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nce-aiding lab-on-a-chip
workforce designed oral [3.1.0] bi and [4.2.0]
tricyclic catalytic interceptors inhibiting multiple
SARS-CoV-2 protomers assisted by double-shell
deep learning†

Surachate Kalasin *a and Werasak Surareungchaiabcd

While eachmassive pandemic has claimed the lives of millions of vulnerable populations over the centuries,

one limitation exists: that the Edisonian approach (human-directed with trial errors) relies on repurposing

pharmaceuticals, designing drugs, and herbal remedies with the violation of Lipinski's rule of five

druglikeness. It may lead to adverse health effects with long-term health multimorbidity. Nevertheless,

declining birth rates and aging populations will likely cause a shift in society due to a shortage of

a scientific workforce to defend against the next pandemic incursion. The challenge of combating the

ongoing post-COVID-19 pandemic has been exacerbated by the lack of gold standard drugs to

deactivate multiple SARS-CoV-2 protein targets. Meanwhile, there are three FDA-approved antivirals,

Remdesivir, Molnupiravir, and Paxlovid, with moderate clinical efficacy and drug resistance. There is

a pressing need for additional antivirals and prepared omics technology to combat the current and

future devastating coronavirus pandemics. While there is a limitation of existing contemporary inhibitors

to deactivate viral RNA replication with minimal rotational bonds, one strategy is to create Lipinski

inhibitors with less than 10 rotational bonds and precise halogen bond placement to destabilize multiple

viral protomers. This work describes the efforts to design gold-standard oral inhibitors of bi- and tri-

cyclic catalytic interceptors with electrophilic heads using double-shell deep learning. Here, KS1 with

and KS2 compounds designed by lab-on-a-chip technology attain 5-fold novel filtered-Lipinski, GHOSE,

VEBER, EGAN, and MUEGGE druglikeness. The graph neural network (GNN) relies on module-initiation,

expansion, relabeling atom index, and termination (METORITE) iterations, while the deep neural network

(DNN) engages pinning, extraction, convolution, pooling, and flattening (PROOF) operations. The cyclic

compound's specific halogen atom location enhances the nitrile catalytic head, which deactivates

several viral protein targets. Initiating this lab-on-a-chip that is not susceptible to the aging process for

creating clinical compounds can leverage a new path to many valuable drugs with speedy oral drug

discovery, especially to defend the loss of vulnerable population and prevent multimorbidity that is

susceptible to hidden viral persistence in the continuing aging times.
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Introduction

History of pandemics has shown that humans and diseases
have coevolved. Environmental changes speed up this process,
and immunization is just one aspect of the effort. As aging
times progress, slower workforce growth and aging populations
may make it more challenges to defend against any pandemic
catastrophes.1 In the beginning of the aging era, the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has
caused the worst health crisis in the century, with about 7
million deaths and 776 cumulative infected million cases by the
year 2024.2 Despite the recent development of mRNA vaccina-
tion, SARS-CoV-2 still remains a serious health concern, as the
durability of the exploited vaccines is currently unknown. While
RSC Adv., 2024, 14, 26897–26910 | 26897
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a portion of the population chose not to get vaccinated due to
religious reasons and concerns about long-term side effects,
antivirals are signicant alternatives to vaccines to combat both
the current post-COVID-19 pandemic and future coronavirus
outbreaks.3,4 The mutation occurrence that rules SARS-CoV-2's
transmissibility and pathogenicity, the etiological agent of
COVID-19 disease, makes the antiviral compounds that have
been found so far susceptible to the strong viral response to
treatment resistance.5 The post-COVID-19 condition Long
COVID leads to permanent functional health impairment, and
low productivity at work that can lead to economic burden.6 A
persistent viral presence in the body following an infection is
one assumption on the underlying etiology of Long COVID, as
evidenced by traces of viral otsam, RNA, and protein fragments
found in the respiratory tract, blood, and extracellular vesicles
of long-term COVID survivors. In living human beings, it is
a difficult task to access deeper tissues to investigate viral
particles with RNA replication.7 Particularly postulated pepti-
domimetic drugs have the obvious limitation of having larger
molecular weight in translocation in a human host to degrade
the viral RNA pockets.3 First tracked down in late 2023, the
SARS-CoV-2 BA.2.86 (JN.1 variant) differs phylogenetically from
the circulating SARS-CoV-2 omicron XBB lineages, such as
EG.5.1 and HK.3. This SARS-CoV-2 JN.1 variant has a higher
potential for immune evasion than XBB and BA.2 since it has
more than 30 mutations in the spike protein with fastest-
growing in the USA.8

The important cyclic structures have stood as inspiring
targets for pharmaceutical drugs, such as anti-malarial meo-
quine, cholesterol-lowering drug Lomitapide, heterocyclic car-
benes, and epoxide derivatives.9–12 Despite their structural
diversity and capability, it is unexpected that the bi-, tri-cyclic,
medium-sized rings have been poorly represented in commer-
cial drugs and rarely found in the library screening of drug
discovery. Even the FDA-approved Paxlovid, which treats mild-
to-moderate COVID-19, combines nirmatrelvir with the
enhancer ritonavir. However, subsequent research revealed that
nirmatrelvir's treatment resistance is caused by naturally
occurring changes in the viral primary protease.13

Evidently, SAR-CoV-2 genome spans more than 30 kilobases,
and open reading frame 1a (Orf1ab) encodes 16 predicted non-
structural proteins (Nsps) and four primary coronavirus struc-
tural proteins. The 50 Orf1ab gene-encoded polyproteins are
auto-proteolytically processed to yield 16 Nsps, which come
together to form a replicase–transcriptase complex (RTC). This
RTC includes multiple enzymes: the papain-like protease
(PLpro), adenosine diphosphate ribose monophosphatase
(ADRP) (Nsp3), main protease (Mpro) (Nsp5), ribonucleic acid
(RNA)-replicase (Nsp9), primary RNA-dependent RNA poly-
merase (RdRp) (Nsp12), helicase-triphosphatase (Nsp13), exo-
ribonuclease (Nsp14), endoribonuclease (Nsp15) and 20O-
methyltransferases (Nsp10/Nsp16).14 SAR-CoV-2 infects cells via
either direct plasma membrane fusion or endocytosis,
depending on the degree of TMPRSS2 expression. The host
ribosome translates the single-stranded positive-sense RNA to
create the viral polyproteins pp1a and pp1ab, which are then
cleaved by PLpro and Mpro to yield non-structural proteins
26898 | RSC Adv., 2024, 14, 26897–26910
(Nsps). The replication transcript complex, which is made of the
Nsps, is responsible for mediating the replication of genomic
and sub-genomic RNAs.15

