devices. The integration of nanomaterials into sensor
systems offers numerous advantages, like customized electrical
and optical characteristics, and enhanced sensitivity due to their
high surface area. Polyaniline (PANI) or polypyrrole (PPy) are
predominantly reported as polymeric constituents in the litera-
ture, such as in CuO–PANI with a brous murexide matrix,14

PANI/MWCNTs/starch modied carbon paste,15 mesoporous
PANI nanober decorated graphene microowers,38 carboxy-
functionalized graphene oxide (fGO) decorated with magnetite
(Fe3O4) nanoparticles on PANI,39 Ru–phosphate (Ru–Pi)/PPy
modied carbon ber paper,40 Au@NiO decorated PPy
composite.41 Additionally, alternative polymer-based materials,
such as poly(ionic liquid) poly(vinylbutylimidazolium)–cobalt
polyoxometalate supported on carbon,16 poly(3,4-
ethylenedioxythiophene) incorporating taurine,42 have also been
investigated in this context. Carbon-based materials encompass
b-cyclodextrin (b-CD)-functionalized graphene and reduced gra-
phene oxide (rGO),43 a graphene oxide-derived molecular
imprinted polymer (GO-MIP) serving as the active material,44

a network of platinum nanoparticle-functionalized carbon
nanotubes (CNTs) assembled through layer-by-layer techniques,45

CNTs derived from coconut oil,46 multi-walled carbon nanotubes
(MWCNTs) that have been functionalized with gold nanoparticles
(Au NPs),47 and a disposable screen-printed carbon electrode
(SPCE) constructed from MWCNTs and b-CD.48

Here we review non-enzymatic electrochemical cholesterol
sensors constructed of metal compounds and composites and
focusing on the mechanistic understanding of the interaction
between the electrodematerials and the analyte. The goal of this
review is to facilitate future advancements in the eld by
offering valuable insights into the underlying physical–chem-
ical processes, and to aid with the development of innovative
and high-performance sensor chips.
Scheme 1 Reactions involved in enzymatic detection of cholesterol.
Chemistry of electrochemical
cholesterol sensors

An electrochemical biosensor operates by detecting the pres-
ence or concentration of a specic biological target (analyte)
through interactions with specialized materials in its recogni-
tion layer. These interactions generate signals that convey
information about the analyte. The recognition layer typically
comprises an electrode with functional groups capable of
binding to the analyte. For instance, in cholesterol detection the
electrode surface may feature enzymes that interact with
cholesterol molecules or a substance capable of initiating
a redox process upon contact with cholesterol. Redox mediators
can also be incorporated to enhance the sensitivity of the
biosensor when cholesterol molecules attach to the recognition
layer.49–51 Subsequently, a transducer transforms the resulting
physical–chemical or electrochemical interactions into elec-
trical signals. Finally, a processor processes and converts these
signals into a digital output, which can be easily displayed and
interpreted.
24562 | RSC Adv., 2024, 14, 24561–24573
Sensing mechanism in different types
of cholesterol sensors

The foundation of electrochemical cholesterol sensing involved
the integration of enzymes, such as cholesterol oxidase (ChOx)
and cholesterol esterase (ChE), within the recognition layer.
These enzymes were chosen for their capacity to either bind to
or undergo reactions with the target cholesterol molecules as
part of the sensing process.

In enzymatic cholesterol sensors ChE initiates a hydrolysis
reaction, breaking down cholesterol ester into free cholesterol
and fatty acids, which in turn provides the total cholesterol
content in the sample. Simultaneously, a cholesterol molecule
undergoes oxidation through the interaction with ChOx,
resulting in the production of cholest-4-ene-3-one. Notably,
hydrogen peroxide (H2O2) generated as a byproduct during this
redox reaction serves as redox agent for the electrochemical
detection of cholesterol at the sensor, eliminating the need for
additional redox mediators. E.g., in amperometric sensors
current is measured when H2O2 is oxidized at an applied
potential, which in turn correlates with cholesterol concentra-
tion. However, in some instances, the current response associ-
ated with dioxygen electroreductionmay also be used. Chemical
reactions taking place in enzymatic cholesterol sensing are
depicted in Scheme 1.8 A signicant anodic potential of
approximately +0.7 V vs. RHE is required for the oxidation of
H2O2, which represents a signicant drawback of this tech-
nique. This issue is addressed by incorporating redox mediators
alongside the enzymes to facilitate electron transfer.

