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Artificial intelligence (Al) is being employed in brine mining to enhance the extraction of lithium, vital for the

manufacturing of lithium-ion batteries, through improved recovery efficiencies and the reduction of energy

consumption. An innovative approach was proposed combining Emotional Neural Networks (ENN) and
Random Forest (RF) algorithms to elucidate the adsorption energy (AE) (kcal mol™) of Li* ions by
utilizing crown ether (CE)-incorporated honeycomb 2D nanomaterials. The screening and feature

engineering analysis of honeycomb-patterned 2D materials and individual CE were conducted through

Density Functional Theory (DFT) and Gaussian 16 simulations. The selected honeycomb-patterned 2D

materials encompass graphene, silicene, and hexagonal boron nitride, while the specific CEs evaluated
are 15-crown-5 and 18-crown-6. The crown-passivated 2D surfaces held a significant adsorption site
through van der Waals forces for efficient recovery of Li* ions. ENN predicted the targeted adsorption
sites with high precision and minimal deviation. The eTAl (XAl) based Shapley Additive exPlanations

(SHAP) was also explored for insight into the feature importance of CE embedded 2D nanomaterials for
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the recovery of Li* ions. The extreme gradient boosting algorithm (XGBoost) model demonstrated a RT-

2-MAPE = 0.4618% and ENN-2-MAPE = 0.4839% for the feature engineering analysis. This research
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1. Introduction

Brine is a hypersaline solution produced through various
industrial processes such as desalination, solution mining, and
the exploration of oil and gas. Brine also serves as a resource for
the recovery of a variety of salts, chemicals, energy, bioactive
compounds, and, significantly, metal ions."™ Brine discharge
into coastal waters as waste® has increasingly come under
scrutiny due to its targeted environmental impacts in recent
years.® Efficient recovery and utilization of the high levels of
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would be an insight into the Al-driven nanotechnology that presents a viable and sustainable approach
for the extraction of natural resources through the application of brine mining.

dissolved salts in brine are essential for implementing envi-
ronmentally safe practices and sustainable management strat-
egies. This approach not only generates additional revenue but
also contributes to achieving Zero Liquid Discharge (ZLD),
aligning with the United Nations' Sustainable Development
Goal 6 (SDG 6) on “clean water and sanitation”.”® Meanwhile,
the complex composition of brine demands the development of
cutting-edge materials engineered for the efficient and selective
extraction of its constituents, ensuring minimal harm to
ecosystems. Simultaneously, such technological advancements
aim to mitigate the adverse socio-economic effects associated
with brine disposal and resource recovery.**’
Two-dimensional (2D) materials, including graphene,
hexagonal boron nitride, and silicene, constitute a significant
category of honeycomb-structured materials characterized by
their exceptional carrier mobility, elevated thermal conduc-
tivity, and extensive surface area.'*™ These properties have
facilitated their widespread application across various fields
such as energy storage, materials science, chemical detection,
and biotechnology. The unique atomic-scale thickness and
superior molecular transport capabilities of these materials
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establish them as ideal nanoscale building blocks. Their
micrometer-scale lateral dimensions contribute to the devel-
opment of high-efficiency, ultrafast ion separation platforms
with notable selectivity." The emergence of nanopore tech-
nology has facilitated the creation of numerous single-ion
transmission channels within two-dimensional nanosheets,
leading to a diverse array of applications.” The stabilization of
these channels through passivation with crown ethers (CE)
induces charge polarization, enhancing pore stability and
conferring high selectivity for different metal ions.'®* Moreover,
integrating CE into van der Waals layered two-dimensional
materials has led to the development of hybrid 2D-CE struc-
tures. These structures possess distinctive properties, enabling
the selective extraction of lithium," alkali metal,’® and heavy
metal ions' through a host-guest interaction mechanism.
Brine mining based on crown-embedded 2D materials is a novel
approach to extracting valuable minerals from brine solutions.
Crown-embedded 2D materials are a class of nanomaterials that
have a ring-shaped structure with cavities that can selectively
bind to specific ions. Such materials are excellently suited as
selective adsorbents in brine extraction, due to their specific
affinity for certain ions. Predictive models based on classical
density functional theory (DFT) have identified a vast array of
2D-CE hybrids for efficient brine resource recovery. The adop-
tion of machine learning (ML) approaches has further
enhanced the prediction process, enabling rapid and extensive
forecasting, and this area continues to advance dynamically.”***
This amalgamation allows learning algorithms to assimilate
numerical representations, analyze significant patterns, and
deliver informed forecasts regarding ion-dipole interactions
and the efficient ion conveyance through the passivated
substances. ML, a subset of artificial intelligence (AI), emulates
human intellect by engineering machines programmed to
mimic human cognitive functions.>**