Nevertheless, process of nding a new drug candidate is long
and expensive, with human-directed trial errors. The common
timeline for novel drug discovery with traditional approaches
usually takes years to decades, and the repurposing of existing
non-Lipinski drugs could lead to health impairment for COVID-
19 survivors. Hence, techniques that rapidly determine and
expedite the high-throughput screening process for new
prospective candidates have the potential to signicantly
expand the chemical space of pharmacological modulators,
thereby allowing speedy therapeutic options with minimized
harmful effects.16 At every stage of the drug discovery process,
choosing new compounds for synthesis and testing poses
a substantial challenge. Finding the best candidates from the
large pool of possible compounds can assist to cut down on the
time and expense associated with resource-intensive testing and
eventually result in the development of more potent therapies.17

The development of computational omics technology has
opened up new directions for exploring the undiscovered
diversity of natural products and for exploring their potential as
novel sources of drugs.18 Although the eld of structure-based
virtual screening is experiencing signicant growth and pres-
ents new prospects, it is also facing limitations due to the
continuous expansion of databases containing contemporary
chemical medicines. In parallel, in-chip-with and without arti-
cial intelligence (AI) approaches have created the development
of lab-on-a-chip technology by evaluating own digital data in
real-time as well as storing digitized tools.19–27 For instance, AI
was integrated to determine kidney diseases,20 operate immu-
nodiagnostics,28 perform electronic nose,29 and more using
non-invasive lab-on-a-chips.30 Remarkably, the AI-on-a-chip
technology has established a potent anti-multimorbidity plat-
form for assembling AI algorithms in a large-scale, cost-
effective, high-throughput, and multiplexed approach, thereby
posing as a candidate technology for overcoming the above
challenges.20,31

A portion of the recently developed deep learning using
multi-level DGCNN has been used to segment the coal mine
point cloud against the backdrop of the carbon peak. This
creates the groundwork for understanding the subterranean
environment and achieving low-carbon development.32

Furthermore, the invention of deep learning with different
generation model has made it possible to identify the intrusion
of foreign items into transmission lines.33 While considerable
deep learning efforts focus on the virtual screening of billions of
existing drugs in the chemical database as the generative
adversarial networks (GAN) of discriminators, very limited
research has put an effort into using deep learning as the GAN
of generators.34,35 In addition, most of lab-on-a-chip technolo-
gies have been used for disease diagnostics and are very limited
for other directions.20,21 The important direction is to comple-
ment aging workforce to combat potential pandemics. Here, the
article described a rst use of dual-core lab-on-a-chip tech-
nology and the GAN approach to create SARS-CoV-2 inhibitors
using double deep learning shells in the articial intelligence
© 2024 The Author(s). Published by the Royal Society of Chemistry
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environment, which can lead to an acceleration of drug
discovery.
Materials and methodology
Electronics, chemicals, and materials

The STM8S003K3T6C microprocessors, LCD display, electronic
capacitors, resistors were purchased from Mousser Electronics,
USA. Parylene D was sourced from KISCO CO., LTD, USA. Pyralux
copper-clad laminate sheet was acquired from Dupont Ltd, USA.
The reagents used for wearable fabrication were of the analytical
grade and were used directly without further purication.
Assembly of dual-core lab-on-a-chip for SENSE process

The Pyralux copper-clad laminate sheet was washed with iso-
propyl alcohol and dried using compressed air ow. Later, it
was spin-coated (2000 rpm for 30 s) with 15 wt% parylene D in
dimethylformamide (DMF) onto the top side of the Pyralux
Kapton sheet and heated at 120 °C in an oven for 5 minutes.
Then the as-prepared sheet was treated with 2 min of O2 plasma
to enhance surface hydrophilicity and remove unexpected dirt.
Subsequently, MCU modules were pasted to enable communi-
cation for the nding of SARS-CoV-2 inhibitors and regulate
machine learning circuits. Integrated processors can run
multiple instructions at the same time, which increases the
speed of program execution and performance. Computing
performance is generally dened as the amount of time
required to complete the task of discovering an inhibitor. The
system-level block diagram of the lab-on-a-chip to design an
inhibitor in articial intelligence-based chemical space using
the shared memory model is further illustrated in Fig. S1.†
Inhibitors and protein target models

The three-dimensional structures of approved drugs were
retrieved from the PubChem database, and the purposed drugs
13B,36 Jun9_62_2R,22 N3 inhibitor,37 S217622,38 PBI0451,39

PF07304814,40 as well as herbal Andrographolide,41 and Pan-
duratin A42 were acquired from previous publications. All
potential inhibitors and the above drugs were optimized by the
MMFF94 force eld parameters of the Avogadro soware.
Crystal structures of protein and non-structural protein targets
were obtained from the protein data bank, including the SARS-
CoV-2 spike receptor binding with ACE2 (PDB: 6M0J), main
protease (Mpro) with nsp 8/9 substrate (PDB: 7MGR), the
enzyme SARS-CoV-2 papain-like protease (PLpro) (PDB ID:
6WX4), RNA-dependent RNA polymerase Nsp12 (RdRP) (PDB
ID: 6M71), 20-O-methyltransferase (nsp16/nsp10 complex)
(MTase) (PDB ID: 6W4H), RNA-replicase (RNArep) Nsp9 (PDB:
6WC1), ADP ribose phosphatase (ADRP) (PDB: 6W02), and
endoribonuclease (Endo) Nsp15 (PDB: 6VWW). Human protein
domains to determine the inhibitor selectivity include lung
protein D (PDB: 3IKP), lung protein C (PDB: 2ESY), human
activated protein C (PDB: 1AUT), human tetrameric LL-37
peptide (PDB: 7PDC), and human serum albumin (PDB: 6M5E).
© 2024 The Author(s). Published by the Royal Society of Chemistry
Molecular dynamics simulation

