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ion of GFN1-xTB for atmospheric
molecular clusters: applications to multi-acid–
multi-base systems†

Yosef Knattrup, Jakub Kubečka, Haide Wu, Frank Jensen
and Jonas Elm *

Atmospheric molecular clusters, the onset of secondary aerosol formation, are a major part of the current

uncertainty in modern climate models. Quantum chemical (QC) methods are usually employed in a funneling

approach to identify the lowest free energy cluster structures. However, the funneling approach highly depends

on the accuracy of low-cost methods to ensure that important low-lying minima are not missed. Here we

present a reparameterized GFN1-xTB model based on the clusteromics I–V datasets for studying atmospheric

molecular clusters (AMC), denoted AMC-xTB. The AMC-xTB model reduces the mean of electronic binding

energy errors from 7–11.8 kcal mol−1 to roughly 0 kcal mol−1 and the root mean square deviation from

7.6–12.3 kcal mol−1 to 0.81–1.45 kcal mol−1. In addition, the minimum structures obtained with AMC-xTB are

closer to the uB97X-D/6-31++G(d,p) level of theory compared to GFN1-xTB. We employ the new

parameterization in two new configurational sampling workflows that include an additional meta-dynamics

sampling step using CREST with the AMC-xTB model. The first workflow, denoted the “independent workflow”,

is a commonly used funneling approach with an additional CREST step, and the second, the “improvement

workflow”, is where the best configuration currently known in the literature is improved with a CREST +

AMC-xTB step. Testing the new workflow we find configurations lower in free energy for all the literature

clusters with the largest improvement being up to 21 kcal mol−1. Lastly, by employing the improvement

workflow we massively screened 288 new multi-acid–multi-base clusters containing up to 8 different species.

For these new multi-acid–multi-base cluster systems we observe that the improvement workflow finds

configurations lower in free energy for 245 out of 288 (85.1%) cluster structures. Most of the improvements are

within 2 kcal mol−1, but we see improvements up to 8.3 kcal mol−1. Hence, we can recommend this new

workflow based on the AMC-xTB model for future studies on atmospheric molecular clusters.
1 Introduction

Molecular clusters, formed through the aggregation of various
atmospheric species, play a central role in aerosol particle
formation.1 Aerosols are liquid or solid ne particles suspended
in air that can act as cloud condensation nuclei (CCN) if they
reach sizes at or above 50–100 nm.2 Roughly 50% of CCN are
believed to be initially formed as clusters.3 CCN acts as nucle-
ation cores for water uptake and then further growth into clouds
meaning there is a direct correlation between aerosols and
cloud number/properties and hence the climate. The biggest
y, Langelandsgade 140, Aarhus C, 8000,
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uncertainty in modern climate forcing predictions is due to the
uncertainties from aerosol–cloud interactions.1

Sulfuric acid has been shown to be the main driver of cluster
formation. Other key species are believed to be, bases (ammonia
and amines), acids (methanesulfonic acid, nitric acid, iodine acids
or organic acids), highly oxygenated organic molecules and
water.4–7 It is extremely difficult to experimentally measure the
composition and formation mechanism of the initial clusters due
to their small size and neutral charge. Mass spectrometry tech-
niques can measure the cluster compositions of the charged
cluster, however, it is unknown if the ionization of neutral clusters
signicantly changes the cluster composition/structure and it is
also believed that fragmentation may happen in the
instruments.8–10 This leaves theoretical studies as the only way to
elucidate the thermodynamics, kinetics, and molecular interac-
tions governing cluster formation and its evolution. The main
challenge for studying atmospheric molecular clusters is their
complex congurational spaces, which require advanced congu-
rational sampling techniques and computationally demanding
quantum chemistry methods to evaluate the cluster properties
© 2024 The Author(s). Published by the Royal Society of Chemistry
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accurately.5 Furthermore, atmospheric clustering is believed to be
a multi-species process,11 adding another dimension of chemical
complexity.

Thoroughly exploring the congurational space of atmo-
spheric molecular clusters using, for instance, metadynamics
simulations12,13 or genetic algorithms14–16 at a high level of theory
is extremely computationally demanding. Hence, usually,
a funneling approach5,7,17 is applied, where the congurational
space is initially explored at a low level of theory such as force-eld
or semiempirical methods, and only a subset of low energy
structures is selected, reoptimized, and reexamined at a higher
level of theory. This process is repeated with an increasing level of
theory until only a few structures remain for evaluation at the
desired high level. Schematically, the process can be given as:

(1) Generate initial cluster congurations:
ABCluster/OGOLEM/Basin hopping or similar.

