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La-doped MIL-88B(Fe)-NH,: a mixed-metal-
organic framework photocatalyst for highly
efficient reduction of Cr(vi) in an aqueous solution

Minh Hue Dang Thi,? Linh Giang Hoang Thi,? Chinh Dang Huynh,?
Hoai Phuong Nguyen Thi ©® and Duc D. La® *<d

With the aim to resolve the problem of water pollution, we herein propose a new photocatalyst based on
metal-organic frameworks (MOFs), called La-doped MIL-88B(Fe)-NH, (MIL-88B((1 — x)Fe/xLa)-NH,),
which was designed and employed for the photocatalytic reduction of Cr(vi) in aqueous solutions. MIL-
88B((1—x)Fe/xLa)-NH, materials with different x values were synthesized via a one-pot solvothermal
method. Their characteristics were investigated using various techniques, including X-ray diffraction
(XRD), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), Brunauer—Emmett—
Teller (BET) analysis, Fourier-transform infrared (FT-IR) spectroscopy and ultraviolet-visible diffuse
reflectance spectroscopy (UV-vis DRS). We found that compared to pristine MIL-88B(Fe)-NH, with
a photocatalytic efficiency of 67.08, MIL-88B((1 — x)Fe/xLa)-NH, materials with x = 0.010, 0.025 and
0.050 exhibit excellent photocatalytic efficiencies reaching 88.21, 81.19 and 80.26%, respectively, after
only 30 minutes of irradiation at a small catalyst dosage of 0.2 g L™%. These La-doped MIL-88B(Fe)-NH,
photocatalysts can work well under mild conditions (pH = 6). Furthermore, they are robust—can be
recycled for at least four consecutive runs without any activity loss. This novel material is promising for
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Introduction

The increase in toxic heavy metal ion contamination in aquatic
environments has become a serious issue worldwide. Hex-
avalent chromium (Cr(v1)) is a typical contaminant that is widely
used in various industrial fields such as electroplating, leather
tanning, cooling tower blowdown, and rinse waters." Waste
Cr(vi) compounds are discharged easily into water bodies and
cause serious harm to human health and organisms.? Alterna-
tively, Cr(m) is an essential trace metal involved in protein
structure stabilization and glucose and lipid metabolism.?
Therefore, reducing Cr(vi) to Cr(m) is considered an effective way
for Cr(vi) removal from water.

A number of methods, including chemical, electrochemical
and biological processes, are applied to aqueous Cr(vi) reduc-
tion.* Therein, the reduction of Cr(vi) to Cr(m) via a photo-
catalysis process is a fruitful method. This photocatalytic
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the photocatalytic degradation of pollutants.

technique is based on the electron/hole (e /h") pairs generated
in semiconductor materials under light illumination whose
photon energy is greater than the semiconductor's bandgap
energy.” Many studies have reported the photocatalytic reduc-
tion of Cr(vi) over TiO,, which is the most widely studied
photocatalyst.®® However, its catalytic efficiency is limited by its
large bandgap energy (3.2 eV) and the high recombination rate
of photogenerated e /h" pairs.®

Metal-organic frameworks (MOFs) are a class of porous and
crystalline materials composed of metal ions/ion clusters and
organic ligands. Large specific surface area, structural tunability
and reversible adsorption are the outstanding features of
MOFs." As a result, MOFs can be applied to a series of appli-
cations such as catalysis,'**? gas storage and separation,*>** cell
imaging,” and sensing.'® In the catalysis area, in particular
photocatalysis, MOFs have become dominant photocatalysts for
treating water pollution because of their low e /h* recombina-
tion probability due to ligand-to-metal charge transfer
(LMCT)."”*® Fe-based MOFs (Fe-MOFs) are a family of potential
materials in this field owing to their relatively small bandgap in
the range of 1.6-2.8 eV,""'*'*?* Jow toxicity and intrinsic
stability.”® Moreover, Fe-MOFs contain unsaturated iron(u) ions
with high catalytic activity, and this ensures their catalytic
ability in advanced oxidation processes (AOPs), in particular
Fenton-like processes.”® Among them, MIL-88B(Fe)-NH, (MIL:
Materials of Institute Lavoisier) is a common Fe-MOF material
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whose structure is built up by trimers of iron(m) octahedra and
2-aminoterephthalate ligands.** Compared to other MOFs, MIL-
88B(Fe)-NH, exhibits high catalytic ability,> chemical stability,
structural flexibility, and abundant raw sources.® Hence, it
attracts remarkable attention in a wide range of applications
such as heterogeneous catalysis,”® adsorption,*” sensing'® and
batteries.*®