In the redox mediator based enzymatic detection tech-
niques, ferrocene,7 methylene blue,8 Prussian blue,52 hydro-
quinone,53 poly(o-phenylenediamine),54 and (hydroxymethyl)
ferrocene55 were reported to be implemented in the system.
Here, the regeneration of the reduced form of the redox medi-
ators by electrical potential is utilized for the detection process.
First the oxidized mediator forms an adduct with cholesterol.
The latter then gets oxidized into various products, while the
redox mediator is electrochemically reduced to generate the
signal as shown in Scheme 2.7

Horseradish peroxidase (HRP) based bienzymatic mediator-
free systems are also capable of sensing cholesterol to some
extent.56–58 While these enzymatic systems exhibit specicity,
sensitivity, and speed in cholesterol sensing, they do face
certain limitations. The latter primarily revolves around high
costs and limited tolerance to variations in environmental
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Reactions involved in the redox mediator-based detection
of cholesterol.
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factors, such as pH and temperature. These shortcomings pose
challenges when considering the practicality and economic
viability of these systems in real-world applications. Conse-
quently, numerous researchers have undertaken efforts to
develop simpler, more efficient, and cost-effective non-
enzymatic cholesterol sensors.

A non-enzymatic cholesterol sensor comprises a recognition
layer devoid of enzymes that interacts with cholesterol mole-
cules. The fundamental role of this layer remains consistent
across various materials employed for this purpose, which
primarily is to serve as cholesterol oxidants facilitated by elec-
trical processes. These non-enzymatic systems necessitate the
use of a conductive electrolyte containing cholesterol to obtain
an electrical response during the interaction between the elec-
trode and the analyte. Numerous electrolyte combinations were
explored with cholesterol based on their chemical and electro-
chemical properties. Also, various electrode types, ranging from
simple bare electrodes to modied nanostructures, were
investigated as recognition layers in non-enzymatic systems.

The resulting products and the pathways of electro-oxidation
can vary depending on the conditions and materials, since
cholesterol contains multiple sites for oxidation. The sites
Fig. 1 Oxidizable sites (black dots) in the cholesterol molecule along with
oxidation (B). The corresponding potential products of cholesterol electr
John Wiley and Sons and Copyright Clearance Center (LN: 5833140916

© 2024 The Author(s). Published by the Royal Society of Chemistry
susceptible to oxidation, as depicted in Fig. 1, lead to a diverse
array of products during electro-oxidation.59 However, the
chemistry of all the products has not been completely
conrmed, yet.

Metal-based systems for non-
enzymatic detection of cholesterol

Cholesterol sensing can be achieved using a bare Pt or C elec-
trode in combination with an organic medium.60–63 However, the
resulting product and cholesterol oxidation efficiency vary due to
differences in electrode characteristics and the composition of
the medium.60–75 Table 1 overviews non-enzymatic cholesterol
oxidation and detection efficiencies (LOD, LOQ), product distri-
butions at the indicated potentials using metal-based electrodes
with various supporting electrolytes. Certain data points are not
available (NA), as some studies focus on electro-oxidation
mechanisms, while others address the direct sensing character-
istics. It is also worth noting, that although according to the
IUPAC denition, the LOQ/LOD ratio must be 10/3 z 3.33, this
relationship is not fullled for some of the reported performance
metrics in Table 1. These data are marked by asterisks.

Metal oxide-based non-enzymatic
cholesterol sensors – material
development, characteristics, and
performance

Rengaraj et al. innovatively engineered a owerlike NiO struc-
ture atop high-quality graphene to enable non-enzymatic
cholesterol sensing.67 Graphene is the optimal support in
biosensor applications because of its exceptional carrier
the MS spectra of cholesterol (100 mmol L−1) before (A) and after EC-
ooxidation. (C) Reprinted with permission from ref. 59. Copyright 2016
083).
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mobility, ambipolar behavior, and unique energy structure. The
single atom-thick carbon layer was deposited onto copper via
chemical vapor deposition using methane and oxygen as
reagents at ∼1000 °C, and subsequently transferred onto glassy
carbon electrode (GCE) by the PMMA method. NiO was then
electrodeposited onto the graphene akes from an electrolyte
containing Ni(NO3)2 with acetate buffering as it is outlined in
Fig. 2A. Aer annealing under air at 270 °C the performance of
the developed electrodes was assessed in the absence of any
enzymes in a solution of isopropanol and Triton X-100 con-
taining varying concentration of cholesterol in phosphate
buffer (PBS) and 1 M KOH by cyclic voltammetry (CV) and
chronoamperometry (CA). The fabricated sensor exhibited
a detection range spanning from 2 mM to 40 mM cholesterol
concentrations with LOD of 0.13 mM and a rapid response time
of 5 seconds. The attractive performance can be attributed to
the electrocatalytic properties of NiO and the large specic
surface area provided by graphene. The reaction mechanism
involves the electrochemical conversion of Ni2+ to Ni3+ by
hydroxyl ions in the surrounding medium, which is subse-
quently followed by the oxidation of cholesterol:67