(2) Semi-empirical calculations:
Optimization at the PM6/PM7/GFN1-xTB/GFN2-xTB or

similar level.
(3) DFT calculations:
DFT optimization and vibrational frequency calculations.

(4) Single point energy renement:
Single-point energy calculation at coupled cluster level on

the DFT optimized geometry.
Between each step in the funneling approach, ltering can

be applied to reduce the number of structures that need to be
handled. This can either be based on an energy threshold or
a set number of cluster structures. Eventually, we end up with
a handful of structures at the highest obtainable level.

The rst step in the funneling procedure is the generation of
a large number of conguration candidates. The key idea is
sampling a large part of the potential energy surfaces at a low level
of theory to get estimates for the global free energy minimum.
This is usually carried out using force-eld methods in combi-
nation with genetic algorithms such as in ABCluster15,16,18–21 and
OGOLEM,14,22–27 by random/manual sampling or using dynamic
methods such as basin hopping.28–32 Themajor issue at this step is
that most force-eld methods are unable to describe bond-
breaking, such as proton transfer reactions, which are impor-
tant for atmospherically relevant molecular clusters, requiring the
sampling to include monomers where the hydrogens have been
transferred to get adequate sampling. Furthermore, the accuracy
of force-eld methods is also insufficient to determine
a subsample of the conformer candidates and all the candidates
have to be taken to the higher level of theory.

The next step is semi-empirical calculations as these are
a better description of the chemistry and ltering can be applied.
Of the common semiempirical methods, GFN1-xTB,33 GFN2-
xTB,34 PM6,35 and PM7 36 are the most used in congurational
sampling procedures for atmospheric molecular clusters.5–7 GFN
stands for geometries, frequencies and non-covalent interactions,
which are the main target properties for the method. PM stands
for parameterization method indicating the model version. Of
these methods, GFN1-xTB has shown to have the highest corre-
lation with electronic binding energies at a higher level of theo-
ries37,38 and have been shown to have a higher correlation with
DFT trajectories for molecular dynamics than GFN2-xTB.39 The
© 2024 The Author(s). Published by the Royal Society of Chemistry
reason GFN2-xTB performs worse than GFN1-xTB for atmospheric
molecular clusters (oen involving sulfuric acid) is that there is
a decrease in the number of d-functions for sulfur in the basis set
for the newer GFN2-xTB model.

The third step is the subsequent optimization and vibra-
tional frequency calculation of the structures with DFT. This is
the main bottleneck in the sampling methodology as limited
computational resources only allow a xed number of DFT
structures to be optimized. Therefore some form of ltering is
required, oen based on structural properties or electronic
energies from the semiempirical calculations. To circumvent
the inaccuracies of semiempirical methods an intermediate
step can be included, involving single-point energy calculations
at the DFT level on as many structures as possible. Another
option for an intermediate step is the utilization of machine
learning (ML) methods. One can calculate a subset of the
structures at a desired DFT level and train an ML model to
predict the energies of the remaining structures.39,40However, to
mimic accurate DFT energies, kernel-based ML methods
become computationally demanding40–42 and neural-networks
will require an extensive set of training data and hyper-
parameter optimization.43 Moreover, ML methods oen fail
when predicting on structures different from the training set.

Overall, the funneling approach is never more efficient than
its weakest link given by the semiempirical step in 2, in which
accuracy determines the number of structures that have to be
optimized/have single points calculated at the DFT level. In this
paper, we focus on reparameterizing the GFN1-xTB method
based on DFT energies of atmospherically relevant molecular
clusters yielding a GFN1-xTB model reparametrized based on
uB97X-D/6-31++G(d,p) for ‘atmospheric molecular clusters’
denoted AMC-xTB. This new parameterization is used to sample
288 large multi-acid–multi-base clusters containing AM equiv-
alent to the clusters studied by Knattrup et al.44
2 Methodology
2.1 Computational details