All MD simulations were run using the GROMACS 5.1.4 so-
ware.43 The computation with the LINCS algorithm was exploi-
ted in a time step of 2.5 fs with a 100 ns duration. The algorithm
was used for all bonding interactions involving the N and C
polymerase termini as well as ligand hydrogen bonds. The
simulated box was performed with isothermal–isobaric (NPT)
settings using Parrinello–Rahman pressure coupling. The short-
range interaction relied on the van der Waals interaction with
the Lennard-Jones potential at a cutoff distance of 0.15 nm. The
long-range electrostatic interactions employed the particle
mesh Ewald (PME) approach with fast Fourier transform (FFT)
grid spacing. The hybrid functional B3LYP/6-31G(d) was used to
optimize the predicted organic drugs.44,45 The CHARMM force
eld parameters were implemented into the simulation as well
as obtaining ligand topology.46 The search spaces of the
encapsulated rectangular box for the eight target proteins (1)
dimension 113 Å × 68 Å × 58 Å for spike protein, (2) dimension
69 Å × 40 Å × 33 Å for main protease, (3) dimension 90 Å × 47 Å
× 34 Å for papain-like protease, (4) dimension 108 Å × 85 Å ×

69 Å for RNA-dependent RNA polymerase, (5) dimension 65 Å ×

48 Å × 45 Å for 20-O-methyltransferase, (6) dimension 64 Å × 40
Å× 40 Å for RNA-replicase, (7) dimension 74 Å× 54 Å× 42 Å for
Endoribonuclease, (8) dimension 81 Å × 35 Å × 30 Å for ADP
ribose phosphatase. For the main protease (PDB ID: 7MGR), the
underwent alanine mutation was replaced with the catalytic
residue CYS145 to attain the atomistic structure similar to
SARS-CoV-1 with the homology modeling using SWISSMODEL
web server.47
Instrument and implementation for deep learning and lab-on-
a-chip integration

Wolfram Mathematica was used to extract digital features of
potential 6538 H-donor and H-acceptor docking pockets in
protomer targets. The digitized data was trained with Latin
hypercube sampling and Keras algorithm48 using Python 3.11 to
generate possible KS compounds with atom type (e.g., C, H, N,
O, and F). The 1024-node graph convolutional layer included
the ReLU and Tanh activation functions. Aer obtaining the
optimized hyperparameters (e.g., number of nodes in the graph
convolutional layer, dropout rate, and learning rate) in the
Keras model, Python scripts were translated into a C program49

to minimize memory operation and activate the
STM8S003K3T6C microprocessor.
Graph neural network (GNN) for METEORITE process

The GNN relies with an articial neural network acting as
geometric deep learning to t within the viral binding sub-
pockets, relying on module initiation, expansion, relabeling
atom index, and termination (METEORITE). It is represented as
a tuple of G = (Vc, Ecc) in which a set of carbon nodes or vertices
n˛ V and a set of carbon–carbon edges eij= (ci,cj)˛ Ecc, dening
as the linking nodes. Molecules can be visualized as graphs,
with atoms and the bonds that connect them represented as
nodes and edges.50 The probability of the inhibiting ligand
RSC Adv., 2024, 14, 26897–26910 | 26899

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra03965c


Fig. 1 (a) Information flow of H-bond donor and acceptor descriptors
of SARS-CoV-2 targets for graph neural network (GNN) in determining
RO5 antiviral inhibitors. (b) Overview of METEORITE in designing RO-5
antiviral drug. Generation starts with module initiation, followed by the
expansion of designed molecules in protein pockets. The process
sequentially relabels the atom and then ends with the termination
method.
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group j bound to site i, the predicted probability, denotes as Pi,j0
= max Pi,j (j = 1,.n), in which n is the total ligand groups.51

Training and validation of outer-shell DNN for PROOF process

Vina scores obtained from Python 3.11 interfacing with Auto-
Dock Vina 1.2.0 was used as a supervising data set for deep
learning-based docking scores.52 Multiple inhibitor orientations
can be specied with the batch option and improve efficiency
when running different conformation inhibitor states on
protein pockets through pinning, extraction, remapping ligand,
convolution, pooling, attening, and regression (PROOF).
When multiple inhibitor orientations are involved in molecular
docking with a single receptor, grid cache preparation is
utilized. The docking box is divided into multiple grid boxes
with quantized coordination. The trained DNN force eld esti-
mator assembles the summation of the 3N partial derivatives of
all T training points.53

FðxÞ ¼
XT

i¼1

X3N

j¼1

ðaiÞj
v

vxj

VUðx; xiÞ

where F(x) is a force eld vector containing the 3N forces pre-
dicted for molecular geometry x and a is the interpolating deep
learning parameters. At the end of the model, a multilayer
perceptron (MLP) and linear layer L(x) was employed to produce
the inhibitor sensing output.54

MLP(x) = LN(LN−1.L2(L1(x)))
ADMET assessment

Swiss ADME55 and pkCSM56 were utilized to evaluate the ADMET
(adsorption, distribution, metabolism, excretion, and toxicity)
proles of the identied KS inhibitors and other repurposed,
purposed and herbal inhibitors. The pharmacokinetics drug-
likeness includes Lipinski, Ghose, Veber, Egan, and Muegge
lters.

Results and discussion
METEORITE graph neural network for designing inhibitors

To initialize a SARS-CoV-2 inhibitor design with the inner-shell
deep learning, the prediction of molecular structure was carried
out by a graph neural network (GNN), as revealed in Fig. 1a.
First, the sequence ow of the viral descriptors for multiple
protomers, polymerases, and replicases was fed into the GNN
model, which outputs lists of antiviral drugs with a simplied
molecular-input line-entry system (SMILES) string. In addition,
a probabilistic docking tting percentage was obtained for
protein pockets.

In this case, GNN output for a SARS-CoV-2 inhibiting
candidate for tting protein pockets with a probabilistic dock-
ing percentage is further given in Fig. S2.† As shown in Fig. 1b,
METEORITE rst selects module initiation to place carbon
atoms in target pockets using trained neural networks. The
initiated inhibiting moieties and the protein pocket include the
three-dimensional coordinates. Later, fragments are bonded
26900 | RSC Adv., 2024, 14, 26897–26910
and are added to the inhibiting moieties in a stepwise manner
by the expansion process to form the geometry of the attach-
ment. Then the carbon feature could be replaced by another
atom type (e.g., N, O, S, or F) using the relabeling atom proce-
dure. Eventually, the selection process was ended through the
termination method by adding or removing fragments as the
designed inhibitors quantied rule-of-ve Lipinski. Aer the
inner-shell METEORITE GNN achieved in designing an inhib-
itor, the continuous process was carried out through outer-shell
PROOF DNN for predicting inhibiting conformation and
docking scores. As exhibited in Fig. 2a, the PROOF DNN
framework includes information ow of seven sequential
modules, including pinning, extraction, remapping, convolu-
tion, pooling, attening, and regression. First, the input of the
GNN-based KS inhibiting candidates was mapped onto
a specic cle of the viral SARS-CoV-2 polymerase ngerprints.
The module of remapping KS compounds to a 2D-distance
contact map includes the sequence of amino acids that
encode the atomistic features and bonding interactions
comparable to the 3D interpolated-charged SARS-CoV-2 poly-
merase structure given in Fig. S3.†
PROOF deep neural network for docking sensing scores