NiO + OH− 4 NiOOH + e− (1)

Ni3+ + cholesterol / Ni2+ + cholestenone (2)

This process results in a linear increase in the current asso-
ciated with cholesterol oxidation as cholesterol concentration
rises, and the electrodes exhibit a high sensitivity of 40.6 mA
mM−1 cm−2 with good stability throughout the study.
Fig. 2 Fabrication of a NiO/graphene composite electrode for
cholesterol sensing (A). Reprinted with permission from ref. 67.
Copyright 2015 Royal Society of Chemistry (LN: 1507244-1), and the
schematics of the electrocatalytic oxidation of cholesterol at MnO2/
GR/PGE (B), reprinted with permission from ref. 68. Copyright 2020
Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (LN:
5833150494623).

© 2024 The Author(s). Published by the Royal Society of Chemistry
In the study of Rison et al. graphene-modied pencil graphite
electrode (PGE) was decorated with MnO2 nanoclusters.68

Initially, graphene was synthesized through the exfoliation of 60
mesh particle size graphite in acidic medium, followed by heat-
ing and exfoliation in a microwave oven. The resulting graphene
was further puried using a solvent mixture containing acetone,
dimethylsulfoxide, and water. For sensor electrode fabrication,
a pre-treated pencil graphite electrode (PGE) was brush-coated
with a paste composed of graphene, polyvinylidene chloride
(PVDF), and N-methyl-2-pyrrolidene (NMP). MnO2 was then
electrodeposited onto the heat-treated graphene-coated PGE
from KMnO4/H2SO4 solution. Electrochemical behavior was
investigated at various pHs, and cholesterol sensing perfor-
mance were assessed over several cycles by performing CV and
Differential Pulse Voltammetry (DPV) in PBS buffer and with
interfering substancesmodeling human blood serum. Enhanced
electron transfer ability was observed due to the presence of
catalytic MnO2 as evidenced by the elevated anodic peak current
at −0.2 V (vs. SCE) when compared to that of the bare electrode.
LOD and LOQ were found to be 4.2× 10−10 M and 12× 10−10 M,
respectively. Furthermore, the cholesterol sensing process on
MnO2/G/PGE is diffusion-controlled involving a two-electron
transfer mechanism resulting in the oxidation of cholesterol to
cholestenone as outlined in Fig. 2B.

ZnO seeds were precipitated directly onto a Pt interdigitated
electrode by annealing Zn(CH3COO2), where then ZnO nano-
rods were grown from those seeds via hydrothermal synthesis.
The as-fabricated sensor displayed a cholesterol sensitivity of
4.2 mA mM−1 cm−2. This was further improved by Ag nano-
particle deposition (AgNPs/ZnO-NR) reaching a sensitivity of
135.5 mA mM−1 cm−2 along with a remarkably low LOD of
0.184 mM. A reduction in charge transfer resistance (Rct) was
observed in AgNP/ZnO-NRs by EIS, leading to improved sensing
performance through the enhanced electron transfer.69

Ariyanta et al. immobilized a nanocomposite of NiO and
MoS2 on a screen-printed carbon electrode (SPCE), which was
subsequently modied by electrochemically polymerizing pol-
y(methyl orange) (MO) from aMO/PBS solution as a cholesterol-
identifying agent. Calibration was done in Triton-X/PBS solu-
tions, and pretreated milk and yogurt samples were electro-
chemically tested via CV and DPV. Negative potential at the n-
type semiconductor MoS2 increased the electron density in
the conduction band, which in turn facilitated electron transfer
to the O2 molecule converting O2 to O2