Many strategies have been used in order to enhance the
photocatalytic efficiency of MOFs as well as other semi-
conductors. In this aspect, mixing rare earth elements (REEs)
(La, Ce, Sb and so on) with these materials has been proven to
be a feasible solution.”*** Opposite to d-block metals, REE-
metals have unique electronic properties because of their 4f
electron configurations that are shielded from outermost sub-
shell 5s and 5p, and REE-metals have distinct electronic and
magnetic properties that are not significantly altered by coor-
dinating ligands. Furthermore, REEs in general and lanthanum
(s7La) in particular are able to act as electron traps thanks to
a plenty of empty orbitals in 4f and 5d subshells, thereby
slowing down the e”/h* recombination rate and consequently
improving the efficiency. The application of the Lanthanum-
MOFs has been reported in various fields of catalysis, adsorp-
tion of toxic and heavy metal ions, and sensing. Further modi-
fication of La-Fe MOFs can improve the surface area and
catalytic capability of the materials. In this work, we aimed to
synthesize and apply La-doped MIL-88B(Fe)-NH, for the pho-
tocatalytic removal of Cr(vi). Various methods including X-ray
diffraction (XRD), scanning electron microscopy (SEM),
energy-dispersive spectroscopy (EDS), Brunauer-Emmett-Teller
(BET) analysis, Fourier-transform infrared (FT-IR) spectroscopy,
and ultraviolet-visible diffuse reflectance spectroscopy (UV-vis
DRS) were employed to characterize the as-synthesized photo-
catalysts, and ultraviolet-visible (UV-vis) spectroscopy was used
to determine the remaining Cr(vi) concentration in aqueous
media. We found that the introduction of lanthanum(m) into
the MIL-88B(Fe)-NH, structure enhances the efficiency of Cr(vi)
removal. Besides, experiments with different lanthanum(im)
contents were conducted to find out the influence of the mixed
lanthanum(m) content on the efficiency of the Cr(vi)
photoreduction.

Results and discussion

Characterizations of materials

Fig. 1 shows the XRD spectra of MIL-88B((1 — x)Fe/xLa)-NH, (x
= 0.010, 0.025, 0.050 and 0.10) materials (abbreviated in the
graph: MIL(FeLa)) under the solvothermal condition of 150 °C
and 12 hours. As reported in our previous work on MIL-88B(Fe)-
NH,,"* two characteristic peaks of the MIL-88B(Fe)-NH, phase
appeared at 26 = 9.3 and 10.6° corresponding to the (002) and
(101) lattices (CCDC 647646). Two of these diffraction peaks
also appear for the MIL-88B((1 — x)Fe/xLa)-NH, materials, but
they record a slight variation. In particular, the peak of the (002)
lattice moves to a smaller angular position on the XRD pattern
of all La®" ratios (20 = 9.2°). With the (101) lattice, the peak
shifts to the position 260 = 10.3° in the samples with x = 0.010
and 0.025, 260 = 10.8° in the sample with x = 0.050. More
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Fig. 1 XRD spectra of La-doped MIL-88B(Fe)-NH, materials (MIL(-
Fela)) under the solvothermal condition: 150 °C and 12 hours.

characteristic peaks are observed at 26 = 11.9° (sample with x =
0.10) and 26 = 20.6° (samples with x = 0.010 and 0.025) cor-
responding to the (102) and (202) lattice surfaces of MIL-
88B(Fe)-NH, (CCDC 647646). These shifts as well as the
appearance of additional peaks on the XRD spectra of the La-
doped MIL-88B(Fe)-NH, material are the result of the pres-
ence of La** in the MIL-88B(Fe)-NH, structure.’> Importantly,
no impure phases exist in the MIL-88B((1 — x)Fe/xLa)-NH, (x =
0.010, 0.025 and 0.050) spectra, demonstrating the single-phase
material. By contrast, the obtained MIL-88B((1 — x)Fe/xLa)-NH,
(x = 0.10) material is impure, as proven by the appearance of
strange peaks in the range 260 = 12.5-15.0°. It could be the
result of ligand competition between La*" and Fe®", or/and the
formation of other lanthanum compounds. The ligand
competition between La*" and Fe** could lead to the formation
of separate La-based MOFs. Many previous studies about MOF
materials based on rare earth elements revealed that their MOF
structure is complex and consequently difficult to determine
because they are mostly built by metal ion chains with a large
coordination number (usually 9).** Besides, some La(u)
compounds could form during the reaction such as La(NO3)3,**
LaCl;,* LaClO and La(OH);.* These findings revealed that MIL-
88B((1 — x)Fe/xLa)-NH, was successfully synthesized at x values
equal to 0.010, 0.025 and 0.050.