For instance, all fragments of articial intelligence-designed KS
compound analogues to deactivate the CYS145 and HIS41
catalytic dyads of the SARS-CoV-2 main protease are illustrated
in Fig. S4.† Apparently, the designed fragments are conformed
to t in the pockets with different distinct chemical terminals.
In a later section, the inhibitory chemical terminals that
neutralize the viral protein target are discussed in more detail.
The output units from the remapping process then served as
convoluted parameters for the pooling module for feature
extraction. The attening process arranges the pooled layers
into a vector that extracts the ligated protein complex interac-
tion. Aerward, the regression procedure handles the iteration
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a) Representative illustration of outer-shell DNN. The information flows from GNN-based KS inhibitors that are pinned onto 2D viral
descriptors to predict ML docking scores with consecutive modules of pinning, extraction, remapping, convolution, pooling, flattening, and
regression. (b) 2D SARS-CoV-2 fingerprints for RBD of S-protein, Mpro, PLpro, RdRp, MTase, RNA-replicase, Endo, and ADRP. (c) Simultaneous
bindingmodel with inducing locking. PF denotes the pocket conformation in the bound and unbound form and k1–k4 represents the forward and
reverse rate constants for transitions between the locking states.
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of the multilayer perceptron (MLP) with k hidden layers that
output the DNN-based docking scores. The information from
ML neuron training was later stored on the articial
intelligence-based lab-on-a-chip, or DNN-based micropro-
cessor. The 2D-descriptor inputs of viral SARS-CoV-2 targets
embedding toward the digitized ow for PROOF deep learning
are revealed in Fig. 2b. To determine the conserved pocket
regions, the viral cavities are pinned as the neighbouring amino
© 2024 The Author(s). Published by the Royal Society of Chemistry
acids clustering together with the 2D viral descriptor with
shaped-related and physicochemical properties. Distinctively,
the binding pocket space (light blue area) of RNA-replicase is
conned with smaller sizes than that of major protease, papain-
like protease, and the RBD of S-protein. Compared to moderate-
sized peptidomimetic inhibitors, Lipinski (RO5) inhibitors of
a molecular weight of less than 500 Da may be able to pass
through the small dynamic pockets. While there has been
RSC Adv., 2024, 14, 26897–26910 | 26901
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signicant progress in the development of antivirals like Pax-
lovid (nirmatrelvir-ritonavir), which target the Mpro and the S-
protein, or Molnupiravir, which can degrade the viral RdRp
and have an emergency use authorization, little work has been
done in conjunction with the other various SARS-CoV-2 targets.3

Nevertheless, the Mpro mutations inferred drug resistance to
Nirmatrelvir.13 In addition, as seen in Table 1, Nirmatrelvir does
not meet Veber's ltration and has more than 10 rotational
bonds.57 To overcome the hurdle of drug resistance, the insight
work was demonstrated in Fig. 2c as the RO5 inhibitor with less
than and more than 10 rotational bonds locking into RNA-
replicase pockets.
Two-dimensional inhibitor descriptors

The forward and reverse rate constant are governed in the
consecutive steps dominating binding and unlocking process.
With faster forward constant rates, the RO5 inhibitor less than
10 rotational bonds (KS1 and KS2 compounds in Table 1) were
able to overcome the large uphill or transitional binding free
Table 1 METEORITE-PROOF sensing (in bold) and Vina docking scores
artificial-intelligence designing inhibitors for deactivating SARS-CoV-2 pr
druglikenessa

Compound S-protein Mpro PLpro RdRp MTase

Remdesivir −8.0(−8.1) −8.1(−8.2) −6.5(−6.3) −8.5(−8.5) −7.2(−
Saquinavir −8.8(−8.9) −8.7(−8.8) −7.3(−7.3) −8.7(−8.9) −9.7(−
Indinavir −10.2(−10.1) −8.3(−8.4) −7.2(−7.3) −8.7(−8.7) −8.7(−
Zarlukast −8.9(−9.0) −7.8(−7.9) −8.3(−8.3) −8.9(−8.9) −9.4(−
Molnupira−vir −7.2(−7.3) −7.7(−7.5) −6.4(−6.4) −7.3(−7.3) −7.1(−
N3 inhibitor −8.5(−8.6) −7.6(−7.8) −6.5(−6.8) −8.8(−8.7) −7.9(−
Perampanel −8.2(−8.2) −8.1(−8.3) −7.3(−7.2) −8.1(−8.0) −8.2(−
Penicillin −8.3(−8.2) −7.9(−7.7) −7.4(−7.4) −7.1(−7.1) −7.1(−
Jun9_62_2R −8.9(−8.8) −6.6(−6.8) −7.0(−7.0) −7.6(−7.7) −7.9(−
Nirmatrelvir −8.9(−8.9) −8.2(−8.2) −7.0(−7.1) −8.4(−8.2) −8.0(−
Ritonavir −8.4(−8.2) −7.9(−8.0) −6.4(−6.2) −8.6(−8.6) −8.0(−
Amoxicillin −8.1(−8.1) −7.7(−7.7) −7.0(−7.0) −7.4(−7.5) −7.9(−
Clavulanic acid −5.3(−5.5) −6.3(−6.0) −5.8(−5.9) −5.7(−5.7) −6.3(−
S217622 −9.6(−9.7) −9.2(−9.2) −8.7(−8.7) −8.9(−8.9) −9.3(−
PF07304814 −7.7(−7.7) −8.3(−8.5) −8.0(−7.9) −8.4(−8.5) −8.1(−
PBI0451 −8.7(−8.7) −8.0(−8.0) −7.4(−7.5) −7.9(−7.9) −8.7(−
13B −8.4(−8.4) −6.4(−6.5) −6.7(6.9) −8.1(−8.3) −7.2(−
Andro-grapholine −7.5(−7.4) −7.3(−7.4) −7.1(−7.1) −7.4(−7.4) −7.3(−
Panduratin-A −7.9(−7.8) −7.0(−7.1) −6.1(−6.2) −7.0(−7.0) −7.2(−
KS 1 −9.4(−9.4) −9.4(−9.4) −8.3(−8.2) −8.7(8.8) −8.9(−
KS 2 −10.2(−10.3) −9.3(−9.3) −8.4(−8.4) −9.9(−9.8) −9.7(−
KS 3 −9.0(−9.0) −9.3(−9.3) −8.3(−8.3) −9.6(−9.6) −9.5(−
KS 4 −8.5(−8.4) −8.8(−8.9) −7.6(−7.7) −9.7(−9.6) −8.7(−
KS 5 −8.3(−8.3) −8.6(−8.6) −7.5(−7.5) −9.0(−9.0) −8.1(−
KS 6 −8.2(−8.2) −8.5(−8.4) −8.3(−8.3) −8.6(−8.6) −8.6(−
KS 7 −7.6(−7.6) −8.4(−8.4) −7.6(−7.6) −7.4(−7.2) −8.4(−
KS 8 −8.4(−8.5) −8.5(−8.4) −7.3(−7.5) −8.8(−8.9) −8.8(−
KS 9 −9.0(−9.0) −8.2(−8.2) −7.9(−7.9) −8.9(−8.8) −9.0(−
KS10 −8.1(−8.0) −7.9(−8.0) −7.2(−7.2) −7.1(−7.1) −7.9(−
KS11 −7.9(−7.9) −8.0(−8.0) −7.5(−7.6) −7.3(−7.5) −8.2(−
KS12 −8.5(−8.4) −7.6(−7.6) −7.4(−7.4) −8.1(−8.0) −8.1(−
a S-protein: spike glycoprotein, Mpro: main protease, PLpro: papain-l
methyltransferase, RNArep: RNA-replicase, Endo: endoribonuclease, ADR
Gho. Vio.: numbers of Ghose violation, V./E./M.: whether a drug passes a

