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OF preparation, characterization
and catalytic evaluation in a one-pot synthesis of
benzoxanthenones with docking validation as anti
H. pylori†

Asma S. Al-Wasidi,a Mahmoud Tarek,*b Gehad E. Said, *b Ahmed M. Naglah,*c

Abdulrahman A. Almehizia c and Tamer K. Khatabd

Copper–Vit B3 MOF was successfully prepared by efficient and eco hydrothermal method. The prepared

MOF was characterized as a tetragonal crystal copper-MOF nanoparticles by FTIR, SEM, TEM, EDX and

XRD. The prepared nanoparticles were used as an effective, inexpensive and low-toxic catalyst in the

one-pot synthesis of some new benzoxanthenone derivatives. As example 4-(9,9-dimethyl-11-oxo-

8,10,11,12-tetrahydro-9H-benzo[a]xanthen-12-yl)phenyl benzoate (4h) was synthesized in high yield

92%. The MOF catalyst's role is activating the nucleophilic attack by increasing the carbonyl polarization,

and this generally improves the reaction time, which ranges between 20–60 minutes and products'

yields ranging between 80–92%. Prepared compounds (4a–4j) undergo molecular docking scanning as

Helicobacter pylori type II dehydroquinase inhibitors, and the data obtained showed that there are three

promises of the prepared compounds 4d, 4e, 4h and 4j compared with amoxicillin.
1. Introduction

Xanthene, which is an annulated pyran heterocyclic compound,
is one of the most applicable compounds in organic chemistry,
and it is presented as a scaffold in a lot of natural products,1–3

uorescent dyes and many bioactive compounds4 (Fig. 1). Due
to the presence of the pyran framework, various biological
functions have been recognized for them, such as antimicro-
bial, antiviral, analgesic, anticancer, antioxidant, antimalarial
and anti-inammatory.5–11 They also can be used as sensitizers
in photodynamic therapy,12 in the visualization of biomolecules
as chemical probes13 and in industrial materials.14 The xanthine
scaffold has been introduced into many important therapeutic
compounds (Fig. 1). Synthetic methods that use less harmful
materials and nd applications that are useful for society's well-
being are in tremendous demand right now. Following green
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chemistry principles to create ecologically sustainable processes
is a major issue for chemists.15 The catalysis process involves
accelerating a chemical reaction by including a catalyst.16

Three or more chemical reagents reacting in a single pot to
form a new product is known as a multicomponent reaction
(MCR). Due to their ability to synthesize some important
organic compounds and structures in a one-pot single reaction,
MCRs have drawn attention in the elds of synthesis and
medicinal chemistry.17,18 These reactions produce very selective
products in addition to requiring less energy and solvent. Owing
to the multiple benets of the MCR process, the development of
innovative, eco-friendly, and MOF-catalyzed MCR processes has
been seen as an intriguing, rapidly expanding area of study in
organic chemistry.19,20 Metal–Organic Frameworks (MOFs)
represent a fascinating class of materials that have gained
signicant attention for their potential applications across
various elds, including organic synthesis, gas storage, sensors
and biomedical applications.21–26 These crystalline compounds
consist of metal ions or clusters coordinated to organic ligands
to form one-, two-, or three-dimensional structures.27–29 MOFs
have a lot of unique properties that mean they are expected to
play an increasingly important role in the development of effi-
cient, selective, and sustainable catalytic processes in organic
chemistry. The high surface areas and presence of catalytically
active sites contribute to their high catalytic efficiency, tunable
pore sizes as designing MOFs with specic pore sizes allows for
the selective inclusion or exclusion of molecules, and chemical
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Representative examples for some biologically important xanthene nuclei and xanthene dyes.
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stability are crucial for MOFs use in harsh reaction
conditions.30,31