−. The latter then reacted
with H2O to produce H2O2 and hydroxyl radicals, thus initiating
cholesterol oxidation to oxysterol. The sensor exhibited
a detection range spanning from 25.86 mM to 0.39 mM with
LOD and LOQ values of 0.24 mg dL−1 and 0.81 mg dL−1 at
a reasonably high sensitivity of 30.63 mA mM−1 cm−2, respec-
tively. The obtained cholesterol concentrations were in accor-
dance with those indicated on the packaging, further validating
the fabricated sensor electrode.70

A gold-decorated nickel oxide (Au@NiO) on PPy nano-
composite was deposited onto glassy carbon electrode
(Au@NiO/PPy–GCE) and studied in electrochemical cholesterol
sensing via CV and DPV. The results revealed a linear detection
range spanning from 1.0 × 10−5 to 1.0 × 10−4 M at a sensitivity
RSC Adv., 2024, 14, 24561–24573 | 24565
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of 7.6 mA mM−1 cm−2 and an impressive LOD of 5.8 × 10−7 M.
Crucially, interference with various substances such as glucose,
dopamine (DA), NaCl, uracil, uric acid, and ascorbic acid did
not affect the determination accuracy. This high selectivity was
attributed to the combination of exceptional electrocatalytic
activity and the vast specic surface area.41

A cholesterol sensing electrode was developed specically for
the purpose of investigating a variety of food products, such as
vanilla essence, vanilla-avored biscuits, ice cream, and cakemix.
First, TiO2 was directly grown onto rGO through a hydrothermal
process (rGO–TiO2), then polypyrrole was deposited by in situ
chemical oxidative polymerization. The constructed rGO–TiO2/
PPy nanocomposite was applied onto GCE and its cholesterol
sensing performance was studied by electrochemical measure-
ments, including CV and CA. This electrode exhibited a remark-
ably low LOD and LOQ of 0.05 mM and 0.1 mM, respectively.71

Bairagi and Verma fabricated a poly methyl orange (PMO)
dendritic lm/Cu/Ni/carbon nanober (CNF) electrode for non-
enzymatic cholesterol sensing. Cu/Ni bimetal nanoparticles
were deposited onto activated carbon ber (ACF),73,74 which was
transformed into a Cu/Ni/CNF nanocomposite in a CVD
process. The ball-milled composite was cast into a poly-
vinylacetate (PVAc) metal–carbon–polymer composite lm and
a dendritic PMO nanolm was grown through electrochemical
polymerization of methyl orange. Here, PVAc served as a binder,
and the composite is the active sensing element. The electrode
was tested in electrochemical cholesterol sensing in Triton-X/
PBS (pH = 7.0) and in human blood samples via CV, DPV,
and EIS. Impedance spectra showed the diffusion-controlled
cholesterol transport toward the electrode surface, and an
electrochemical surface area of 3.784 cm2 and an average
catalytic rate constant of 195 mol−1 L s−1. The sensor demon-
strated a linear response from a cholesterol concentration of
0.04 to 600 mg dL−1 at a sensitivity of 226.30 mA mM−1 cm−2.
The LOD and the LOQ were determined to be 0.00204 and
0.0062 mg dL−1, respectively. Measurements on the clinical
samples showed promise in further clinical testing.72–74

A composite combined glucose and cholesterol biosensor of
Fe3O4 dispersed on silica-coated (SiO2) CVD-grown MWNTs was
reported. Non-enzymatic cholesterol sensing was performed by
applying the material onto a GCE with Naon binding and
protective agent. The active material functioned as an electron
transfer mediator resulting in an increased current response in
cholesterol oxidation/reduction. The presence of Fe3+ and Fe2+

ions enabled the detection of H2O2 produced during cholesterol
oxidation. The composite biosensor exhibited a linear detection
range between 10 mM and 4 mM, an LOD of 5 mM, and a rapid
response time of 5 seconds. Furthermore, stability tests con-
ducted over a 2 month-period demonstrated a stable response,
and a 90% response retention aer 15 consecutive measure-
ments for both glucose and cholesterol.75