26902 | RSC Adv., 2024, 14, 26897–26910
energy (DGT) and achieve the lowest docking free energy (DGC)
in the nal conformational states. On other hand, RO5 inhibi-
tors with more than 10 rotational bonds need more free energy
to get past the greater barrier inducing by the RNA-replicase
motion that causes pocket gates to open and close.

To assure that the RO5-compound with less than 10 rota-
tional bonds could dock into multiple RNA-replicase pocket
gaits with enhanced potent binding, the simulation of prom-
ising KS1 inhibiting candidate bound onto the replicase was
demonstrated in Video S1† and simulation parameters given in
Fig. S5.† In general, the architecture of 3D-neural networks
imposes limitations, especially in computational efficiency,
where costs rise with the third power. To overcome it, precise
coordinates for every constituent atom in 3D molecules were
transferred into 2D molecular descriptors. As shown in Fig. 3,
selected primary GNN-based SARS-CoV-2 inhibitors are exhibi-
ted with embedded distinct cyclic structures. As a result, the
designed bicyclic KS1 compound or 3-(6,6-diisopropyl-4-
(2,3,5,6-tetrauorocyclohexa-2,5-dien-1-yl)-3-oxa-2,4-
diazabicyclo sp2)-F probe of 2,4-diuorobicyclo[4.2.0]octa-1,4-
(in parenthesis) of contemporary repurposed, purposed, herbal, and
otein targets and validation of Lipinski, Ghose, Veber, Egan, andMuegge

RNArep Endo ADRP Lip. Vio Gho. Vio. V./E./M

7.3) −7.0(−6.8) −8.4(−8.3) −8.2(−8.4) 2 3 No
9.5) −8.3(−8.2) −10.2(−10.1) −10.3(−10.4) 2 3 No
8.9) −6.6(−6.7) −8.6(−8.7) −9.4(−9.6) 1 3 No
9.5) −7.7(−7.5) −9.1(−9.2) −9.3(−9.4) 1 4 No
7.0) −5.9(−5.8) −7.7(−7.6) −7.4(−7.5) 0 1 No
7.9) −7.0(−6.9) −8.5(−8.6) −8.3(−8.3) 2 3 No
8.2) −7.0(−7.1) −8.9(−8.8) −8.6(−8.4) 0 0 Yes
7.2) −6.4(−6.4) −8.3(−8.2) −8.5(−8.4) 0 0 Yes
7.9) −7.5(−7.4) −8.5(8.5) −10.5(−10.4) 1 3 No
8.1) −7.1(−7.0) −7.8(−7.9) −9.2(−9.3) 0 1 No
8.0) −7.3(−7.4) −7.6(−7.5) −9.0(−9.1) 2 4 No
7.8) −6.6(−6.6) −7.5(−7.4) −8.7(−8.6) 0 0 No
6.3) −4.8(−4.8) −5.8(−5.8) −6.7(−6.8) 0 1 No
9.1) −8.1(−8.0) −9.0(−9.1) −10.1(−10.0) 2 1 No
8.2) −7.1(−7.1) −8.4(−8.5) −7.9(−7.9) 3 3 No
8.5) −7.9(−7.6) −8.4(−8.2) −10.0(−10.1) 0 0 Yes
7.2) −7.3(−7.1) −8.6(−8.7) −9.1(−9.2) 1 3 No
7.2) −6.2(−6.2) −8.0(−8.1) −7.6(−7.6) 0 0 Yes
7.2) −7.0(−7.0) −8.2(−8.2) −8.7(−8.6) 0 1 No
8.8) −8.1(−8.0) −9.5(−9.4) −9.4(−9.4) 0 0 Yes
9.7) −8.8(−8.8) −10.2(−10.2) −9.4(−9.5) 0 0 Yes
9.6) −8.3(−8.3) −10.1(−10.0) −9.9(−10.0) 0 0 Yes
8.7) −8.0(−8.0) −9.7(−9.7) −9.1(−9.0) 0 0 No
8.1) −7.5(−7.5) −9.1(−9.0) −9.4(−9.4) 0 1 Yes
8.8) −7.3(−7.1) −9.1(−9.2) −9.9(−9.9) 0 1 Yes
8.4) −6.8(−6.8) −8.0(−8.0) −7.1(−7.1) 0 1 No
8.7) −7.3(−7.1) −8.8(−8.9) −7.8(−7.9) 0 3 No
9.0) −6.8(−6.8) −8.5(−8.5) −8.1(−8.0) 0 0 Yes
7.8) −6.5(−6.5) −7.3(−7.3) −8.1(−8.2) 0 1 No
8.1) −6.6(−6.6) −7.6(−7.6) −7.7(−7.7) 0 0 Yes
8.1) −7.0(−7.0) −8.5(−8.6) −8.6(−8.7) 0 1 Yes

ike protease, RdRp: RNA-dependent RNA polymerase, MTase: 20-O-
P: ADP ribose phosphatase, Lip. Vio.: numbers of Lipinski violation,

ll Veber, Egan, and Muegge druglikeness.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Selected primary GNN-based SARS-CoV-2 inhibitors with corresponding 2D molecular descriptors.
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View Article Online
diene could act as carbonyl moiety with bond polarization,
given that its dipole is quite comparable to C–O. The pocket
distance phase of 0.1 nm interspace from KS1 to KS5 and KS12
shows the similarity as these retain bi and tricyclic structures. In
© 2024 The Author(s). Published by the Royal Society of Chemistry
contrast, the (1s,5s)-2,4-dimethyl-3-oxa-2, 4-diazatricyclo
[3.2.2.01,5] nonane chain of KS9 provide distinct inner pocket
phase boundary of 0.1 nm distance apart.
RSC Adv., 2024, 14, 26897–26910 | 26903
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METEORITE-PROOF process in lab-on-a-chip