In this study, we have prepared a novel copper-based MOF
material (Cu–Vit B3) with nano structure, using a native
biomolecules of vitamin B3 as an organic ligand. Synthesized
ligands undergo docking validation as Helicobacter pylori type II
dehydroquinase inhibitor. One of the most common modern
diseases these days is stomach bacteria, and this is due to the
pollution of food. Helicobacter pylori (H. pylori) is a spiral sha-
ped a Gram-negative bacterium that lives and multiplies in the
lining of the stomach, and it is a common cause of many
stomach diseases including peptic ulcers.32,33
2. Experimental
2.1. Materials

Vitamin B3, copper(II) acetate monohydrate, ethylene glycol,
ethanol and deionized water (DI) were purchased from Sigma
Aldrich and used directly without purication.
2.2. Catalyst preparation

In a 50 mL beaker, vitamin B3 (0.123 g, 1 mmol) was dissolved
in 20 mL of ethylene glycol and in another beaker copper(II)
acetate monohydrate (0.1 g, 0.5 mmol) was dissolved in 20 mL
of ethylene glycol, then heated at 80 °C and stirred for 10 min
respectively. Then copper(II) acetate monohydrate solution
was rapidly added to the vitamin B3 solution with fast stirring
at 1500 rpm for 10 min. Subsequently, the solution was
transferred to a Teon-lined hydrothermal autoclave set at
180 °C for two days. The mixture was then centrifuged at
7000 rpm and washed three times with 60 °C DI water and
absolute ethanol to produce cyan powders of Cu–Vit B3-MOF.
© 2024 The Author(s). Published by the Royal Society of Chemistry
These were then freeze-dried and kept at 4 °C for additional
research.
2.3. Characterization of the catalyst

The surface morphology and composition of the catalyst were
deduced using a Jeol-JSM-6510LV scanning electron micro-
scope (SEM) and energy dispersive X-ray spectroscopy (EDX),
respectively. The particles size was produced from trans-
mission electron microscopy (TEM) using a JEOL-JEM-2100 at
200 kV to acquire X-ray powder diffraction patterns (XRD); the
Ni-ltered Cu Ka radiation = 1.540 at 40 kV, 30 mA, and
a scanning range 2q of 5–80 was employed. By using a Mattson
5000 FT-IR spectrophotometer at room temperature we ob-
tained FT-IR spectra of Cu-MOF through creating a disc of it
with 0.1 g KBr.34
2.4. Organic reaction and structure identication

General procedure for the synthesis of benzoxanthenone
derivatives (4a–j) catalyzed by Cu-MOF. To a mixture of one m-
mol dimedone (1; 0.14 g), one mmol b-naphthol (2; 0.144 g) and
one mmol aromatic aldehyde (3a–j) a catalytic amount of Cu-
MOF (0.05 g) was added. The mixture was stirred at 60–70 °C.
The reaction was monitored by chromatographic TLC till the
reaction was completed. Aer the specied time has elapsed, the
reaction is allowed to cool to room temperature, and the nal
product was extracted by ethyl acetate (20 mL). The MOF catalyst
was removed by simple ltration. The solvent was evaporated in
vacuo, and the crude residue product was washed with cold
methanol to afford pure benzoxanthenones 3a–j in high yields.
The spectral data of known benzoxanthenones (4a–g) are re-
ported in the literature.35,36 Moreover, the structures of the new
derivatives (4h–j) were illustrated and discussed as follows.
RSC Adv., 2024, 14, 20454–20465 | 20455
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4-(9,9-Dimethyl-11-oxo-8,10,11,12-tetrahydro-9H-benzo[a]
xanthen-12-yl)phenyl benzoate (4h).

White solid; Rf = 0.60 (8 : 2 petroleum ether/EtOAc); mp = 180–
182 °C; 1H NMR (400 MHz, CDCl3) d ppm: 1.132 (s, 3H, CH3),
1.256 (s, 3H, CH3), 2.32–2.51 (m, 4H, 2CH2), 5.56 (s, 1H,
CHpyran), 7.16–7.67 (m, 13H, Ar–H), and 8.20 (d, J = 7.6 Hz, 2H,
Ar–H). 13C NMR (100 MHz, CDCl3) d ppm: 27.40, 29.66, 31.44,
32.47, 46.45, 47.08, 115.52, 121.38, 127.88, 128.57, 129.68,
129.82, 130.17, 133.53, 135.72, 148.95, 165.12, 189.42, and
190.55. Analysis for C32H26O4 (474.18): calculated: C, 80.99; H,
5.52%. Found: C, 80.92; H, 5.45%.