Single-point energies, gradients, and geometries for the repar-
ameterization, congurational sampling, and comparisons
were calculated using the xtb 6.4.0 program using the GFN1-
xTB33 and AMC-xTB parameterizations. A modied version of
ArbAlign45 available in the JKCS program46 was used to calculate
the root-mean-square differences (RMSD) between molecular
structures. Gaussian 16, version B.01 47 was used for the DFT
calculations. CREST 2.12 12,13 with an energy window of
15 kcal mol−1 and in noncovalent interaction mode and
ABCluster 2.0 15,16 with a population of SN = 3000, number of
generations of gmax = 200, and gen. survival of glimit = 4 were
used for additional congurational sampling.
2.2 Cluster data sets

For reparameterization of GFN1-xTB, we used the clusteromics
I–V data sets48–52 containing (acid)0–2(base)0–2 clusters of the
following atmospherically relevant species: sulfuric acid (SA),
methanesulfonic acid (MSA), nitric acid (NA), formic acid (FA),
RSC Adv., 2024, 14, 20048–20055 | 20049
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ammonia (AM), methylamine (MA), dimethylamine (DMA), tri-
methylamine (TMA) and ethylenediamine (EDA). All structures
are optimized at the uB97X-D/6-31++G(d,p) level of theory, as
benchmark studies37,53 show this to be a good compromise
between accuracy and speed, and we used up to the three lowest
electronic energy congurations found per each cluster as the
optimization set for GFN1-xTB reparametrization. This leads to
an optimization set comprising of a total of 1073 clusters. The
GFN1-xTB reparameterization based on this optimization set
will be denoted as the AMC-xTB model.

All new data calculated is freely available in the Atmospheric
Cluster DataBase54 along with the new AMC-xTB parameter le
(see Section S2).†
2.3 Optimization strategy

The GFN1-xTB model contains 15 global parameters, 2
element-pair-specic parameters, and 32 element-specic
parameters of relevance to the species present in the optimi-
zation sets (H, C, N, O and S atoms). Initially, the Hessian was
generated to probe the sensitivity of the parameters, however,
we found it computationally feasible to employ a similar
optimization strategy to the original GFN1-xTB paper,33 where
we optimize all relevant parameters simultaneously. We utilize
a modied version of an in-house pseudo-Newton–Raphson
optimizer by Jensen et al.55 for the optimization of a target
function (T) containing a linear combination of the difference
in electronic binding energies (DEb) in kcal mol−1 and gradient
norms (gnorm) in hartree bohr−1 radius at the current GFN1-xTB
parameterization and the target uB97X-D/6-31++G(d,p) level of
theory:

T ¼ 1

Nconf

XNconf

i

�
DEb

i

Natoms
i

þ gnormi

�
: (1)

here, Nconf is the total number of structures in the optimization
set, Natoms

i is the number of atoms in the i-th structure. We
normalized by the number of atoms in each structure to prevent
“overtting” to the larger clusters.

We chose the electronic binding energies as the target
properties to get a better tool for ltering based on energies in
congurational sampling procedures. The gradients were
included directly in the target function. We use equilibrium
structures at the given level of theory, which are supposed to
have near-zero gradients. However, the upper limit is set by the
accuracy threshold within the xTB program during the optimi-
zation, which makes the gradients non-zero in the calculations.

Including only the electronic bindings energies in the target
function yields a much better t for the energies but causes the
gradients to “explode”, effectively rendering the optimization
functionality of AMC-xTB useless for our target species. Giving
higher weight to the gradient norms in the target functionmakes
the optimized structures more similar to the target uB97X-D/6-
31++G(d,p) level of theory, however, we found that it causes
problems in the congurational sampling procedure where the
decreased accuracy in determining the binding energies causes
our congurational sampling to yield high-energy conformers at
the DFT level. Overall, we found that including the gradient
20050 | RSC Adv., 2024, 14, 20048–20055
norms and difference in electronic bindings energies in a 1 : 1
ratio as the best compromise between the two properties.
2.4 Updated congurational sampling workows

The strength of the new AMC-xTB model is that it can be used
directly in congurational sampling programs such as
ABCluster and CREST. Here, we will test two different new
workows for applying the reparameterized models in cluster
congurational sampling.

2.4.1 Original workow. The workow usually employed in
studying atmospheric molecular clusters can be summarized as:

ABCluster / GFN1-xTBopt
all / DFTopt

N lowest

here the number of congurations N that have to be optimized
at the DFT level is a severe bottleneck in the number of new
cluster systems that can be studied. Usually, 50–100 congu-
rations are optimized at the DFT level.