Khaliq et al. developed an electrochemical cholesterol sensor
based on a hybrid nanostructure composed of Cu2O and TiO2

nanotubes. The latter was synthesized from a pretreated Ti foil
through a two-step anodization procedure followed by anneal-
ing,78 while the subsequent Cu2O nanoparticle deposition was
done by cluster beam deposition (CBD). The cholesterol sensing
24566 | RSC Adv., 2024, 14, 24561–24573
performance was veried by electroanalytical techniques (CV,
EIS, CA etc.) in PBS/IPA, and the quantication based on
amperometry as shown in Fig. 3a–c. A linear detection range
(LDR) spanning from 24.4 to 622 mM was found with an LOD of
0.05 mM along with a high sensitivity of 6034 mA mM−1 cm−2,
and a fast response of 3 seconds. The copper's redox behavior
was identied as the driving mechanism behind cholesterol
sensing as illustrated in Fig. 3d. Cu2O rst adsorbs oxygen (O2)
and then generates O2

− ions, which subsequently react with
water and forming hydroxyl radicals (OHc). The latter initiates
cholesterol auto-oxidation and ultimately leads to electron
generation, which in turn provides an electrical signal con-
nected to cholesterol concentration. Furthermore, a compre-
hensive clinical sample study was undertaken to assess the
impact of interfering substances during the sensing process.
The performance of the as-fabricated electrodes was compa-
rable to that of certain commercial sensors, indicating the
robustness and reliability of the developed system.77

Polycrystalline ZnO and Zn2In2O5 phases were deposited on
a copper substrate and was utilized as a cholesterol biosensor.
The electrode was fabricated onto a pre-treated copper substrate
through the co-deposition of Zn and In from the aqueous
solution of ZnCl2, KCl, InF2, and H3BO3, followed by hydro-
thermal oxidation. Cholesterol sensing tests were conducted in
PBS buffer employing CV and DPV. During positive potential
sweep, oxygen adsorbed on the electrode is converted into ionic
species by extracting electrons from the electrode. These mobile
oxygen ions (O2

−/O−) participate in the reverse sweep, leading
to the oxidation of cholesterol to cholestenone and the
production of H2O2 as a byproduct. Subsequently, an electron is
released due to H2O2 oxidation, and the transfer of this electron
to the electrode reduces a metal ion back to its atomic form. The
two-step process is outlined in Scheme 3. The electrode
demonstrated a linear detection range for cholesterol concen-
trations between 0.5 mM and 9 mM, with a sensitivity of 81 mA
mM−1 cm−2 and a fast response of 1 second.79

Willyam et al. constructed a non-enzymatic cholesterol
biosensor by combining magnetite (Fe2O3) nanoparticles (MNP)
and b-cyclodextrin (CD). The composite was synthesized by the
co-precipitation of Fe2+ and Fe3+ in BCD (MNP/BCD) under
alkaline conditions, and the resulting precipitate was then
separated with an external magnet. The active material was
immobilized on SPCE, and cholesterol detection was achieved
by adding methylene blue (MB) to the electrode, as sensing
mechanism based on the competition of inclusion complex
formation between cholesterol and b-cyclodextrin (BCD), and
methylene blue (MB), respectively. The electrochemical
behavior of the fabricated electrode was studied by CV, DPV,
and CA, and the sensor showed a wide linear response range
from 0 to 150 mM along with a low LOD of 8.11 mM, 4.77 mM, and
2.88 mM for the anodic and the cathodic CV peaks, and for
utilizing amperometry, respectively. The schematic procedure
of cholesterol sensing using the developed sensor, the corre-
sponding current responses obtained from CV under various
conditions and the amperometric response during cholesterol
sensing are shown in Fig. 4. The sensor also displayed excellent
repeatability and recovery in cholesterol determination in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Amperometric response of the pristine TNTs and Cu2O decorated TNTs at −0.46 V in 0.1 M PBS at pH 7.0 upon successive addition of
cholesterol in the (a) high, and (b) low concentration ranges. (c) The corresponding linear calibration curve at high cholesterol concentration, and
(d) schematic of electrochemical oxidation of cholesterol at the surface of the Cu2O NPs decorated TNTs electrode, reprinted with permission
from ref. 77. Copyright 2020 Elsevier and Copyright Clearance Center (LN: 5833130132597).