Morphology and particle size distribution of MIL-88B((1 — x)
Fe/xLa)-NH, (x = 0.010, 0.025 and 0.050) materials are pre-
sented in Fig. 2. The material particles show a bipyramidal
hexagonal prism shape, similar to previous works on MIL-
88B(Fe)-NH,.'*'*** Furthermore, a relatively uniform distri-
bution of the particles in all materials is observed. The size
distribution and mean size were calculated using the Image]
software, and the outcomes record changes in the particle size
in the obtained MOFs. The average widths of MIL-88B((1 — x)Fe/
xLa)-NH, at x = 0.010, 0.025 and 0.050 are 462.5, 529.5 and
842.5 nm, respectively; corresponding to the average length/
width ratio of 3.42; 2.76 and 2.11 (Table 1). It can be seen that
the width size is proportional to the La** content, whereas the
trend of the length/width ratio is opposite. The large radius of
the La*" ion compared to Fe*" and the structural swell may
cause this change.*

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 SEM images and particle size distribution of MIL-88B((1 — x)Fe/
xLa)-NH, with x = 0.010 (aand b), x = 0.025 (c and d) and x = 0.050 (e
and f).

The EDS analysis technique was employed to determine the
element compositions of MIL-88B((1 — x)Fe/xLa)-NH, (x =
0.010), as shown in Fig. 3. The results indicate the presence of
La elements in the MIL-88B(Fe)-NH, structure.

The N, adsorption-desorption isotherm analysis (BET) of
MIL-88B((1 — x)Fe/xLa)-NH,, (x = 0.010) is shown in Fig. 4. It can
be seen that the N, adsorption-desorption curve of MIL-88B((1
— x)Fe/xLa)-NH, (x = 0.010) displayed type IV isotherms with
hysteresis corresponding to capillary condensation, which is
typical of mesoporous materials. The measured surface area
from BET analysis (Sger) of MIL-88B((1 — x)Fe/xLa)-NH, (x =
0.010) is 35.3 m*> g~ * (Fig. 4). Normally, the Sy values of Fe-
MOF materials are lower than those of other MOF families***!
due to their closed micropore structure (Table 2). Micropores in
the Fe-MOFs' structure are incompatible with N, in terms of
size, thereby restricting N, adsorption.**® Besides, the surface
area of Fe-MOFs is affected by different synthesis conditions
and methods as well.

Fig. 5 shows infrared spectra of the NH,-TPA ligand, MIL-
88B(Fe)-NH, and MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010)
materials. Two peaks at 3462 and 3334 cm™ ' are attributed to
the asymmetric and symmetric stretching vibrations of N-H

View Article Online

RSC Advances

7000

6000 -C

5000

ity

4000

3000

Intens!

Fe
2000 4

1000

Fig. 3 EDS spectrum of MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010).

bonds, respectively. Similarly, two peaks appear at 1567 and
1367 cm ' due to the asymmetric and symmetric C-O stretch-
ing oscillation. A peak at 1682 cm ™" represents the presence of
the C=0 group. The peaks at 1252 cm™ " and 766 cm™ " corre-
spond to Cy,>-N and Cg,”-H bending vibrations. All of these
summits are observed in the infrared graph of the TPA-NH,
ligand and the as-synthesized MOFs. Additionally, in the spec-
trum of MIL-88B(Fe)-NH, and MIL-88B((1 — x)Fe/xLa)-NH, (x =
0.010), there appear other peaks which characterize new
binding vibrations. Particularly, the peak appears at 3327 cm ™
due to the presence of O-H vibration that belongs to H,O
molecules adsorbed in the MOF material. The characteristic
vibrations of Fe-O and La-O bonds are observed at 507 cm ™%,
evidence of the binding formation among Fe**, La®" and the
COO- groups in the ligand. As such, the FT-IR results contribute
to confirming the bond formation of the metal centers with the
ligand as well as the structural stability when induced by the
La** jon.