2.4.2 Independent workow. The independent workow
refers to congurational sampling from scratch using the well-
established funneling approach using AMC-xTB instead of
GFN1-xTB.5,17 As the aim for the approach is to be generally
applicable, we also included an additional CREST step, as it
should be better at handling exible organic compounds:

ABCluster / AMC-xTBopt
all / CREST(AMC-xTB)1 lowest /

DFTopt
50 lowest

here, ABCluster, a genetic algorithm for sampling clusters, is used
for the initial sampling of all possible neutral/ionic combinations
of monomers that yield overall neutral clusters. The xTB 6.4.0
program was then used to optimize all the congurations at the
AMC-xTB level. The cluster lowest in electronic energy was then
taken as the input structure for CREST in non-covalent interaction
mode, again using our new AMC-xTBmodel. The initial ABCluster
sampling is needed because we found CREST to be quite sensitive
to the input structure and, therefore, needs a good guess for
a starting structure. The 50 structures lowest in electronic energy
are then optimized at the DFT level.

2.4.3 Improvement workow. The improvement workow
refers to using the best structure currently known at the corre-
sponding level of theory as the input structure for CREST using
the AMC-xTB model.

Best structure / CREST(AMC-xTB) / DFTopt
50 lowest

from here on, the workow is the same as the independent
workow, where the 50 structures lowest in electronic energy
are optimized at the corresponding DFT level.
3 Results and discussion
3.1 Extension of the multi-acid–multi-base dataset

To gain a more complete test set we extended the multi-acid–
multi-base clusters systems by Knattrup et al.44 using the same
workow for a total of 288 new AM-containing clusters. With the
acids being SA, MSA, FA and NA and the bases being AM, MA,
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Error in the electronic binding energies for the GFN1-xTB and
AMC-xTB methods compared with the uB97X-D/6-31++G(d,p) level
of theory. The clusteromics I–V48–52 sets have (SA/FA/MSA/NA)0–2(AM/
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DMA and TMA. This is the rst sampling of multi-component
clusters containing up to 8 different species yielding a data
set where synergistic effects in cluster formation between
different species of bases41 and acids44 and mixes thereof can be
studied. Such clusters could be relevant for modeling polluted
coastal environments. Fig. 1 presents the molecular structure of
a newly sampled 8-component cluster. It is seen that all the
acids have transferred a proton to all the bases.

The initial sampling yields binding free energies ranging
from −28.43 kcal mol−1 [(MSA)1(NA)1(FA)1(AM)2] to
−104.0 kcal mol−1 [(SA)3(NA)1(AM)1(MA)1(DMA)2] for the cluster
congurations lowest in free energy at the uB97X-D/6-
31++G(d,p) level of theory.
MA/DMA/TMA/EDA)0–2 clusters, the Kubečka et al.41 set has sulfuric
acid–multi-base (SA)1–4(AM/MA/DMA/TMA/EDA)1–4 clusters, Knattrup
et al.44 set has the multi-acid–muti-base (SA/FA/MSA/NA)1–4(MA/
DMA/TMA)1–4 clusters including the new AM-containing clusters
sampled in this work.
3.2 Assessment of the AMC-xTB binding energies

We reparameterized GFN1-xTB to obtain a new tight-binding
semiempirical reparameterization denoted as AMC-xTB. Fig. 2
shows the error in electronic binding energies before (GFN1-
xTB) and aer (AMC-xTB) reparameterization. The models
have been tested on the entire clusteromics I–V48–52 data sets (56
436 data points), the sulfuric acid–multi-base (SA)1–4(AM/MA/
DMA/TMA/EDA)1–4 cluster data set (684 data points) by Kubečka
et al.41 and the multi-acid–muti-base (SA/FA/MSA/NA)1–4(MA/
DMA/TMA)1–4 by Knattrup et al.44 including the new AM-
containing clusters (1629 data points). All the tested struc-
tures are equilibrium structures at the uB97X-D/6-31++G(d,p)
level of theory. Although the Gaussian version and integration
grid used for optimization differ for some structures, it was
found to have a negligible effect on this comparison as we are
studying the binding energies and not the absolute energies.