Scheme 3 Reactions involved during non-enzymatic detection of
cholesterol with the participation of oxygen ions.
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50 mM PBS solution (pH = 7.4). It is worth noting, that further
interference studies demonstrated that the presence of NaCl,
CaCl2, glycine, glucose, and ascorbic acid at concentrations ten
times higher than cholesterol did not signicantly affect the
accuracy of cholesterol measurements.80

A copper(II) oxide/(CuO)/PANI/murexide (Mu) composite
biosensor was fabricated on glassy carbon electrode via elec-
trooxidation and electrodeposition. The electrochemical
performance of the sensor was determined by CV, EIS, and
linear sweep voltammetry (LSV), and showed high sensitivity
and high stability across a broad concentration range from 0.5
© 2024 The Author(s). Published by the Royal Society of Chemistry
to 1 mM. The developed bioanalytical system was applied to
determine cholesterol concentration in milk with high recovery
rates and high selectivity, demonstrating its potential as
a valuable tool in real-life cholesterol detection.14

A hybrid material comprising poly(ionic liquid) (PVIM) and
cobalt polyoxometalate (Co5POM) anchored on carbonaceous
materials (MNCs) was utilized as electrochemical cholesterol
sensor, and demonstrated an unprecedentedly low LOD of 1 fM
(1 × 10−15 M). The schematics of cholesterol detection, the
structural details and some important electrochemical results
are shown in Fig. 5. It showed a rapid response time of 5
seconds along with a wide dynamic detection range between 1
fM and 5 mM. The latter consists of two linear regions, one
ranging from 1 fM to 200 nM and another spanning from 0.5
mM to 5 mM with a sensitivity of 210 mA mM−1 cm−2 and 64 mA
mM−1 cm−2, respectively. Importantly, the impressive sensor
performance remained unaffected in the presence of interfering
substances. To validate its practical utility, the sensor was tested
in a human blood serum sample at a physiological pH within
a concentration range relevant to human biology. Furthermore,
a exible version of this sensor was also developed by coating
PVIM–Co5POM/MNC onto a lter paper retaining the original
high sensitivity and broad detection range, making it a versatile
tool for a wide range of applications.81
RSC Adv., 2024, 14, 24561–24573 | 24567
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Fig. 4 Schematics of the b-cyclodextrin/Fe3O4 nanocomposite cholesterol sensor fabrication process (A), plots of methylene blue current
differences before and after the addition of 100 mM cholesterol in 50mMPBS (pH 7.4) by cyclic voltammetry on screen-printed carbon electrode
using nanocomposites synthesized with different BCD contents in BCD/MNPs (2% w/w) (B), different amounts of 3%-BCD/MNPs (C), and
different contact times (D). Amperograms obtained for blank solution (50 mM PBS, pH 7.4), before and after cholesterol addition at concen-
trations between 0 and 150 mM at a potential of −0.43 V for 90 s under optimum conditions (E), and the corresponding calibration curve of the
developed cholesterol sensor (F). Reprinted with permission from ref. 80. Copyright 2020 Royal Society of Chemistry (LN: 1507238-1).

Fig. 5 Schematic representation of cholesterol detection with the PVIM–Co5POM/MNC composite on a flexible paper electrode (a). Single
crystal X-ray structure of Na12[WCo3(H2O)2(CoW9O34)2]; Na and H atoms are omitted for clarity (b). FE-SEM image of theMNCs (inset: TEM image
of the MNC) (c), and TEM image of the PVIM–Co5POM/MNC composite (inset: SAED pattern of the same structure) (d). CV (e) and DPV (f) of the
PVIM–Co5POM/MNC-600 modified graphite electrode at various concentrations of blood serum in 0.1 M phosphate buffer (pH 7.4) and 1 mM
K4[Fe(CN)6] electrolyte in the presence of 500 mM cholesterol. DPV of the PVIM–Co5POM/MNC-600modified flexible paper electrode at various
concentrations of cholesterol in 0.1 M NaOH and 1 mM K4[Fe(CN)6] electrolyte at a scan rate of 10 mV s−1; CE: Pt wire, RE: Ag/AgCl/3 M KCl (g).
Reprinted with permission from ref. 81. Copyright Royal Society of Chemistry (LN: 1507238-1).