The lab-on-a-chip with the close-loop of SARS-CoV-2 RO5-
inhibitor discovery and sensing operations includes all the
essential components needed for automating covalent and non-
covalent docking of designed warheads to multiple viral
receptors, as shown in Fig. 4a. The discovery modes combined
a graph neural network to design covalent inhibitors and a deep
neural network to predict the binding interaction with docking
scores. The sense mode would output the docking scores using
the lab-on-a-chip readout. The docking poses of KS1 compound
inhibiting allosteric sites of protein targets was shown in
Fig. 4b, indicating the inhibitor can arrest on multiple pocket
gates. To facilitate the conformational placement of KS inhibi-
tors, dual processor core combines the dual deep learning
process as exhibited in system-level block diagram of Fig. 4c. As
given in Fig. 4d with the correlation matrix and Table 1, KS2
inhibitor possess the distinct capability to deactivate multiple
protein targets as compared with other contemporary
inhibitors.

With the established pharmacokinetic principles, Lipinski's
rule of 5 requires inhibiting H-bonds < 5, H-acceptors < 10,
molecular weight < 500 Da, and octanol–water partition coeffi-
cient (log P) < 5.58 The GHOSE's lter denotes that the inhibiting
log P is between −0.4 and 5.6, molecular weight is between 160
and 480, molar refractivity is between 40 and 130, and the total
number of atoms is between 20 and 70.59 Meanwhile, Veber's
lter encloses all rotational bonds less than 10 and topological
polar surface area (TPSA) less than 140.57 Specically, Egan's
lter includes WLogP (lipophilicity) less than 5.99 and the total
polar surface area less than 131.60 Muegge's lter accepts the
molecular weight between 200 and 600 Da, XLOGP3 (lip-
ophilicity) between −2 and 5, the total polar surface area less
than 150, the number of rings less than 7, the number of
carbons greater than 4, the number of heteroatoms larger than
1, the number of rotatable bonds less than 15, the hydrogen
bond acceptors less than 10, and the hydrogen bond donors less
than 5.61 Table 1 shows that the AI-based sensing scores corre-
late well with the Vina docking scores. As listed with repur-
posed, purposed, and herbal drugs (inhibitor nomenclatures
given in Fig. S6†) in the table, [3.1.0] bicyclic KS1 and [4.2.0]
tricyclic KS2 inhibitors were developed in the METEORITE-
PROOF process to deactivate multiple protein targets, despite
the fact that Paxlovid, which combines the inhibitors nirma-
trelvir and ritonavir, resists to the viral main protease as dis-
cussed in the previous section.13 In addition, an example to
obtain AI-based sensing using 2D molecular inhibiting and
SARS-CoV-2 descriptors through the METEORITE-PROOF
process is given in Fig. S7.†
Binding interactions of KS2 inhibitors bound on SARS-CoV-2

To validate the binding interaction of the articial intelligence-
designing compounds, KS2 triple cyclic inhibitor was selected
to search for the most probable binding postures at the
optimum binding affinity. Fig. 5a exhibited the best KS2
compound docked conguration on the SARS-CoV-2 spike
receptor-binding domain (RBD) with a vina docking score of
26904 | RSC Adv., 2024, 14, 26897–26910
−10.3 kcal mol−1. The obtained highest docking scores
compared to other reported inhibitors are attributed to Lipinski
drug transport within pocket gates of 5 Å radius, as given by the
docking snapshot in Fig. S8.† The nitrile head was intacted with
PHE72 benzene ring, while TYR385 residue could either bind
hydrogen bonding with the oxygen tail of azetidine-2-one or
halogen uorine bonding with diuorocyclopentane. The
aligned PHE390 residue forms pi–pi interactions with the
cyclobutene tails of bicyclo[3.2.0]heptane and bicyclo[4.2.0]
octa-1,4-diene segments and allows weakly uorine bonding
with diuorocyclohexa-1,4-diene.

Previous studies demonstrated that the active dyad site of
the main protease has CYS145 and HIS41 residues located at
a cle nearby domain I (residues 15–99) and domain II (residues
1–14, 100–197) protomers.62 In this context shown in Fig. 5b, the
nitrogen center group of azetidine-2-one attacked the carbonyl
moiety of HIS41 catalytic base, while depronated CYS145 could
covalently form with the nitrile head of KS2 inhibitors as
described in eqn (1) with a demonstration in Video S2† (simu-
lation parameters listed in Fig. S9†). The existence of a hydro-
phobic Pi–Pi interaction is also found at HIS164 toward the
cyclopentanone ring. The attribute of PRO168 hydroxyl tails
provides a weak interaction with the cyclobutene terminal. With
the consideration that the conserved catalytic triad sties of
CYS111, HIS272, and ASP286 exist in the PLpro protease,63 the
prediction of binding activity was exhibited in Fig. 5c. The
binding position at this catalytic site relied on the deactivation
of CYS111 with the acetonitrile head. The hydrogen bond of
cyclopentanone tails defuse HIS272 and ASP286 as well as the
Pi–Pi interaction to neutralize HIS272 residues.