For all the data sets shown in Fig. 2 the reparameterization
results in near-zero means of the energy errors. This is
a reduction from error means of 3.7–11.8 kcal mol−1 for GFN1-
xTB. In addition, the AMC-xTB model achieves a more narrow
Fig. 1 The (SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(DMA)1(TMA)1 cluster
structure lowest in Gibbs free energy at the uB97X-D/6-31G++(d,p)
level of theory with the quasi-harmonic approximation (cutoff of
100 cm−1) for the initial sampling. Yellow = sulfur, red = oxygen, cyan
= nitrogen, brown = carbon and white = hydrogen.

© 2024 The Author(s). Published by the Royal Society of Chemistry
error distribution with the root mean square deviations
decreasing from 7.6–12.3 kcal mol−1 to 0.81–1.45 kcal mol−1,
implying that there will be fewer outliers. The error span on the
larger clusters for the Knattrup et al.44 and Kubečka et al.41 sets
are similar to the error span for the smaller clusters in the
optimization set. This shows that reparameterizing on smaller
clusters is adequate for calculations on larger-sized clusters as
the model gets some of the underlying chemistry correct and
scales effectively with system size. The new AMC-xTB model
reduces the number of structures needed to pass from the
semiempirical step to the DFT step in congurational sampling.
For atmospheric molecular clusters, this implies that the AMC-
xTB model is unequivocally better to apply in the congura-
tional sampling funneling workow compared to GFN1-xTB.
3.3 Assessment of the AMC-xTB geometries and gradients

The gradient norms were also a part of the optimization scheme
(eqn (1)). Fig. 3 shows the gradient norms given by the xtb
program for the two parameterizations. The structures are
equilibrium structures at the uB97X-D/6-31++G(d,p) level of
theory, so the ideal gradient norms should be below the default
gradient convergence thresholds of 10−3 Eh/a. None of the
methods manages to be below this threshold, but the AMC-xTB
model is close. This does not directly mean the model is closer
to the correct structure, as the new parameters might just have
attened the potential energy surface at this point without
moving closer to the minimum. However, including the gradi-
ents in the target function avoids numerical instability, and
yields reasonable optimized structures. To test if the structures
are closer to a minimum at the DFT level, the initial DFT
structures of all three datasets were optimized using the
different parameterizations, and the RMSD was computed
between the initial DFT structure and the GFN1-xTB/AMC-xTB
optimized structures (see Table 1).

We nd that the AMC-xTB model reduces the mean RMSD of
the full clusteromics set from 0.484 Å to 0.355 Å and a similar
reduction is seen for the Knattrup et al.44 and Kubečka et al.41
RSC Adv., 2024, 14, 20048–20055 | 20051
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Fig. 3 The gradient norms for the GFN1-xTB and AMC-xTB methods.
a is the Bohr radius. The clusteromics48–52 set is (SA/FA/MSA/NA)0–
2(AM/MA/DMA/TMA/EDA)0–2 clusters, the Kubečka et al.41 set is
sulfuric acid–multi-base (SA)1–4(AM/MA/DMA/TMA/EDA)1–4 clusters,
Knattrup et al.44 is the multi-acid–muti-base (SA/FA/MSA/NA)1–4(MA/
DMA/TMA)1–4 clusters including the new AM-containing clusters
sampled in this work. The structures are equilibrium structures at the
uB97X-D/6-31++G(d,p) level of theory.

Table 1 Comparison of the mean, median, and standard deviation
(std) of the root-mean-squared differences (RMSD) between the initial
DFT structure and the optimized structure at the given parameteri-
zation. The clusteromics I–V48–52 sets includes the (SA/FA/MSA/NA)0–
2(AM/MA/DMA/TMA/EDA)0–2 clusters, the Kubečka et al.41 set
comprise the sulfuric acid–multi-base (SA)1–4(AM/MA/DMA/TMA/
EDA)1–4 clusters and Knattrup et al.44 set has themulti-acid–muti-base
(SA/FA/MSA/NA)1–4(MA/DMA/TMA)1–4 clusters including the new AM-
containing clusters sampled in this work. The lowest errors are shown
in bold

Method/data set Mean Median Std

GFN1-xTB/clusteromics 0.484 0.387 0.330
AMC-xTB/clusteromics 0.355 0.242 0.282
GFN1-xTB/Knattrup et al. 0.378 0.367 0.138
AMC-xTB/Knattrup et al. 0.235 0.193 0.125
GFN1-xTB/Kubečka et al. 0.376 0.361 0.140
AMC-xTB/Kubečka et al. 0.189 0.164 0.094