24568 | RSC Adv., 2024, 14, 24561–24573 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Rabbani et al. deposited mesoporous NiCo2S4 nanoakes
onto nickel foam, and the fabricated electrode demonstrated
a high sensitivity of 8623.6 mA mM−1 cm−2 across a broad linear
range from 0.01 to 0.25 mM along with a considerable low LOD
0.01 mM. The NiCo2S4 structure also possesses robust thermal
stability and consistent performance over the extended period
of 8 weeks. Furthermore, the sensor exhibited high recovery in
measurements on real-life blood samples.82

Challenges and future perspectives

In the pursuit of direct cholesterol sensing through electro-
oxidation, researchers have to be aware of the oxidation
potential of cholesterol, which is typically z0.4 V (vs. Ag/AgCl/
sat'd KCl). It is crucial to take any potential variations due to the
choice of reference electrodes and the specic oxidation sites
within cholesterol into account. Furthermore, in order to have
a mechanistic understanding of our system the redox properties
of any functional moieties have to be known. It needs be
ensured that these moieties are capable of either directly
oxidizing cholesterol or participating in further redox reactions.
Depending on the actual sensing layer, this could be reaction
with byproducts H2O2, O2, etc., or with intermediates such as
oxygen, hydroxide ions, and radicals. Moreover, these moieties
should serve as effective current capturers or sensors
throughout the redox reaction process. Conducting in situ and
operando analysis on intermediates and products during
cholesterol oxidation, along with the investigation on elemental
interactions between the electrode components and choles-
terol, would signicantly advance the eld.

Cost-effective, stable, durable, and reproducible metal
oxide-based electrodes with high sensitivity can compete with
existing enzyme-assisted sensor systems. Tailoring the char-
acteristics of metal-based systems to possess inherent
cholesterol-oxidizing capabilities eliminates the need for
additional activating agents, and ensures the development of
an easily monitorable current signals at the electrode. Addi-
tional materials can also be incorporated into the sensor chips
either as lters to eliminate interfering components or as
supporting reagents to achieve minimal or zero input current.
Commercially viable sensor chips utilizing highly active
metal(oxide)-based working electrodes with cost-effective
counter and reference electrodes on suitable substrate would
give further impetus to the continuously developing eld of
electrochemical cholesterol sensing.

Summary

Non-enzymatic electrochemical cholesterol sensing techniques
offer numerous advantages over its enzymatic counterparts,
such as being enzyme-free, having a straightforward operating
principle, maintaining high stability in various environments,
and offering a wide array of synthesis strategies for electrode
development. Among the materials explored for non-enzymatic
sensors, oxide-based systems are particularly noteworthy due to
their sensitivity, stability, and reproducibility. A wide range of
material families were already studied, primarily based on the
© 2024 The Author(s). Published by the Royal Society of Chemistry
oxides of Mn, Fe, Ni, Cu, Zn, Mo, Ti, In, and Si. While many
research focused on lab-scale experiments, a few studies already
incorporated clinical sample analysis as well. The advancement
of chip-based non-enzymatic metal oxide-based systems for
clinical applications necessitates extensive research into
mechanistic aspects of material and electrode development
strategies, cholesterol sensing methodologies, and protocols for
testing physiological samples. This review aims to provide
insights to researchers in academia and industry, with the hope
that commercially available cholesterol sensor system will be
realized soon.
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Appendix: vocabulary

Cholesterol, a compound present in the foods you consume that
serves vital functions in human body. Enzymes, biological
catalyst accelerate chemical reactions without being consumed
or permanently altered in the process. Biosensors is a special-
ized sensor that utilizes biological molecules or components to
detect and measure specic biological or chemical substances,
oen used for applications in healthcare, environmental
monitoring, and biotechnology. Analyte, a specic substance or
chemical compound that a sensor or analytical instrument is
designed to detect andmeasure its concentration within a given
sample or environment. Electrode, in sensing is a specialized
conductor used to detect, measure, or record electrical signals
or changes in electrical properties resulting from interactions
with the surrounding environment, which is essential for
various sensing applications such as electrochemical, pH, or
biosensors. The limit of detection (LOD) is the lowest concen-
tration or amount of a substance that can be reliably detected,
but not necessarily quantied with a particular analytical
method or sensor. The limit of quantication (LOQ) is the
lowest concentration or amount of a substance that can be
accurately and precisely measured and quantied with
a particular analytical method or instrument. According to
IUPAC, LOD and LOQ is 3 and 10 times higher than the stan-
dard deviation of the blank measurement (background noise),
respectively. Sensitivity, in the context of sensing refers to the
ability of a sensor to reliably detect even small changes in the
quantity or concentration of an analyte in a sample. It is, by
denition, the slope of the calibration curve.
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