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gent synthesis of chiral indole
derivatives via catalytic asymmetric
dearomatization of 2,3-disubstituted indoles†

Tingting Liu, Jianbin Wang, Rou Xiao and Junling Zhao *

A strategy allowing the switchable divergent synthesis of chiral indole derivatives was established via chiral

phosphoric acid-catalyzed asymmetric dearomatization of 2,3-disubstituted indoles using naphthoquinone

monoimines as electrophiles. The products were switched between chiral indolenines and fused indolines

according to the post-processing conditions. Both two types of products were obtained in good to high

yields with generally excellent enantioselectivities. NaBH4 was found to work as a promoter as well as

a reductant in the cyclization process leading to fused indolines.
Introduction

The indole ring system is one of the most intriguing nitrogen-
containing heterocycles because of its frequent appearance in
natural products and pharmaceuticals.1 Therefore, the
synthesis of indole derivatives has garnered a lot of attention
from both academic and industrial realms. The direct func-
tionalization of the indole core is the most direct and efficient
strategy to accessing indole derivatives and intensive efforts
have been devoted to this end. Among which, the catalytic
asymmetric dearomatization (CADA) of 3-substituted indoles2 is
particularly attractive because the resulting products are indo-
lenines3 or fused indolines4 that are found in a number of
natural alkaloids and bioactive molecules. In this respect, many
elegant methods have been developed using various catalytic
strategies, such as propargylic substitution,5 allylic alkylation,6

Michael addition,7 halogenation,8 hydrazination,9 and
arylation.10,11

With regard to the asymmetric arylation strategy, electro-
philic quinones and their imines are excellent acceptors, and
some elegant methods have been developed. As a class of
privileged organocatalyst, chiral phosphoric acids (CPAs)
showed the best catalytic efficiency in those transformations.12

Zhang and co-workers11a reported CPA-catalyzed asymmetric
arylative dearomatization/cyclization of 3-substituted indoles
with 1,4-quinone monoimines, affording chiral benzofur-
oindolines with high yields and stereoselectivities. The 1,4-
quinone monoimines used can be one-pot generated though
oxidation of the corresponding phenols as reported by Zhong
hen), Shenzhen Campus of Sun Yat-sen
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the Royal Society of Chemistry
group, who employed a biomimetic Mn(III)/CPA relay catalysis
strategy for this process.11b On the other hand, Shi group
revealed the CADA of 2, 3-disubstituted indoles with quinone
derived imine ketals or monoimines to give chiral indoleni-
nes.11c,d Recently, the synthesis of fused indolines via asym-
metric [3 + 2] annulation of 1,4-quinones with indoles was also
reported by Tang11e and Zhong,11f respectively (Scheme 1).

As the analogs of quinones, naphthoquinones and their
derivatives oen displayed similar chemical reactivity
Scheme 1 Asymmetric arylative dearomatization of indoles using
quinones and their imines as electrophiles.
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Table 1 Optimization of the Reaction Conditionsa

Entry CPA Solvent A/B Yield b(%) eec (%)

1 C1 DCM A 3a, 95 30
2 C1 DCM B 4a, 80 33
3 C2 DCM A 3a, 95 8
4 C3 DCM A 3a, 95 76
5 C4 DCM A 3a, 71 72
6 C5 DCM A 3a, 44 22
7 C6 DCM A 3a, 62 57
8 C7 DCM A 3a, 46 32
9 C8 DCM A 3a, 92 31
10 C9 DCM A 3a, 95 82
11 C10 DCM A 3a, 95 84
12 C10 THF A 3a, 51 21
13 C10 PhMe A 3a, 97 84
14 C10 DCE A 3a, 88 94
15d, e C10 DCE A 3a, 89 98
16d, e C10 DCE B 4a, 93 99