Fig. 4 Comparison of the lowest free energy conformer found by the
independent and improvement configurational workflows compared
to the configurations found by Kubečka et al.41 (a–c) and two new
multi-component AM clusters sampled in the same way as Knattrup
et al.44 (d and e). Gibbs free energies are calculated at the uB97X-D/6-
31++G(d,p) level of theory with the quasi-harmonic approximation
(cutoff of 100 cm−1) and vib. frequencies scaled by 0.996 in accor-
dance with Kubečka et al.41
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sets with RMSDs being reduced from 0.378 Å to 0.235 Å and
from 0.376 Å to 0.189 Å, respectively. This, coupled with the
smaller gradients, suggests that the reparameterized model is
closer to a minimum at the DFT level. This implies that the
preoptimization step in a funneling approach with the AMC-
xTB model compared to GFN1-xTB yields structures closer to
the DFT structure and will likely reduce the subsequent opti-
mization time at the DFT level.
3.4 Test of new congurational sampling workows

To further test how the new AMC-xTB model fares in cluster
congurational sampling, we tested the independent and
improvement workow for several previously studied (acid)4(-
base)4 cluster systems. Hence, the workow is tested on clusters
up to twice the size of those used in the reparameterization.

Fig. 4 shows the difference in binding free energy for the
lowest free-energy conguration found by employing the inde-
pendent and improvement workows for the (SA)4(EDA)4,
(SA)4(AM)4, and (SA)4(AM)1(MA)1(DMA)1(TMA)1 clusters
20052 | RSC Adv., 2024, 14, 20048–20055
compared to Kubečka et al.41 and the (SA)1(MSA)1(NA)1(FA)1(-
AM)4 and the new (SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(DMA)1(-
TMA)1 clusters sampled in this work. The SA–AM clusters have
been extensively studied previously6,56–61 and are therefore
believed to be well-sampled using the original congurational
sampling procedure and thereby difficult to improve. Still, the
new CREST + AMC-xTB methodology manages to nd cluster
structures lower in free energy by 0.21 kcal mol−1 compared to
the previous works.

In the case of the (SA)4(AM)4 and (SA)1(MSA)1(NA)1(FA)1(-
AM)1(MA)1(DMA)1(TMA)1 clusters, the independent/
improvement workows perform similar and yield similar free
energy improvements. However, for the (SA)4(AM)1(MA)1(-
DMA)1(TMA)1 clusters, the independent workow works slightly
better, nding a cluster 0.85 kcal mol−1 lower in free energy
compared to the improvement workow. This illustrates that
the sampling is very sensitive to the conguration used as input
for CREST, although it might also be due to the randomness of
the dynamic processes in CREST. The reason for the difference
might be that the original work's congurational sampling was
worse than the independent workow, yielding a worse starting
structure for the CREST sampling within the improvement
workow. We see a massive improvement in the congurational
sampling of the (SA)4(EDA)4 clusters by −18/−21 kcal mol−1.
This is caused by the exibility of the EDA molecule, as it is the
only monomer that contains a C–C bond it can rotate around,
making it difficult to sample the full congurational space
using only ABCluster with rigid molecules. This improvement
should primarily be attributed to the inclusion of metady-
namics sampling in CREST and not purely the parameterization
of AMC-xTB as it allows the EDA to rotate around its bonds and
nd a structure with more/better paired intermolecular inter-
actions as seen in Fig. 5. It should also be noted that the main
© 2024 The Author(s). Published by the Royal Society of Chemistry
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improvements are the electronic binding energy and the
thermal contribution varies very little between the clusters.

However, this shows the strength of the presented workows
as they can be used for clusters containing more exible organic
molecules.
3.5 Massive improvement test

Based on the previous sections, it is clear that the improvement
workow could locate more stable clusters. As the potential
energy surface of multi-acid–multi-base clusters becomes very
complicated, here we test this new approach for such systems.
These 288 new AM-containing clusters were used as a massive
test set for the improvement workow using the newly param-
eterized AMC-xTB model. The improvement workow manages
Fig. 5 The (SA)4(EDA)4 cluster structure lowest in Gibbs free energy at
the uB97X-D/6-31G++(d,p) level of theory with the quasi-harmonic
approximation (cutoff of 100 cm−1) before and after the improvement
workflow. Yellow = sulfur, red = oxygen, cyan = nitrogen, brown =

carbon, and white = hydrogen.