Fig. 6a shows the UV-vis DRS results of MIL-88B(Fe)-NH,
and MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010, 0.025 and 0.050)
materials. Compared to the original MIL-88B(Fe)-NH, material,
the wavelength at which the maximum absorption of MIL-
88B((1 — x)Fe/xLa)-NH, materials takes place does not change
significantly, but there is difference in absorption intensity.
MIL-88B(Fe)-NH, has the maximum wavelength (An.) at
390 nm with an absorption edge extending to the visible light
region while the absorbance in the spectra of the MIL-88B((1 —
x)Fe/xLa)-NH, (x = 0.010, 0.025 and 0.050) drops slightly.

The bandgap energies of MIL-88B(Fe)-NH, and MIL-88B((1
— x)Fe/xLa)-NH, (x = 0.010, 0.025 and 0.050) photocatalysts
were determined using the Kubelka-Munk equation and the
Tauc plot* as follows:

Table 1 Average particle sizes of MIL-88B((1 — x)Fe/xLa)-NH, materials

MIL-88B((1 — x)

Average values Fe/xLa)-NH, (x = 0.010)

MIL-88B((1 — x)
Fe/xLa)-NH, (x = 0.025)

MIL-88B((1 — x)
Fe/xLa)-NH, (x = 0.050)

Width (nm)
Length/width ratio

462.5
3.42

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 N, adsorption—desorption isotherms of MIL-88B((1 — x)Fe/
xLa)-NH, (x = 0.010).

(ahv)* = A(hv — E)

where « is the absorption coefficient, 4 is Planck's constant, » is
the photon's frequency, A is a proportionality constant and Ey is
the bandgap energy.

As shown in Fig. 6b, the bandgap energy (E,) increases from
1.99, 2.00, 2.23 and 2.41 eV corresponding to the x value
increasing from 0 (MIL-88B(Fe)-NH,) to 0.050. It can be seen
that La®" inserted into the MIL-88B(Fe)-NH, structure expands
the bandgap energy, and this energy increases proportionally to
the La®" content. This widening can be explained by the Bur-
stein-Moss effect.®® La’" tends to contribute more electrons
than Fe®* because the large ionic radius of La®>" reduces the
electrostatic interaction between the outer electrons and the
nucleus, leading to the Fermi level being filled with electrons.
Therefore, the following excited electrons can only move to an
energy state higher than the Fermi level, causing the bandgap
expansion. Moreover, crystal defects can be a factor that makes
the E, value shift, and a decrease in crystal defects results in the
E, increase.”” The binding energy of La-O is stronger than that
of Fe-O (Epao = 798 k] mol ™' > Eg._o = 407 k] mol ™" (ref. 50))
which contributes to reducing the number of defects in the
crystal lattice.

Photocatalytic study

The results of UV-vis spectra of the Cr-DPC complex solution at
various reaction intervals in the range of 2-14 minutes and its
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Fig. 6 UV-vis-DRS spectra (a) and Tauc plots (b) of MIL-88B(Fe)-NH,
and MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010, 0.025 and 0.050).

time-absorbance line graph are indicated in Fig. 7a and b. The
output reveals that the maximum absorbance reaches a wave-
length of 550 nm (A4 = 550 nm),** and the absorbance of the
Cr-DPC solution remains stable after 11 minutes. Therefore,
the absorbance of the following Cr-DPC solutions is measured
at Amax = 550 nm after 11 minutes of reaction. To determine the
linear range between the Cr(vi) concentration and the absor-
bance, we built two calibration curves in the Cr(vi) concentra-
tion range of 1-25 ppm (Fig. 7c and d). Linearity is observed
from 1 ppm to 20 ppm using equation A = 0.0196[Cr(vi)] +
0.0030 (R* = 0.9988).

Previous studies have reported that the pH environment has
considerable effects on the Cr(vi) photoreduction ability.'*>>*
Under a basic condition, the existing form of Cr(OH); precipi-
tation of Cr(m) can cover active sites on the catalyst surface

Table 2 Comparison of the BET surface area of MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010) with other Fe-MOFs

Material Synthesis method (solvent) Sper (M> g™ 1) References
MIL-53(Fe) Solvothermal 6.48 42
MIL-53(Fe) Solvothermal 9.77 43
MIL-88B(Fe)-NH, Solvothermal 19.2 44
MIL-88B(Fe)-NH, Solvothermal (H,O/ethanol) 2.35 43
MIL-88B(Fe)-NH, Solvothermal (DMF/ethanol) 8.9 42
MIL-88B(Fe)-NH, Solvothermal (DMF) 13.43 16
MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010) Solvothermal (DMF) 35.25 This work
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Fig. 7 (a) Adsorption spectra and (b) time-absorbance line graph of
the Cr—-DPC complex. (c) Adsorption spectra of Cr—-DPC complex
solutions with different initial Cr(vi) concentrations and (d) linear
relationship between the absorbance at 550 nm and Cr{v)
concentration.