a Reaction conditions: 1a (0.05mmol), 2a (0.075mmol),C (0.005mmol),
solvent (0.5 mL), room temperature, 2 h, unless otherwise noted.
Condition A: 0.1 mL Et3N was added and the reaction was stirred in
air for an extra 30 min. Condition B: MeOH (0.5 mL) and NaBH4 (0.5
mmol) were added and the reaction was stirred for an extra 30 min.
b Isolated yields were given. c Enantiomeric excess was determined by
HPLC on a chiral stationary phase. All dr > 20 : 1 determined by 1H
NMR spectra analysis. d 20 mg 4 Å molecular sieves was added.
e Reaction time is 6 h.
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compared to that of quinones. However, that is not the case
with respect to the CADA of indoles, and no successful example
was given using naphthoquinones or their imines as electro-
philes so far. This fact suggested that there might be challenges
need to be overcome when naphthoquinones were used. This
was exemplied by the CPA-catalyzed asymmetric [3 + 2]
annulation of 1,4-quinones with indoles. Probably due to its
relatively lower electrophilicity, no reaction occurred with 1,4-
quinone being replaced by 1,4-napthoquinone as reported by
Zhong.11f As our continuing interest in the asymmetric func-
tionalization of indoles,13 here we presented our recent study on
the CADA of 2,3-disubstituted indoles using naphthoquinone
monoimines as electrophiles.

We started our investigation by reacting 2,3-dimethylindole
(1a) with naphthoquinone monoimine (2a) in dichloromethane
(DCM) at room temperature with 10 mol% C1 as a catalyst. Not
surprisingly, a mixture of hard-to-separate products was
produced. Fortunately, we isolated the dechlorinated indole-
nine derivative 3a in a low yield, and found out that the other
products were slowly transformed to 3a during the separation
process. These results suggested that unstable intermediates
were generated during this dearomatization process. Based on
the above results, we assumed that the dearomatization of 1a
produced intermediate I, which underwent dehydrochlorina-
tion to give intermediate II. II was sensitive to moisture and
hydrolyzation occurred during the purication process to give
3a. Based on this assumption, the addition of a base might
accelerate the process leading to 3a, while the reduction of
carbonyl group in II might afford indoline derivative 4a. Thus,
a switchable divergent synthesis of chiral indole derivatives
might be established by simply regulating post-processing
conditions (Scheme 2).

To conrm our hypothesis, trimethylamine was added to the
above reaction mixture aer completion by TLC (Method A),
and the yield of 3a was increased to 95%. On the other hand,
indoline derivative 4a was formed smoothly in 80% yield
following the treatment of NaBH4 (Method B). However, prod-
ucts with low enantioselectivities were observed in both cases
(Table 1, entries 1 and 2). The reaction leading to 3a was chosen
as a model reaction and a range of CPAs were subsequently
examined to improve the stereocontrol of this transformation.
As shown in Table 1, it was found that both the substituents and
Scheme 2 Design of the switchable divergent synthesis of chiral
indole derivatives.

15592 | RSC Adv., 2024, 14, 15591–15596
the chiral backbones of the catalysts have remarkable effects on
the yield and enantioselectivity of the product. Among these
catalysts tested, C10 showed the best catalytic efficiency to give
3a in 95% yield and 84% ee (Table 1, entry 11). The enantiose-
lectivity of 3a was further improved to 94% ee when 1,2-
dichloroethane (DCE) was used as the reaction media (Table 1,
entry 14). The best result in term of yield and ee was obtained
with the addition of 4 Å molecular sieves as an additive, albeit
a prolonged reaction time was needed (Table 1, entry 15). When
the post-processing condition was switched to B: with the
addition of NaBH4 and MeOH, the corresponding indoline
derivative 4a was produced in 93% yield and 99% ee (Table 1,
entry 16). Thus, we have developed a method for the switchable
chiral indolenines/indolines synthesis by simply switching the
post-processing conditions of the reaction.

With the optimal reaction conditions determined, we rst
studied the scope of the reaction leading to chiral indolenine
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Substrate scope for the synthesis of chiral indoleninesa

a Reactions conditions: 1 (0.05 mmol), 2 (0.075 mmol), C10 (0.005
mmol), 20 mg 4 Å molecular sieves, DCE (0.5 mL), room temperature,
6–46 h. Aer completion, 0.1 mL Et3N was added, and the reaction
mixture was stirred in air for 30 min. Isolated yields are given.
Enantiomeric excess was determined by HPLC on a chiral stationary
phase. b 2b was used as an electrophile. c 2c was used as an electrophile.