Fig. 6 Comparison of the lowest free energy conformer found by the
improvement configurational workflow compared to the original
workflow. Gibbs free energies are calculated at the uB97X-D/6-
31++G(d,p) level of theory with the quasi-harmonic approximation
(cutoff of 100 cm−1).

© 2024 The Author(s). Published by the Royal Society of Chemistry
to nd congurations lower in free energy at the uB97X-D/6-
31++G(d,p) for 245 out of the 288 clusters (85.1%) as can be seen
in Fig. 6.

In most cases, the improvement is between 0–2 kcal mol−1.
However, for the (SA)1(MSA)1(NA)1(FA)1(AM)1(DMA)2(TMA)1,
(SA)3(NA)1(AM)1(MA)3, and (SA)3(FA)1(AM)1(MA)1(DMA)2 clus-
ters a massive improvement of 8.3, 5.2 and 3.9 kcal mol−1 is
observed, respectively.

Comparing the conformer index at the AMC-xTB level of theory
with the naluB97X-D/6-31++G(d,p) level of theory with the quasi-
harmonic approximation (cutoff of 100 cm−1) the Gibbs free
energy minimum at the DFT level is also the electronic energy
minimum at the AMC-xTB level of theory for 66 of the clusters (see
Fig. S1†). If 10 conformers are included from the AMC-xTB level of
theory, the free energy minimum energy is captured for 155 out of
the 288 clusters with improvements found for 209 (see Fig. S2†).
Furthermore, the maximum error is 2 kcal mol−1 with a mean of
0.12 kcal mol−1 when reducing from 50 to 10 conformers.

This highlights the need for including dynamics-based
sampling procedures for atmospheric clusters even though
the systemmight seem fairly rigid. It can also be envisioned that
the improvement workow will be quite important when
studying much larger (SA)1–20(base)1–20 clusters as recently done
by Engsvang et al.42,62 and Wu et al.38 For large clusters, the
global minimum is tricky to locate, and adding dynamics-based
congurational sampling might aid in the process.
4 Conclusions

We have reparameterized the GFN1-xTB model to yield better
binding electronic energies and gradient norms for atmo-
spherically relevant clusters composed of the following species:
sulfuric acid (SA), methanesulfonic acid (MSA), nitric acid (NA),
formic acid (FA), ammonia (AM), methylamine (MA), dime-
thylamine (DMA), trimethylamine (TMA), and ethylenediamine
RSC Adv., 2024, 14, 20048–20055 | 20053
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(EDA). The reparameterization, denoted AMC-xTB, for use in the
xtb/CREST program, is based on the uB97X-D/6-31++G(d,p)
level of theory. The model shows a substantial decrease in the
error of the binding electronic energies compared to the orig-
inal GFN1-xTB parameterization and the gradient norms of the
equilibrium structures are closer uB97X-D/6-31++G(d,p) level of
theory compared to GFN1-xTB. The reparameterization strategy
is general and can be used to reparameterize other methods
such as GFN2-xTB.

We tested two new congurational sampling procedures
with the new parameterizations being employed in the xTB and
CREST programs. The rst workow, denoted as “improvement
workow,” is based on improving the best structure currently
known in the literature with CREST and then doing the DFT
calculations. The second workow, denoted the “independent
workow,” starts by congurational sampling using ABCluster,
followed by xtb, CREST, and then DFT. Using the two workows,
we nd cluster structures lower in free energy for the following
(SA)4(EDA)4, (SA)4(AM)4,(SA)4(AM)1(MA)1(DMA)1(TMA)1, (SA)1(-
MSA)1(NA)1(FA)1(AM)4 and (SA)1(MSA)1(NA)1(FA)1(AM)1(MA)1(-
DMA)1(TMA)1 systems in all cases compared to the best-known
value in the literature.

Testing the improvement workow on 288 large multi-acid–
multi-base cluster systems, the workow nds improvements
for 85.1% of the clusters, showing the need for dynamics-based
sampling.

The parameterization strategy given here is not specic to
either GFN1-xTB or atmospheric clusters and could be used in
general. For instance, one could imagine increasing the number
of d-functions in the basis set for sulfur atoms in GFN2-xTB and
then reparameterizing the new GFN2-xTB model or doing
a reparameterization for much larger clusters.
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46 J. Kubečka, V. Besel, I. Neees, Y. Knattrup, T. Kurtén,
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