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f naturally occurring abietane
diterpenoids via a late-stage Fe(III)-bTAML catalysed
Csp3–H functionalization†

Mintu Munda, a Debasmita Chatterjee, b Moumita Majhi,b Souvik Biswas,b

Debopam Pal b and Alakesh Bisai *ab

The synthesis of diverse trans-fused decalins, including the abietane diterpenoids scaffold, using an efficient

selective oxidation strategy is described. The abietane core was demonstrated to be a versatile scaffold that

can be site-selectively functionalized. The utility of this novel oxidation strategy was showcased in a concise

total synthesis of six abietane congeners.
Introduction

The use of iron catalyzed reactions to construct complex
structures remains a powerful strategy in chemical synthesis.1

In nature, both heme and nonheme metalloenzymes mediated
oxidation of alkanes occurs in excellent selectivity and operate
under mild reaction conditions.2 Inspired by the high catalytic
efficiency of the enzymatic model systems, chemists have
developed numerous synthetic iron-based complexes for use in
C–H bond oxygenation reactions.3 Despite signicant progress,
achieving site-selective oxidation of unactivated C(sp3)–H
bonds, which constitute the most prevalent structural motifs in
complex natural products, remains a signicant challenge.
Recent efforts have demonstrated C(sp3)–H functionalization,4

including iron-5,6 and manganese-7 and copper catalyzed8 and
photochemical,9 methods that are compatible with diverse C–H
substrates as the limiting reagent. Although these trans-
formations can be performed in a stoichiometric fashion by
organic peracids,10 dioxiranes,11 and oxaziridines,12 but a cata-
lytic method involving H2O2 or O2 as cheap stoichiometric
oxidants is highly desirable.

In this context, abietane diterpenoids are structurally versa-
tile, exhibits tricyclic ring system (Fig. 1) with several stereo-
centers and a wide grade of oxygenation pattern on the skeleton
invites synthetic chemists to be creative and efficient. Maju-
sanic acid D (1) and majusanin B (2), belongs to a novel class of
abietane-type diterpenoids (3–6, Fig. 1), that have been isolated
in recent years from the roots of Illicium majus in 2013.13
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Structurally, they share densely functionalized trans-decalin
framework. Moreover, the decalin core contains three contig-
uous stereocenters, two of which are quaternary centers.

Biologically, angustanoic acid E (6) demonstrates signicant
cytotoxicities against ve human tumor cells (HCT-8, Bel-7402,
BGC-823, A549, and A2780), with IC50 value 2.47 ± 0.43 mM.14

Stimulated by their impressive structures and bioactivities, we
initiated a synthesis study of majusanic acid D (1) and its
derivatives (2–6, Fig. 1).

To this end, research in our group along with that in other
synthetic groups (e.g., Corey,15 Alvarez-Manzaneda,16 Matsu-
moto,17 Tada,18 Burnell,19 Gonzalez,20) focused on the develop-
ment of new synthetic strategies to access abietane-type
diterpenoids. Synthetic challenges include stereoselective
installation of three adjacent carbon stereocenters and
Fig. 1 Representative abietane-diterpenoids.
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Fig. 2 Site-selective functionalization strategies enabled by versatile
reactivity of abietane derivatives.

Scheme 1 Synthesis of callitrisic acid (7).
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formation of the polyoxygenated moiety. Biosynthetically, the
abietane scaffold can be constructed from farnesyl diphosphate
(FPP) via a cascade polyene cyclization.21 We envisioned
a strategy to advance the abietane scaffold by synthesizing cal-
litrisic acid (7) from abietic acid (14) using a modied literature
procedure.22 Then we focused our attention to perform selective
oxidation of activated 3 °C–Hbonds and activated 2 °C–H bonds
viaNO2[Fe-b-TAML]5 complex (12) in the presence of the oxidant
m-CPBA (Fig. 2c). It is worth mentioning that Matsushita et al.
has developed Co-catalyzed aerobic benzylic oxidation of
8,11,13-abietatrienes in the presence of N-hydroxyphthalimide
combined with AIBN derivative and its application in total
synthesis of diterpenoids.23

Initially, we wanted to synthesize the core structure of abie-
tane diterpenoids, such as callitrisic acid22 (7). On the basis of
previous reports by two independent groups, Pelletier et al. and
Alvarez-Manzaneda et al.,24 we have started our synthesis from
commercially available (+)-abietic acid (14). By subjecting
abietic acid to a temperature of 200 °C for a period of 4 hours
resulting in the formation of dehydroabietic acid (14a) (see
© 2024 The Author(s). Published by the Royal Society of Chemistry
ESI†). Subsequently, the resultant product underwent methyl-
ation utilizing dimethyl sulfate [(MeO)2SO2], resulting in the
formation of (15). The subsequent compound (15) was sub-
jected to reduction using LiAlH4, leading to the formation of the
primary alcohol (16) with a yield of 96%. Treatment of (16) with
PCC afforded the aldehyde (17) which, when treated with m-
chloroperbenzoic acid, gave the formate (see ESI† for details),
which aer saponication with reuxing 2,6-lutidine yielded
(18), whose physical and spectroscopic properties were identical
to those reported in the literature.20b The C-4 hydroxyl group in
(19) was installed by treatment of (18) with BH3$SMe2 and
oxidation of the resultant alkyl borane with H2O2 to generate
(19) regio- and diastereoselectively in 72% yield and its primary
alcohol was converted to the corresponding aldehyde (20) by
PCC oxidation in 82% yield. The C-4 quaternary chiral center
was installed by treating aldehyde (20) with tBuOK in THF, and
the resultant enolate was reacted withMeI followed by a Pinnick
oxidation introduced a carboxylic acid group in callitrisic acid
RSC Adv., 2024, 14, 20420–20424 | 20421
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Table 1 Optimization of Fe(III)-bTAML Catalysed Csp3–H oxidation