leading to a reduction in the efficiency. Therefore, our work
focused on evaluating the pH influence on the catalytic activity
for the photoreduction of Cr(vi) to Cr(m) using the MIL-88B((1 —
x)Fe/xLa)-NH, (x = 0.010) material under acidic, neutral and
weak alkaline conditions, pH = 2-8 (Fig. 8). It can be seen that
the weak acid environment is suitable for Cr(vi) reduction, and
the best efficiency reaches 88.21% at pH = 6. The efficiency
drops significantly when the pH increases, remaining at about
53% at pH = 7 and 43% at pH = 8. The same trend is observed
when the pH value is below 6: the lower the pH, the poorer the
performance.

Different existing species of Cr(vi) and Cr(m) may affect the
material's catalytic efficiency. In the pH range from 2 to 6, Cr(vi)
exists in Cr,0,>~ and HCrO, forms, and Cr(m) exists in
[Cr(H,0)6]*", Cr(OH),", Cr(OH)*" and Cr(OH); colloid forms.**
Meanwhile, in the neutral and weak alkaline environment (6 <
pH < 8), CrO,>~ and Cr(OH); solids are the main forms of Cr(vi)
and Cr(m), respectively.*® Under neutral and weak alkaline
conditions, the CrO,>~ form of Cr(vi) can inhibit the reduction
process due to the low redox potential of CrO,>~/Cr(OH); (E°

Catalysis efficiency (%)

20

40 30 20 -0 0 10 20 30
Time (min)

Fig. 8 Effect of pH on the photocatalytic performance of MIL-88B((1
— x)Fe/xLa)-NH, (x = 0.010) (initial Cr(vi) concentration: 20 ppm:;
catalyst dosage: 0.2 g L; H,O5: 3% (1 mL L™Y); UV irradiation): (a) Cr(vi)
removal efficiency at different time and pH solution and (b) Cr{v)
removal efficiencies at different pH solutions.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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—0,13 V).*® Besides, the Cr(OH); solid can mask active sites,
leading to the limitation of the material's catalytic activity. In
the acidic environment, the lower the pH, the higher the redox
potential of Cr(vi)/Cr () (Ecyvrycrm), Which is beneficial for the
reduction of Cr(vi) to Cr(m). Nonetheless, the results show the
achieved highest performance at pH = 6. Thus, the Cr(vi)
conversion performance can be affected by a Fenton-like
process. Fe*" ions in the structure can react with H,0,, which
increases the number of Fe*" ions via the Fenton mechanism
(Fe*t + H,O, <> Fe®™ + HT + HO;)*® - a reducing agent can
participate directly in the Cr(vi) reduction (E°(Fe*'/Fe*") =
0.771 eV, E°(HCrO,-/Cr*") = 1.350 eV, E°(Cr,0,> /Cr’") = 1.36
ev*).

Briefly, pH 6 was determined to be the optimal condition of
MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010) for the photoreduction
of Cr(vi) to Cr(m). Subsequent experiments including assessing
the photocatalytic ability of MIL-88B(Fe)-NH, and La-doped
MIL-88B(Fe)-NH, photocatalysts and studying the photo-
catalytic kinetics and reusability of the catalyst would be con-
ducted at this pH level.

The photocatalytic activity of MIL-88B(Fe)-NH, and MIL-
88B((1 — x)Fe/xLa)-NH, (x = 0.010, 0.025, and 0.050) was eval-
uated by the degradation of 20 ppm Cr(vi) (pH = 6) with
a catalyst dosage of 0.2 ¢ L™ " in the presence of 3% H,0, (1 mL
L") under UV irradiation. Control tests were also performed
using: (i) only Cr(vi) solution (without catalysts and H,0,), and
(if) Cr(v1) solution with only H,0,. As shown in Fig. 9a, there is
no change in Cr(vi) concentration in the control test (i) and the
Cr(vi) concentration change in the test (ii) was relatively low
(approximately 25.2% after 30 minutes of UV irradiation).
Meanwhile, the Cr(vi) reduction of MIL-88B-NH,, photocatalysts
occurs rapidly, especially in first 2 minutes. The La-doped MIL-
88B(Fe)-NH, materials exhibit a better catalytic ability, with
efficiencies reaching 88.21, 81.19 and 80.26% for MIL-88B((1 —
x)Fe/xLa)-NH, with x = 0.010, 0.025 and 0.050, respectively,
than that of MIL-88B(Fe)-NH,, with an efficiency of 67.08, after
30 minutes of irradiation. Obviously, the performance is
improved when using La-doped MIL-88B(Fe)-NH, catalysts.
Introducing a small amount of La*" into various nanomaterials
such as MOFs, COFs, perovskites and semiconductor materials
has been demonstrated to slow down the e /h* recombination