Table 3 Substrate scope for the synthesis of fused indolinesa

a Reactions conditions: 1 (0.05 mmol), 2 (0.075 mmol), C10 (0.005
mmol), 20 mg 4 Å molecular sieves, DCE (0.5 mL), room temperature,
4–79 h. Aer completion, 0.5 mL MeOH and 0.5 mmol NaBH4 (in
portions) was added, and the reaction mixture was stirred for 30 min.
Isolated yields are given. Enantiomeric excess was determined by
HPLC on a chiral stationary phase. dr > 20 : 1 in all cases. b Without
the addition of molecular sieves. c 2c was used as an electrophile.

Scheme 3 Scale-up reactions for the syntheses of 3a and 4a.
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derivatives 3, and the results were presented in Table 2. It was
revealed that substituents variations on the benzene position of
indoles were well tolerated, producing the corresponding
products in good to high yields (53–90%) with excellent enan-
tioselectivities (97–99% ee). Then, we turned our attention to
the reaction using other naphthoquinone monoimines. The
reaction proceeded smoothly when brominated substrate 2b
was used, expectedly, debromination occurred to produce 3a in
comparably high yield and ee. The reaction of unsubstituted
imine 2c was also examined. In this case, the intermediate
should be a naphthol derivative III which tend to undergo
cyclization to give fused indoline 4a. However, high yield of 3a
was still obtained following the addition of Et3N. This result
suggested that the cyclization process was much slower than
expected and oxidation/hydrolyzation occurred quickly under
basic condition.14

Then, the scope for the synthesis of fused indoline deriva-
tives 4 was examined (Table 3). The reaction between various
2,3-disubstituted indoles and naphthoquinone monoimines
were investigated under the standard conditions, and the
results indicated that the change of post-processing conditions
has little effect on the efficiency of this reaction, affording the
corresponding fused indolines 4 smoothly with good outcomes.
It seems that NaBH4 played multiple roles in this reaction: (1) as
a reducing agent, (2) as a “promoter” to accelerate the cycliza-
tion process.15 This point was further conrmed by the reaction
of 2c. In this case, cyclization product 4awas not observed in the
absence of NaBH4, while high yield (77%) of 4a was obtained in
just 10 minutes following the addition of this reagent.14
© 2024 The Author(s). Published by the Royal Society of Chemistry
The absolute congurations of the newly formed chiral
centers in 4a were assigned as 2R, 3S by X-ray analysis of its
methylated product 5 (for details, see the ESI†).16 According to
this observation, the chiral quaternary center in 3 has a S
conguration. That is because the synthesis of these two types
of chiral indole derivatives originated from the same asym-
metric dearomatization reaction and the only difference is the
post-processing procedure which will not inuence the cong-
uration of the existing quaternary chiral center at the C3-
position of indole nucleus.

The synthetic potential of this reaction was also explored.
When the model reactions were up scaled to 1 mmol under the
standard conditions, high yields of 3a or 4a were obtained,
respectively, with slightly decreased enanioselectivities (Scheme
3).

Finally, the possible reaction mechanism was proposed to
explain the stereochemistry of this reaction. As shown in
Scheme 4, both substrates were activated through hydrogen
bonding interaction with the catalyst, and 1a attack 2a from the
RSC Adv., 2024, 14, 15591–15596 | 15593
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Scheme 4 Possible reaction mechanism.
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bottom to give indolenine intermediate I bearing a quaternary
chiral centre in S conguration. The addition of NaBH4

produced III which underwent cyclization to give 4a, Re face
attack was favoured during this process to generate the second
quaternary chiral centre in R conguration.

Conclusions

In conclusion, we have developed a protocol allowing the
switchable divergent synthesis of chiral indolenines/fused
indolines via a CPA-catalyzed dearomatization of 2,3-disubsti-
tuted indoles with naphthoquinone monoimines. Unlike their
quinone-derived counterparts, the reaction of naphthoquinone
monoimines with indoles produced unstable intermediates
which can be readily transformed to different products by
simply using different post-processing conditions. In the case
for the synthesis of fused indolines, NaBH4 was used as
a reducing agent as well as a promoter in the cyclization
process.
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