Entry Solvent Time (min) Yielda,b,c (%) 13 : 22 : SM

1 CH3CN/H2O (4 : 1) 15 0 : 70:30
2 CH3CN/H2O (4 : 1) 30 20 : 57 : 23
3 THF/H2O (4 : 1) 30 46 : 25 : 29
4 DMF/H2O (4 : 1) 30 32 : 20 : 48
5d CH3CN/H2O 90 82 : 0 : 0
6 CH3CN/H2O (2 : 1) 90 75 : 15 : 0
7 DMF/H2O (2 : 1) 90 61 : 0 : 0
8 H2O 90 0 : 23 : 77
9 CH3CN 90 0 : 31 : 69

a All reactions were conducted on a 0.2 mmol scale under 1 mol%
catalyst. b Isolated yield reported aer column chromatography. c 5
equivalents of mCPBA was used. d The reaction can be performed
conveniently in 100 mg scale.

Scheme 2 Synthesis of sesquiterpenoids scaffold.
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(7). Subsequently, callitrisic acid (7) was methylated using
dimethyl sulfate [(MeO)2SO2], resulting in the formation of
methyl callitrisate (8) in 98% yield (Scheme 1).

We then began to evaluate the proposed iron complex cata-
lyzed selective C–H bond oxidation from callitrisic acid methyl
ester (8). Finally, substrate bearing activated methine and
benzylic C–H bonds were explored. We then performed catalytic
reaction by introducing m-CPBA (5 equiv) via a syringe pump at
a rate of 100–200 mL h−1 into a solution containing (12)
(1 mol%) and substrate (8) (0.2 mmol scale) in an 80% CH3CN-
20% K2HPO4 (aq) solvent system (Table 1).5 Following this
protocol for 15 minutes yielded the benzylic ketone interme-
diate (22) with a 70% yield (entry 1, Table 1). Extending the
reaction time to 1 hour with ketone (22) produced the over-
oxidized product (13) in an 85% yield (see ESI† for details).
Similarly, callitrisic acid methyl ester (8) was converted directly
to the over-oxidized product (13) in 82% yield under the same
conditions for 1.5 h (entry 5, Table 1). Notably, the 2° benzylic
C–H bonds were observed to be preferentially oxidized over the
statistically more signicant 3° benzylic C–H bonds.
20422 | RSC Adv., 2024, 14, 20420–20424
The ketone formation can be rationalized through a two-step
oxidation process of the C–H bond, involving a two-electron
transfer mechanism. The second step, specically the conver-
sion of alcohol to ketone, occurs approximately 100 times faster
than the oxidation of alcohol originating from C–H bonds. We
posit that the generation of the ketone in the benzylic position
of (22) can be explained by this mechanism. Taken together, the
synthetic utility and versatility of our methodology was
successfully showcased, resulting in rst asymmetric total
synthesis of majusanic acid D (1) in signicant yield (Scheme 4).

Our next synthetic target was majusanin B (2) and its deriv-
atives (3–6, Fig. 1). With (13) in hand, we next explored Wolff–
Kishner reduction25 with hydrazine hydrate (N2H4$H2O)
provided the tertiary alcohol in (23) in 77% yield, which
underwent elimination by reaction with MsCl in the presence of
Et3N in CH2Cl2 to give (24) in 88% yield.

Subsequent oxidative cleavage of (24) with ozonolysis to
furnish aromatic acetophenone (25) in 76% moderate yield.
Dihydroxylation of the olen group of the styrene derivative in
(24) with OsO4/NMO26 gave diol (26) in 92% yield (Scheme 2).

Later, we moved ahead for the collective total synthesis of
abietane diterpenoids 1–6 shown in Fig. 1. Reduction of (23)
and (26) via LiAlH4-reduction ensures the total synthesis of
angustanol (5) and majusanin B (2) (Scheme 3). Lastly, hydro-
lysis of methyl ester of (13), (23), (24), and (25) using LiOH and
KOH in hot methanol27 completed the total synthesis of
Scheme 3 Synthesis of angustanol (5) and majusanin B (2).

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Majusanic acid D (1), angustanoic acid F (4), angustanoic
acid E (6) and angustanoic acid G (3).
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majusanic acid D (1), angustanoic acid F (4), angustanoic acid E
(6) and angustanoic acid G (3) respectively (Scheme 4).

Conclusions

We have completed the total syntheses of all known abietane
diterpenoids (1–6) through a unied strategy inspired by our
hypothesis for their biogenesis. Key features of our syntheses
include: (1) (+)-callitrisic acid (7) synthesis accomplished in 10
steps from abietic acid (14) with 32% overall yield, (2) we
demonstrate synthetic utility and versatility of Fe-bTAML
complex catalyzed biomimetic C–H bonds oxidation strategy in
the total synthesis of complex natural products.

Data availability

Experimental details and spectral analysis are available free of
charge from the ESI† available with this article.
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