& R TR T
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|——H:0,

|—— MiLFeyH0,

0.2 {—v— ML (FeLa) x=0.010H04

° °
> ®
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?LL;“““
3333332
S55°%
T
/%m:
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Fig. 9 Cr(v)) photoreduction of various materials over time (a) and
absorbance spectra of Cr—DPC solutions after photoreduction over
MIL-88B((1 — x)Fe/xLa)-NH, x = 0.010 (b) (initial Cr(vi) concentration:
20 ppm; pH = 6; catalyst dosage: 0.2 g L; H,05: 3% (1 mL L™Y; UV
irradiation).
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rate, thereby enhancing the catalytic activity.>*>*** As such, the
La’" appearance in the MIL-88B-NH, structure could inhibit the
e /h" recombination process, and the Cr(vi) photocatalytic
efficiency here could be decided by the e /h" recombination
rate.

Moreover, the highest amount of Cr(vi) is reduced when
using MIL-88B((1 — x)Fe/xLa)-NH, with x = 0.010 (88.21%), and
a slight decreasing trend is recorded when the La®* content
increases, 81.19% for MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.025)
and 80.26% for MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.050). In
comparison with the E, values of MIL-88B(Fe/La)-NH, materials
(2.00 eV at x = 0.010; 2.23 eV at x = 0.025; and 2.41 eV at x =
0.050), the catalytic performance of the material with a higher
bandgap energy is lower. Therefore, the performance is
impacted partially by the increase in the bandgap energy.

From the above-mentioned findings, MIL-88B((1 — x)Fe/xLa)-
NH, (x = 0.010) is selected to continue further research on the
photoreduction process of Cr(vi) to Cr(im) in water.

To evaluate the influence of H,0, on the photocatalytic
performance, another control experiment was performed: Cr(vi)
degradation using photocatalyst MIL-88B((1 — x)Fe/xLa)-NH, (x
= 0.010) without H,O, (pH = 6). The obtained efficiency is only
about 35%, considerably lower than that achieved when using
the photocatalyst in the presence of H,O, (Fig. 10). Apparently,
H,0, plays an important role in the photoreduction process of
Cr(vi) to Cr(m). It helps e /h* separation to be more fruitful
thanks to combining with e~ (e~ + H,O, — 'OH + OH ),*
thereby limiting the ability to recombine e /h* and promoting
the conversion process. In addition, the conversion perfor-
mance is also enhanced by the production of reducing agent
Fe*! via the reaction of Fe** and
H,0, : Fe*™ + H,0, < Fe?" + H' + HO;.%

In terms of kinetics, pseudo-first-order (1.1) and pseudo-
second-order (1.2) kinetic models were used to study the
kinetics of the photocatalytic reaction of Cr(vi) reduction on
MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010) for first five minutes.
The calculated results show that the photocatalytic reaction
obeys the pseudo-first-order model with a rate constant k; =
0.308 min~" (R* = 0.9925) (Fig. 11). The MIL-88B((1 — x)Fe/xLa)-
NH, (x = 0.010) material exhibits a significantly higher rate

1.0 -
'\.-.
"
o
0.8 \_\._.h.
Ao pA
& 06+ = ———
=
o
0.4 4
|—s— No catalyst v
0.2 {—s—H,0, \
—a— MIL(FeLa) x=0.010 Yy vy
0o 1IN MIL(FeLa) x=0.010/H,0,

T v
40 230 20 -10 0 10 20 30
Time (min)

Fig. 10 Cr(vi) photoreduction over time of H,O,, MIL-88B((1 — x)Fe/
xLa)-NH, (x = 0.010) (without/with H,O,).
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Fig. 11 Pseudo-1st- (a) and pseudo-2nd-order (b) kinetic models for
the photocatalysis process of MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010)
(dosage: 0.2 g LY.

constant than that of some other MOFs such as NH,-ZIF-8
(0.0057 min~"),*® NH,-MIL-88B(Fe)/CD-50 (0.0220 min '),*
NNU-36 (0.0468 min ')** and MIL-53(Fe) (0.1154 min ),
suggesting its high efficiency.