Furthermore, modelling of brine mining based on crown-
embedded 2D materials is a complex task that involves
a variety of factors, including the properties of the crown-
embedded 2D materials, the composition of the brine solu-
tion, and the operating conditions of the brine mining process.
A primary strategy for simulating brine mining with crown-
embedded two-dimensional materials involves employing ML
algorithms. The ML algorithms can be trained on data from
experimental studies to predict the performance of brine
mining processes. These models can be used to optimize the
design and operation of brine mining processes and to trou-
bleshoot problems. The effectiveness of ML algorithms in the
domains of chemistry and material science has been extensively
acknowledged, highlighting their capacity to address diverse
problems based on the learning type. In the domain of mate-
rials science, supervised Al learning is particularly established,
aiding in the complex tasks of material evaluation, screening,
prediction, and classification due to its proven reliability.
Furthermore, the recent combination of ML and Al principles in
materials science discovery has led to advanced structural
predictions on the extraction of resources from brine using 2D-
dimensional materials.*®>* Several literature reported the
application of 2D material with supervised or unsupervised ML;
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for example Zhang et al.,” Acosta et al.,*® Chen et al,** Frey
et al.,** Priya et al.,*® Shen et al.,** and Song et al.**

Although numerous studies have been conducted on two-
dimensional (2D) materials and computational learning, as
referenced in works,***' there remains a notable gap in the
literature regarding the application of advanced AI models to
extract value-added precious metals from brine using crown-
passivated 2D nanosheets. This interdisciplinary approach aims
to enhance the extraction of valuable resources from brine. By
adopting such a strategy, the development of a computational
method that is not only highly efficient and cost-effective but also
minimizes environmental impact, thereby offering a sustainable
alternative for brine resource recovety. In this study, we propose
the Emotional Neural Network (ENN), and Random Forest (RF)
based on several dependency selection approaches to model the
adsorption energy (kcal mol ') based on 15-crown-5 and 18-
crown-6 embedded 2D materials for Li' adsorption. The
employed ENN and RF are advanced ML techniques suitable for
modeling adsorption energies due to their ability to handle non-
linearity and complex patterns. Emotional Neural Networks
(ENN), which focus on understanding intricate relationships and
patterns by replicating how human emotions affect decision-
making, present an innovative method for grasping complex
data dynamics. This approach avoids overfitting, ensuring its
effectiveness across various chemical datasets. RF, as an
ensemble learning method, not only predicts adsorption energies
but also improves prediction accuracy and robustness by aggre-
gating the decisions of multiple decision trees, reducing the risk
of overfitting.

The new generation emotional learning coupled with the
emerging field of explainable AI techniques, known as AIX,
marks a significant evolution in the predictive modeling of
brine mining processes utilizing crown-embedded 2D-
dimensional materials. This innovative approach integrates
the understanding of emotional learning algorithms, which
mimic human emotional processing capabilities, with the
transparency and interpretability offered by AIX models. Such
integration is paramount for advancing the precision and reli-
ability of predictions related to the efficiency and environ-
mental impact of brine mining. Crown-embedded 2D materials,
recognized for their unique structural and chemical properties,
play a crucial role in enhancing selective ion separation and
recovery processes. The proposed AIX framework aims to not
only optimize these processes through more accurate and
understandable predictive models but also to address the
growing demand for sustainable mining practices. Leveraging
the capability of emotional learning to handle complex, non-
linear relationships, combined with AIX dedication to
modeling transparency, this strategy holds the potential to
transform brine mining. It paves the way for more sustainable
and efficient extraction of resources from saline environments.

2. Methodology

2.1 Computational procedure

First principle DFT simulation was conducted on the
honeycomb-like 2D materials (graphene, silicene and

© 2024 The Author(s). Published by the Royal Society of Chemistry
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hexagonal boron nitride), the isolated CE (15-crown-5 and 18-
crown-6), and the crown-passivated 2D surfaces using Gaussian
16 simulation software.*> For all the simulations, the hybrid
Becke, 3-parameter, Lee-Yang-Parr (B3LYP) functional was
chosen, while the Pople's split valence 6-311G(d) and effective
core potential LANL2DZ basis sets were selected for the non-
metals and the metal atoms, respectively.**** These basis sets
were chosen due to their accuracy in predicting structural
geometries and inter-atomic interactions and recurrently agree
with experimental findings.**** The polycyclic arene circum-
circumcoronene (CysH,,4) model reported in our previous study
was utilized to construct the graphene nanosheet, whereas the
other 2D analogues (hexagonal boron nitride and silicene) were
constructed by replacing the atoms with alternating boron and
nitrogen atoms (h-BN) and silicon (silicene) atoms, respectively.
The crown passivation was carried out by constructing inner
cavities of oxygen atoms like the crown moieties, resulting in
structural geometries designated as g-16-crown-5, b-16-crown-5,
and s-16-crown-5 for the 15-crown-5 2D sheets; and g-18-crown-
6, b-18-crown-6, and s-18-crown-6 for the 18-crown-6 sheets,
where g, b and s represent graphene, boron nitride and silicene,
respectively. Using simple crown ethers, lithium recovery effi-
ciency ranging from 70-90% has been reported. However, with
the integration of the unique properties of the 2D materials,
higher recovery efficiencies (>90%) can be achieved under
optimal conditions.