4-(9,9-Dimethyl-11-oxo-8,10,11,12-tetrahydro-9H-benzo[a]
xanthen-12-yl)phenyl 4-methylbenzoate (4i).

White solid; Rf = 0.50 (8 : 2 petroleum ether/EtOAc); mp = 185–
187 °C; 1H NMR (400MHz, CDCl3) d ppm: 1.00 (s, 3H, CH3), 1.24
(s, 3H, CH3), 2.34–2.54 (m, 7H, 2CH2, CH3), 5.66 (s, 1H, CHpyran),
and 7.12–8.17 (m, 14H, Ar–H). 13C NMR (100 MHz, CDCl3)
d ppm: 21.80, 27.15, 29.32, 31.40, 32.56, 46.96, 50.43, 109.59,
115.54, 118.40, 121.65, 123.28, 126.37, 127.85, 128.06, 129.42,
129.70, 130.43, 131.45, 133.91, 135.74, 144.69, 145.20, 149.13,
Fig. 2 SEM images of Cu/Vit B3-MOF.

20456 | RSC Adv., 2024, 14, 20454–20465
154.50, 155.91, 164.86, 165.74, and 191.69. Analysis for
C33H28O4 (488.20): calculated: C, 81.13; H, 5.78%. Found: C,
81.11; H, 5.71%.

4-(9,9-Dimethyl-11-oxo-8,10,11,12-tetrahydro-9H-benzo[a]
xanthen-12-yl)phenyl 4-methylbenzenesulfonate (4j).

White solid; Rf = 0.60 (8 : 2 petroleum ether/EtOAc); mp = 170–
172 °C; 1H NMR (400MHz, CDCl3) d ppm: 0.95 (s, 3H, CH3), 1.14
(s, 3H, CH3), 2.24–2.35 (m, 2H, CH2), 2.40 (s, 3H, CH3), 2.57 (s,
2H, CH2), 5.70 (s, 1H, CHpyran), 6.79 (d, 2H, J = 6.4 Hz, Ar–H),
7.16 (d, 2H, J= 6.4 Hz, Ar–H), 7.25 (d, 2H, J= 6.4 Hz, Ar–H), 7.32
(d, 1H, J= 8 Hz, Ar–H), 7.43 (s, 2H, Ar–H), 7.55 (d, J= 5.6 Hz, 2H,
Ar–H), and 7.79–7.855 (m, 3H, Ar–H). 13C NMR (100 MHz,
CDCl3) d ppm: 21.69, 26.96, 29.36, 32.26, 34.07, 41.36, 50.85,
113.79, 117.07, 122.08, 123.50, 125.05, 127.04, 128.43, 128.52,
129.15, 129.58, 131.20, 131.53, 132.26, 143.63, 145.15, 147.85,
164.17, and 196.85. Analysis for C32H28O5S (524.18): calc.: C,
73.26; H, 5.38; S, 6.11%. Found: C, 73.18; H, 5.30; S, 6.02%.

2.5. Molecular docking data

The targeted protein II dehydroquinase (DHQase) 3D crystal
structure was downloaded from the PDB web site https://
www.rcsb.org/ (PDB ID 2c4w). The downloaded pdb le
underwent some simple modication using MOE 2015.10
soware starting by protein quick preparation and
optimization, and then, additional water molecules were
removed.
© 2024 The Author(s). Published by the Royal Society of Chemistry

https://www.rcsb.org/
https://www.rcsb.org/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d4ra03468f


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

7 
Ju

ne
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

0/
22

/2
02

5 
7:

59
:4

3 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
3. Results and discussion
3.1. SEM analysis

Cu/Vit B3-MOF nanoparticle surface morphology appeared as
nanospheres as obtained by SEM analysis (Fig. 2) and
conrmed by TEM (Fig. 4).
3.2. EDX elemental analysis

Using EDX, the elemental analysis of Cu-MOF was assessed, and
it was determined that there were equivalent amounts of
Fig. 3 EDX elemental analysis of Cu-MOF.