In(Cy/C; = ki) (1.1)
11

where ¢ is the reaction time (min); C, and C correspond to initial
and remaining concentrations of Cr(vi) (mg L™"); k; (min~') and
k, (L mg~" min~") correspond to rate constants of the pseudo-
1st- and 2nd-order models.

The stability of the MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010)
photocatalyst was tested by recovering and reusing 4 times.
Obviously, the photodegradation of Cr(vi) remains relatively
stable in the subsequent runs, as shown in Fig. 12, indicating
the high stability of the material. It can be seen that MIL-88B((1
— x)Fe/xLa)-NH, (x = 0.010) shows good photocatalytic ability
with high performance and high stability in comparison to
previous works.**>%¢°

MIL-88B(Fe)-NH, was reported to be an effective photo-
catalyst in the reduction of aqueous Cr(vi) thanks to the LMCT
mechanism.*®** Based on this, the proposed mechanism of
MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010) for the photoreduction
of Cr(vi) to Cr(m) in water is described as follows (Fig. 13): under

100

87.13

86.74

» 2] -]
o o o
1 1 1

Catalysis efficiency (%)

N
(=]
1

0-
1st 2nd 3rd 4th

Cycle

Fig. 12 Reusability of MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010).
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Fig. 13 Proposed mechanism of Cr(vi) photoreduction onto La-doped
MIL-88B(Fe)-NH,.

UV irradiation, both the NH,-TPA ligand and the Fe;_,La,O
cluster (n = 0, 1, 2, and 3) are excited. Fe; ,La,O clusters
generate e /h" pairs by absorbing photon energy, and electrons
move to the conduction band leaving holes in the valence band
(reaction (1)). The photoexcited electrons in the ligand move to
the ion metal cluster, and this path is promoted more by amino
groups. These generated electrons mainly participate in the
reduction of Cr(vi) to Cr(im) (reaction (2)). The probability of e/
h* recombination is minimized thanks to the e trapping ability
of H,0, (reaction (3)), and the h” trapping ability of OH™ ions
(generated from reaction (3)*) and H,0 molecules (reactions (4)
and (5)). Furthermore, Fe** ions produced from the Fenton
reaction and ‘O, radicals produced from oxygen reduction by
photoelectrons also contribute to Cr(vi) reduction (reactions (6—
10)).

La-doped MIL-88B(Fe)-NH, + v — ¢~ + h* 1)
Cr(vi) + 3¢~ — Cr(1m) 2

e  + H,O, - 'OH + OH™ (3)

h*+ OH™ — "OH 4

2h* + 2H,0 — O, + 4H" (5)

Fe't + H,0, o Fe*" + H" + HO; (6)

3Fe** + Cr(vi) — 3Fe’ + Cr(m) (7)
Oy+e — 'Oy (8)

‘O, + Cr(vi) = Cr(v) + O, 9)

Cr(v) + 2e~ — Cr(un) (10)

Experimental

Chemicals and instrumentation

Iron(m) chloride hexahydrate (FeCl;-6H,0; 99% wt), lanthanu-
m(ur) nitrate hexahydrate (La(NO3);-6H,0; 98% wt), 2-amino-
terephthalic acid (H,N-CgH3-1,4-(COOH), (NH,-TPA); 99% wt),

© 2024 The Author(s). Published by the Royal Society of Chemistry
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methanol (CH;OH (MeOH); 99.8% v/v), ethanol (C,HsOH
(EtOH); 99.5% v/v), potassium dichromate (K,Cr,05; 99.8% wt),
1,5-diphenylcarbazide ((C¢HsNHNH),CO (DPC); 98% wt),
sodium hydroxide (NaOH; 97% wt) and hydrochloric acid (HCI;
37% wt) were purchased from Sigma-Aldrich. Dimethylforma-
mide (C;H,;NO (DMF); 99.94% v/v) was purchased from Fisher
Chemical.

A Siemens D5005 diffractometer (Cu-K, radiation, A =
1.54056 A), a Hitachi S4800 scanning electron microscope, an
ISIS 300 energy-dispersive X-ray spectrometer, a Gemini VII
2390 surface analyzer, a NICOLET iS50FT-IR spectrometer and
a V-750 UV-visible spectrophotometer were used to perform
XRD, SEM, EDS, BET, FT-IR and UV-vis DRS measurements,
respectively. An Agilent 8453 UV-visible spectroscopy system
was used to support for the determination of Cr(vi)
concentrations.