(1)

In addition, halogen-forming interactions have been also
seen at ALA114 and GLY287. While the catalytic sites of SARS-
CoV-2 RdRp lied down with ASP 760, ASP761, and ASP618
residues,64 this negative polar contact site was neutralized with
KS2 inhibitor as it entered the pocket gate, given in Fig. 5d. The
deprotonated azetidine-2-one terminal attacked the carbonyl
group of ASP760, while the acetonitrile head was oriented to
form ASP761. In addition, the cyclopentanone ring and cyclo-
butene terminal also deactivate ASP761 and ASP618 through Pi–
cation/Pi–anion interactions, respectively. To further neutralize
the polar contact site, the neighboring residues of ASP623,
LYS62, GLU811, TRP617, ALA625, and PRO627 contribute
hydrogen formation to the catalytic site. Effectively, antiviral
treatment could aim for the methyltransferase (MTase) that
caps viral mRNAs because the capping entity enhances the
translation of viral proteins and keeps the host immune system
from realizing viral mRNAs. To achieve this, the optimized
binding conformation of the KS2 inhibitor activating on the
allosteric MTase site is shown in Fig. 5e. The acetonitrile head is
oriented toward the phenol ring of TYR4329, while the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) Illustration of information flows through the lab-on-a-chip with RO5-drug discovery and sense modes. (b) Snapshots of the selected
KS1 inhibitors binding on multiple allosteric sites of SARS-CoV-2 protein targets. (c) System-level block diagram of the lab-on-a-chip for deep
learning-based discovery mode. (d) Correlation matrix describes the docking performance comparison among the chosen existing SARS-CoV-2
drugs, herbal remedies, and artificial intelligence-designed KS compounds.
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azetidine-2-one head induces Pi–Pi interaction with the 1H-
indole ring of TRP4376. The nearby CYS4343, LEU4328,
GLY4362, LYS4366, LEU4345, and PRO4369 residues triggered
© 2024 The Author(s). Published by the Royal Society of Chemistry
the activation of hydrogen and carbon–hydrogen formation.
Notably, RNA replicase (nsp 9) is the only viral protomer and
protease that can be effectively defused by several hypothesized,
RSC Adv., 2024, 14, 26897–26910 | 26905
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Fig. 5 Molecular interactions between the KS2 inhibitor and the SARS-
CoV-2 protein targets (a) Receptor-binding domain (RBD) of spike
glycoprotein (S-protein). (b) Main protease (Mpro). (c) Papain-like
protease (PLpro). (d) RNA-dependent RNA polymerase (RdRp). (e) 20-
O-Methyltransferase (MTase). (f) RNA-replicase (RNArep). (g) Endor-
ibonuclease (Endo). (h) ADP ribose phosphatase (ADRP).

Fig. 6 Ramachandran diagram illustrating stereochemical geometry
for (a) complexes of the KS2 inhibitor bound with S-protein, Mpro,
PLpro, RdRp, MTase, RNArep, Endo, and ADRP. Plots of (b) RMSD and
(c) Rg of the KS2 inhibitor complexed with all 8 protein targets.

RSC Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
A

ug
us

t 2
02

4.
 D

ow
nl

oa
de

d 
on

 7
/1

2/
20

25
 1

1:
41

:2
6 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
repurposed, and current herbal inhibitors given in Table 1. This
obstacle is addressed by KS1 and KS2 inhibitors, which achieve
upper vina docking scores of −8.0 and −8.8 kcal mol−1,
respectively. As shown in Fig. 5f, the KS2 inhibitor relied on the
electrophilic acetonitrile head to covalently form with ASP60, as
revealed by eqn (2).

(2)

The neighboring ARG39, PHE40, VAL41, and PHE56 occu-
pied pi–alkyl interactions in deactivating the allosteric gate. It is
evident that the SARS-CoV-2 inhibitors selected in the table
offer encouraging docking scores in neutralizing the endor-
ibonuclease that processes viral RNA to avoid the host defense
system's identication. Fig. 5g provides the optimum binding
pose of KS2 inhibitor exhibiting TRP87 and ALA55, which are
lined with the acetonitrile head and an azetidine-2-one plane.
26906 | RSC Adv., 2024, 14, 26897–26910
This metabolically labile pocket further blocked GLU42, ASN46,
and ASP92 with uorinated bonding. Despite SARS-CoV-2
modulators such as Saquinavir, Indinavir, Zarlukast,
Jun_9_62_2R, S217622, and 13B achieving high docking scores
for ADP ribose phosphatase inhibition, they are constrained by
a Lipinski drug violation. With the design of the KS2 inhibitor,
the acetonitrile head could catalytically form with the carbonyl
group of VAL49, and pi–alkyl bond interactions exist within
ALA52, ALA129, and PHE156 residues, given in Fig. 5h. In
addition, water-bridging hydrogen and carbon–hydrogen
formation also occurs at ASP22, ILE23, VAL31, PRO136, and
ALA154 residues, attaining the optimal docking score of
−9.5 kcal mol−1.
Stability analysis of the inhibitor-SARS-CoV-2 complex

Further analysis was carried out with stability tests. The KS2
inhibitor interacting with SARS-CoV-2 protein targets were
simulated utilizing MD at 100 ns. To evaluate how simulations
of the complex might be affected in the absence of inhibitors,
the unligated SARS-CoV-2 complex was considered for analysis.
Frequent factors, including inhibitor conformation, water
molecules, nearby ions, association–disassociation factors,
inhibiting protonation state, and inhibitor-protein and solva-
tion entropies, can unexpectedly inuence simulation predic-
tions. The optimized structure of the simulated docking
complexes realized strong stereochemical geometries of the
protomer, polymerase, and replicase residues, as depicted in
© 2024 The Author(s). Published by the Royal Society of Chemistry
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the Ramachandran diagram in Fig. 6a. The diagram states that
there are strong interactions, as seen with the unligated SARS-
CoV-2 complex given in Fig. S10,† and the inhibitor stabilizes
multiple SARS-CoV-2 protomers, polymerases, and replicases at
the active sites through water bridges, hydrophobic, hydro-
philic, and hydrogen bond interactions.

Hence, the MD study strongly validated the molecular
docking data of SARS-CoV-2 inhibitor interactions. Further MD
simulation was performed, where the stability of the KS2
inhibitor was evaluated using the root mean square deviation
(RMSD) of backbone atoms with all 8 protein targets. As
depicted in Fig. 6b, the RMSD traces of S-protein, Mpro, PLpro,
RdRp, MTase, RNArep, Endo, and ADRP complexed with the
KS2 inhibitor exhibit an average RMSD of 2.3–3.5 Å, 1.8–3.1 Å,
1.5–2.6 Å, 2.7–3.9 Å, 1.6–3.0 Å, 2.3–3.5 Å, 2.0–3.4 Å, and 1.5–2.6
Å, respectively. It is remarkable to note that all the protomers,
polymerases, and replicases complexed with the KS2 inhibitor,
achieving their stable conformations at the end of the 40 ns
time scale simulation, as seen by their convergence and stable
RMSD values. The Rg values of all viral protein target-inhibitor
complexes extracted in Fig. 6c did not signicantly change
over the simulated period, implying that the inhibitors did not
separate from the complex and that the compactness of the viral
proteins did not alter.