Fig. 4 TEM images of Cu/Vit B3-MOF.

© 2024 The Author(s). Published by the Royal Society of Chemistry
nitrogen, carbon, oxygen, copper and some traces of zinc
impurity, as illustrated in Fig. 3.
3.3. TEM analysis

The TEM pictures of Cu-MOF, displayed in Fig. 4, demonstrate
a spherical architecture with varying particle sizes ranging from
65 to 135 nm. The size of the MOF particles is inversely related
to their surface area/volume ratio, so this variation will have an
effective role in improving the catalytic activity.37 The images
were obtained at varied magnications between 50 and 100 nm.
RSC Adv., 2024, 14, 20454–20465 | 20457
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Numerous benets are introduced by this diverse array of
nanosphere architectures, such as a massive surface area, bio-
logical activity, and catalytic activity.
Fig. 7 (a) Single crystal structure of Cu/Vit-B -MOF and (b) full crystal
3.4. XRD experimental data

The XRD spectrum revealed that Cu/Vit B3-MOF demonstrated
relative peaks at 13.3, 14.9, 21.2, 23.1, 24.2, 26.9 and 36.9° (Fig. 5)
which are characteristic of a tetragonal structure and show little
deviation from simulated data. The proposed 3D-ball-stick struc-
ture of Cu/Vit B3-MOF (Fig. 6) reveals that the Cu atom bonded
with two Vit B3 molecules via a –COOH group side in one mole-
cule and via a N atom of the other molecule and further repeating
the pattern regularly to deduce the Cu-MOF crystal lattice.
3

image.
3.5. Theoretical single crystal study

A hypothetical shape for the Cu/Vit-B3-MOF single crystal
structure is shown in Fig. 7a, which was deduced from theo-
retical investigations using XRD data. Fig. 7b shows the full
crystal image of Cu-MOF, which crystallizes in tetragonal
structure with a high surface area and porosity.
3.6. Fourier transforms infrared (FTIR) spectra

By comparing the FTIR spectra of Cu-MOF and Vit B3 (Fig. 8),
the three bands at 1027, 1418 and 1700 cm−1 characteristic for
Fig. 5 XRD of Cu/Vit B3-MOF.

Fig. 6 Suggested ball-stick model for Cu/Vit-B3-MOF.

Fig. 8 FTIR spectrum of Cu/Vit B3-MOF.

20458 | RSC Adv., 2024, 14, 20454–20465
v(C–C), v(COO–), and v(C]O) in Vit B3 were shied to 1041,
1361 and 1627 cm−1 in Cu-MOF, respectively. This shiing in
peaks reveals the coordination between the Cu atom, –COOH
and N atom in Vit B3, and moreover, the two bands at 1902 and
2415 cm−1 disappeared in Cu-MOF, which emphasizes that
copper and Vit B3 were coordinated.38

3.7. Organic reaction

The synthesized Cu/Vit B3-MOF has a crystalline structure (see
the XRD in Fig. 5), tunable pore topology as in SEM (Fig. 2), and
high surface areas. In general, MOFs show a great deal of
promise, especially when it comes to catalysis.39,40 Our research
group is motivated to explore new catalytic multicomponent
reactions (MCRs) due to the distinctive characteristics of
MOFs.34,41–47 Benzoxanthenones, as previously mentioned, have
been used as scaffolding in numerous biological applications.
Our focus is on developing a novel, environmentally friendly,
and effective catalytic process for the production of these
heterocyclic molecules.