Synthesis of La-doped MIL-88B(Fe)-NH,

The fabrication process of La-doped MIL-88B(Fe)-NH, was
referred from that of MIL-88B(Fe)-NH,, as reported in our
previous work.'® In particular, MIL-88B((1 — x)Fe/xLa)-NH,
materials were synthesized by an one-pot solvothermal method
using a DMF solvent with a fixed molar ratio of H,N-C¢H;-1,4-
(COOH), (NH,-TPA) ligand to metal ions of 1.5, under reaction

conditions of 150 °C and 12 hours (x: the molar ratio of La** to
3+

ny,
————7)- An appro-
Npa + Npe

priate amount of FeCl;-6H,0 and La(NO;);-6H,0, and 0.6268 g
NH,-TPA were dissolved into 50 mL DMF so that x reaches
values of 0.010, 0.025, 0.050 and 0.10. The obtained solutions
were sealed in autoclaves and then heated at 150 °C within 12
hours. Afterward, solid products were washed with DMEF,
methanol and distilled water and subsequently dried in
a vacuum dryer. The fabricated MIL-88B((1 — x)Fe/xLa)-NH,
materials are in a brown-colored powder form.

the molar total of the metal ion, x =

Photocatalytic experiments

The photocatalytic performance of La-doped MIL-88B(Fe)-NH,
materials was studied through the photocatalytic reduction of
Cr(vi) using a Hg lamp (250 W) as an ultraviolet light source.
The photoreduction efficiency of MIL-88B((1 — x)Fe/xLa)-
NH, (x = 0.010) towards aqueous Cr(v1) solutions with different
pH values was evaluated to study the influence of pH environ-
ment on the material's photocatalysis activity. The investigated
pH values were in the range of 2-8, adjusted by HCI and NaOH.
Particularly, the photocatalyst was dispersed in the Cr(vi)-con-
taining solution (initial Cr(vi) concentration: 20 ppm; photo-
catalyst dosage: 0.2 ¢ L™ ') in a glass beaker in the darkness until
an adsorption-desorption equilibrium was reached. Next, 3%
H,0, solution was added into the reaction system (1 mL L"),
and illuminated at the same time. Subsequently, the mixture
was collected at determined intervals, and the catalyst was
separated by centrifugation. The Cr(vi) concentration was then
determined by a diphenylcarbazide method. In this method,
Cr(vi) ions react with 1,5-diphenylcarbazide (DPC) ligands to
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form a purple-coloured complex (Cr-DPC complex) under the
acidic condition.*"*

After finding out the optimal pH condition, similar experi-
ments were performed to assess the Cr(vi) photoreduction
ability of MIL-88B(Fe)-NH, and MIL-88B((1 — x)Fe/xLa)-NH, (x
= 0.010, 0.025, and 0.050) materials, impacts of H,O, appear-
ance on the Cr(vi) photoreduction, photocatalytic kinetics and
reusability of the photocatalyst.

Conclusions

In summary, a series of MIL-88B((1 — x)Fe/xLa)-NH, materials
have been synthesized via a one-pot solvothermal approach and
characterized by various measurement techniques including
XRD, SEM, SEM-EDS, BET analysis, FT-IR spectroscopy and UV-
vis DRS. The results indicate that MIL-88B((1 — x)Fe/xLa)-NH,
materials were fabricated successfully at x = 0.010, 0.025 and
0.050. MIL-88B((1 — x)Fe/xLa)-NH, (x = 0.010, 0.025 and 0.050)
materials were then used as photocatalysts for the aqueous
Cr(vi) reduction. Compared to pristine MIL-88B(Fe)-NH,, La-
doped MIL-88B(Fe)-NH, materials display a better photo-
catalytic efficiency, and the best is achieved on MIL-88B((1 — x)
Fe/xLa)-NH, (x = 0.010). In addition, the impact of the pH
environment on the reduction performance of Cr(vi), the pho-
tocatalytic kinetics and reusability of this catalyst were studied.
The output shows that the kinetics of photocatalytic reaction
follows the pseudo-1st-order model, and the material exhibits
high efficiency under the weak acidic condition and high
stability after 4 running cycles. The harvested knowledge in this
work is expected to contribute to the development of mixed-
MOFs in the catalysis area for wastewater treatment.
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