Stability of acetonitrile catalytic head

To conrm the affinity and specicity of KS inhibitors with the
viral Mpro target, MD simulations were carried out to investi-
gate three different KS1, KS2, and KS12 compounds. Evidently,
the molecular interaction between the acetonitrile head and the
Mpro active dyad site is a result of an unaltered covalent
bonding interaction (within a cut-off distance of 0.15 nm) for
the KS1 and KS2 inhibitors shown in Fig. 7a and b, respectively.
As a result, the uorinated placement of tetrauorocyclohexa-
1,4-diene, diuorobicyclo[3.2.0]heptane, and diuorocyclo
[4.2.0]octa-1,4-diene termini enhances the catalytic attach-
ment, providing optimum docking scores in the table.
Fig. 7 Recognition interaction time with separation distance and
several fluorinated bonds between (a) KS1, (b) KS2, and (c) KS12
inhibitors with the SARS-CoV-2 Mpro active site. The dashed line
indicates a cutoff distance of 0.15 nm to define covalent binding.

© 2024 The Author(s). Published by the Royal Society of Chemistry
Nevertheless, the 3-oxa-2,4-diazatricyclo[3.1.1.01,5]heptane
plane of KS12, shown in Fig. 7c, destabilizes the catalytic attack
of the acetonitrile head. It ascertains that the uorinated
placement as well as the carbon planes of cyclic compounds
contribute to optimize binding potency.
Accuracy predictions of KS inhibitors defusing SARS-CoV-2
protein targets

This portion further examined the coherence accuracy of all
selected primary 12 KS inhibitors using articial intelligence,
while the binding efficacy of the developed inhibitors was
veried using MD simulations. Overall, all protein targets have
Vina docking scores of at least R2 = 0.97 and RMSE ranging
(0.20–0.40), as shown in Fig. 8a obtained using METEORITE-
PROOF deep learning, indicating that the validated ML model
is accurate. The KS1 inhibitor's confusion matrices, which are
displayed in Fig. 8b–d, demonstrate great prediction accuracy in
each ML score interval when bound to the SARS-CoV-2 S-
protein, Mpro, and RNA replicase. Thus, the proper inhibitor
structure in the viral pockets could be predicted by deep
learning. The KS1 and KS2 ligands' accuracy radar plots, which
show how they inhibit all protein targets, are shown in Fig. 8e
and f. These plots show the high accuracy of the ML model as
well as high accuracy precision-recall plot (Fig. S11†) in pre-
dicting the dynamics of protein binding at allosteric pockets
caused by these compounds' physicochemical interactions.
Fig. 8 (a) Parity plot of Vina docking and ML sensing scores, showing
the high prediction fitting attained by ML models. RMSE: root mean
square error; R2: correlation coefficient. Confusion matrices of KS1
inhibitor modulating (b) spike-protein, (c) main protease, and (d) RNA
replicase. Accuracy radar plots of (e) KS1 inhibitors, (f) KS2 inhibitors
deactivating protein targets, and (g) KS1 to KS12 inhibitors neutralizing
RNA replicase.
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Fig. 9 Selectivity of KS1 and KS2 inhibitors toward viral subunits
relative to selected human protein domains.
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Furthermore, as Fig. 8g illustrates, the ML model predicts with
great accuracy the structural selection of KS1–KS12 inhibitors
onto numerous RNA replicase pockets.

Selectivity of KS1 and KS2 inhibitors toward protomer targets
relative to human protein domains

Investigating the selectivity of the developed compounds
towards the viral protomers relative to human protein domains
is another crucial part of creating a lab-on-a-chip to speed up
the drug development process, as an oral medication shouldn't
have any negative effects on humans. In the molecular
dynamics study, human lung protein that plays a role in host
defense against infection and human serum albumin that
transports hormones, fatty acids, and other important
compounds in blood stream were chosen as human protein
domains. As given in Fig. 9, KS1 and KS2 compounds show an
excellent inhibitory action toward all viral subunit targets rela-
tive to human protein domains. When compared to non-target
protein binding energies (−5.7 to −6.3 kcal mol−1), it is evident
that all viral subunits have lower binding energies toward the
inhibitors.

Real-time obtaining lab-on-chip sensing scores

To achieve a quick drug design search in the lab-on-a-chip, real-
time sensing score output is required for the closed-loop drug
discovery process with minimized trial errors. The sensing
Fig. 10 Real-time output screen of the on-wrist lab-on-a-chip for (a)
KS1 and (b) KS2 inhibitors.

26908 | RSC Adv., 2024, 14, 26897–26910
scores of KS1 and KS2 inhibitors binding to protein targets were
obtained from the lab-on-a-chip, as shown in Fig. 10a and b.
Video S3† provides additional detail on how to activate the lab-
on-a-chip and reveal KS inhibitors.

A snapshot of the on-wrist lab-on-a-chip that can accom-
modate dual microprocessors is shown in Fig. S12.† All twelve
main KS inhibitors with their SMILES string output as well as
their primary KS inhibiting analogs are given in Fig. S13 and
S14,† respectively.

Conclusions

Time constraints are a challenge in the quest for novel drugs,
particularly in the presence of long-term COVID or post-COVID
conditions that escalate impaired health functions, leading to
low work productivity in the modern world. Considering viral
polymerase pocket dynamics with reduced-dimensional
Euclidean descriptors can increase the accuracy of pocket
identication with a reduced cost of deep learning and reveal
more viral inhibitors with bi- and tricyclic structures. The work
proposes the lab-on-a-chip that restores a reserve of machine
learning nodes and utilizes an automated descriptor reduction
approach that notably reduces the complexity of the interaction
map and simplies the learning effect. With a limited capability
of repurposing and herbal remedies to conne viral RNA
replication, multi-level cyclic compounds stood as a candidate
to manage the Long COVID. The precise placement of halogen
terminals in the cyclic compound enhances the acetonitrile
catalytic head to deactivate multiple viral protein targets. The
reported multilevel cyclic compounds are highly notable as
inhibitors of multiple viral protein targets as they are novel and
nonpeptidic with Lipinski attributes. Currently, drug purposing
using the articial intelligence-aiding lab-on-a-chip could
greatly aid in the development of therapeutic inhibitors for
effective management of Long COVID. Furthermore, many lab-
on-a-chip technologies have only been employed extremely
limited for illness diagnoses. This is a signicant step toward
developing the lab-on-a-chip to speed up the drug development
process and supplement the ageing labor force in the event of
impending pandemics.
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