The reaction was started with an optimization step by
changing the “temperature and solvents” to choose suitable
reaction conditions. Finally, the best conditions for the synthesis
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Cu-MOF compared with reported catalysts in catalytic activity
for one-pot synthesis of 4a

Entry Catalyst Time (min) Yield (%)

1 Tetrabutyl ammonium
uoride (TBAF)

540 99 (ref. 48)

2 BF3 : OEt2 45 82 (ref. 49)
3 NH2SO3H 60 67 (ref. 50)
4 [DSTMG][CH3COO] 25 70 (ref. 51)
5 Cu/Vit B3-MOF 25 90
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of 4a as a model example is a one-pot reaction of one mole of
benzaldehyde, one mole of dimedone and one mole of b-naph-
thol in the presence of the catalytic amount of the prepared MOF
at 60–70 °C under solvent-free conditions. Table 1 explains the
efficiency of the prepared Cu-MOF compared with that of re-
ported catalysts in the one-pot synthesis of 4a.

Aer the reaction optimization step using green solvents,
such as water, and comparing it with the solvent-free reaction,
the data obtained seems similar (Scheme 1). So, the reaction
was explored by verifying the substituent in the aldehydic ring.
As an example, aldehyde 3j reacted with dimedone and 2-
naphthol in the presence of the catalytic amount of Cu/Vit B3-
MOF NPs without solvent at 60–70 °C. Crystallization was used
to purify the nal product. Elemental and spectral analyses were
used to characterize its structure. Reaction times and yields for
the nal products 4a–j are reported in Table 2.

A plausible mechanism for the synthesis of tetrahydrobenzo
[a]xanthenone derivatives using Cu/Vit B3-MOF nanoparticles is
indicated in Scheme 2. Cu/Vit B3-MOF nanoparticles most likely
function as a Lewis acid, utilizing a strong coordination bond to
enhancement the polarity of the C]O group in the aldehyde
and dimedone. Ortho-quinone methides (o-QMs) intermediate
A is rst produced by the nucleophilic addition of aldehydes
and 2-naphthol in the presence of Cu/Vit B3-MOF nanoparticles
as a catalyst. Following Michael addition of dimedone with o-
QM, intermediate B is created and coordinates to the catalyst to
cyclize, accompanied by the loss of H2O resulting in product 4h.

The data obtained in Table 2 is aimed at measuring the
efficiency of the catalyst in the synthesis of benzoxanthenones
by one-pot reactions. It was necessary to keep two components
with no change and change only one component so that we
Scheme 1 One-pot synthesis of 4j as an example for benzoxanthenone
MOF (0.05 g), stirring at 60–70 °C.

© 2024 The Author(s). Published by the Royal Society of Chemistry
could evaluate the effect of substituents on the aromatic alde-
hyde in the reaction. Practical data conrmed that the reaction
time is affected by the steric hindrance, and this is acceptable
for use related to the tetragonal structure of the prepared MOF
catalyst and also the effect of the b-naphthol size. Thus, all the
substituted aldehydes take a longer time than the small-sized
substituents such as F or unsubstituted aldehydic ring.
Finally, the high efficiency of the reaction is interpreted as the
role of the catalyst, as explained in the reaction mechanism,
where the catalyst raises the polarizing force of the carbonyl
groups, and this stimulates the nucleophilic attack.
3.8. Molecular docking

In recent years, new types of bacterial infections have spread,
such as Helicobacter pylori, which is considered one of the most
common causes of stomach ulcers and duodenitis and without
treatment leads to the formation of stomach cancer. This type is
treated with triple therapy consisting of antibiotics such as
amoxicillin, clarithromycin (Biaxin®), metronidazole (Flagyl®)
and tetracycline, in combination with a proton pump, and
antacids. So far, no treatment has been found specically for
this bacterial infection. Therefore, the following information
has been presented to nd a therapy specialized in eliminating
Helicobacter pylori. The targeted enzyme type II dehydroquinase
(DHQase) plays an important role in the synthesis of some
signicant bioactive organic compounds, such as tryptophan,
tyrosine, phenylalanine, and other aromatic metabolites from
shikimate. All these metabolites are very important in bacterial
cell life, and the selectivity comes from in the human body
where there are other enzymes used in these types of reac-
tions.52 Using a docking computational method, we can
measure the degree of the binding between prepared ligands
(4a–4j) and target protein active sites in II dehydroquinase
(DHQase), and the data obtained can be summarized as follows:

The binding between ligand (4j) and active side amino acid
residues (Ala79, Leu11, Asp18, Pro19, Arg113, Pro9, His82,
Asn10, Thr104, Ile106, His102, Gly78, Leu103, Asn76, Met13,
Thr83, Val1001, Phe112, Leu14 and Arg109) rstly can be
explained as two-dimensional (Fig. 9). As explained before, the
targeted receptor II dehydroquinase (DHQase) is an important
transformed enzyme in Helicobacter pylori. The presented
example gives the promised stacking with the DHQase receptor
s derivatives. Conditions: 1 (1 mmol), 2 (1 mmol), 3 (1 mmol), Cu/Vit B3-
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Table 2 Cu-MOF catalyzed synthesis of benzoxanthenone derivatives (4a–j)a

Entry Aldehyde Product Product structure Time (min) Yieldb (%) Mpc (°C)

1 4a 25 90 150–151c

2 4b 40 85 174–176c

3 4c 60 80 205–206c

4 4d 60 85 202–204c

5 4e 50 80 193–194c

6 4f 20 84 184–186c

7 4g 60 88 205–206c

8 4h 50 92 180–182

9 4i 60 90 185–187
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Table 2 (Contd. )

Entry Aldehyde Product Product structure Time (min) Yieldb (%) Mpc (°C)

10 4j 60 90 170–172

a Conditions: 1 (1 mmol), 2 (1 mmol), 3 (1 mmol), Cu-MOF (0.05 g), stirring at 60–70 °C. b Product yield. c Melting points of known cpds match with
literature values.35,36

Scheme 2 Reaction mechanism suggestion.

Fig. 9 Two-dimensional interaction between 4j and amoxicillin with Helicobacter pylori type II dehydroquinase.

© 2024 The Author(s). Published by the Royal Society of Chemistry RSC Adv., 2024, 14, 20454–20465 | 20461
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by many electrostatic bonds compared with the reference
molecule.

The docking protocol explains that the calculation of energy
score by kcal mol−1 reects the degree of binding. The data
obtained explained that the four ligands from the prepared
compounds (4d, 4e, 4h and 4j) possess signicantly lower
energy score values as compared to that of amoxicillin, the
reference molecule (Fig. 10). The lower energy scores of the four
derivatives (4d, 4e, 4h and 4j) were explained by the fact that
they can form a greater number of electrostatic bonds, such as
“hydrogen bond, dipole–dipole andp–p stacking”, compared to
those of the reference molecule.

Fig. 11 shows the binding interaction between ligand (4j)
and the active site in DHQase by a three-dimensional confor-
mation. The data obtained show that at least 6 bonds (explained
by dotted lines) can be formed between ligand (4j) and the
targeted enzyme Helicobacter pylori type II dehydroquinase and
4 hydrogen bonds between the sulphonyl group in the ligand
and enzyme amino acid residues Arg109, Arg113, His82, and
Ala79 withmeasured bond lengths 1.80, 2.37, and 1.88 and 2.22,
Fig. 10 Energy score of the prepared ligands and amoxicillin and
DHQase.

Fig. 11 Three-dimensional interaction between 4j and Helicobacter
pylori type II dehydroquinase. Numbers in green refer to the bond
length.

20462 | RSC Adv., 2024, 14, 20454–20465
respectively. There are two hydrophobic bonds (p–p stacking)
between the two-benzene ring in the prepared ligand and
enzyme amino acid residue Arg109 and Gly78.

4. Conclusion

A copper–Vit B3 MOF was successfully hydrothermally prepared
by an efficient and green method at a nano size. The structure
was characterized and illustrated by IR, XRD, SEM, TEM and
EDX. The prepared MOF was used in the synthesis of some
benzoxanthenone derivatives (4a–4j). The prepared hetero-
polycyclic compounds were evaluated as Helicobacter pylori
type II dehydroquinase inhibitors compared with amoxicillin.
The data obtained shows that four derivatives, 4d, 4e, 4h and 4j,
can presented in Helicobacter pylori treatment compared with
that of amoxicillin.
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