The constructed surfaces were relaxed geometrically to
minimum energy while ensuring that no symmetry constraint
was imposed (Fig. 1). To ensure that no imaginary frequency
exist on the potential energy curve, a vibrational analysis of the
molecules was conducted. Aqueous media simulations were
conducted by adopting Tomasi's polarized continuum model-
self consistent reaction field (PCM-SCRF) model,*® while water
was chosen as the solvent. The SCF convergence threshold,

15-crown-5

18-crown-6
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maximum force tolerance and energy tolerance were set at 1.0 X
107° Ha, 2.0 x 107> Ha A™, and 1.0 x 10° Ha, respectively.
The adsorption energies (E,qs) of the isolated CEs and the CE-
passivated 2D sheets on the selected metal ions, Li*, Na,
Mg>*, K*, Ca®>" and Rb" were calculated using the equation:

Eads = Esurface+ion - (Esurface + Eion) (1)

where, Equrfacetions Esurface ad Ejop, are the free energies of the 2D
sheet/CE-ion complex, the isolated 2D sheet/CE and the metal
ions, respectively. The enthalpy (AH,qs) and the free energy
(AGagqs) of adsorption were calculated from the difference in AG
and AH from the thermochemistry data at 298.15 K.

Lastly, using the localized orbital locator (LOL) graphical
isosurface plot, the electron delocalization within the isolated
CEs and the passivated 2D sheets were revealed and presented
in Fig. 2 and 3. These maps, generated using the Multiwfn
wavefunction analyzer depict red regions on the molecules as
regions having high LOL values, while the deep blue centres
within the macrocycles imply the polarized regions having
a high attraction for the metal ions, which indicate the
successful creation of ion diffusion channels within the
passivated 2D nanosheets.

2.2 Random forest (RF)

Random Forest (RF) is a superior ML algorithm from the
ensemble learning category, known for combining the strengths
of multiple decision trees to solve complex problems with high
accuracy.”” This approach not only enhances the diversity of the
model but also significantly reduces the risks of overfitting and
variance, common pitfalls of single decision trees. At its core,
RF operates by creating numerous decision trees during
training, each on a different bootstrap sample of the dataset,
where the samples are drawn with replacement. Furthermore, it

Fig.1 The optimized structural models of 15-crown-5 and 18-crown-6, and the corresponding crown-grafted graphene (left), hexagonal boron
nitride (middle), and silicene (right) nanosheets. All structures were geometrically optimized using the B3LYP/6-311G(d) level of theory.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Localized orbital locator (LOL) isosurface maps of (a) 15-crown-5, (b) b-16-crown-5, (c) g-16-crown-5, and (d) s-16-crown-5.

introduces variability and further reduces correlation among
trees by selecting a random subset of features for splitting at
each node within a tree (Fig. 4).*® The final prediction of the RF
model is obtained by aggregating the predictions of all the
individual trees. The RF algorithm is celebrated for its accuracy,

robustness against overfitting, and versatility, capable of
handling both classification and regression tasks effectively.*>>
It also provides insights into feature importance, aiding in
understanding the driving factors behind the model's predic-
tions. Despite these strengths, RF models can be complex and

Fig. 3 Localized orbital locator (LOL) isosurface maps of (a) 18-crown-6, (b) b-18-crown-6, (c) g-18-crown-6, and (d) s-18-crown-6.
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Crown-embedded 2D materials using DFT Data

1
XZ:

Tree 1 Yl = fl(Xl)

Tree2 Y2 = f2(X2)

Adsorption energy (kcal/mol)

Fig. 4 RF architecture for crown-embedded 2D materials.

Fig. 5 RF architecture for crown-embedded 2D materials.

computationally intensive, particularly as the number of trees
grows, and they offer less interpretability than individual deci-
sion trees, which may pose challenges in applications requiring
clear decision logic explanations.**

© 2024 The Author(s). Published by the Royal Society of Chemistry
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2.3 Emotional neural network (ENN)

ENN represents an innovative fusion of AI with human-like
emotional processing, aiming to saturate neural networks
with the ability to understand and incorporate emotions into
their decision-making processes (Fig. 5).°>** This concept, while
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not widely recognized in the domain of ML, proposes a novel
approach to enhancing AI by mimicking the complex interplay
between cognition and emotion observed in humans. The
theoretical foundation of ENN is the belief that emotions
significantly influence human learning, reasoning, and
problem-solving, suggesting that AI could similarly benefit from
emotional awareness to improve its adaptability, context
sensitivity, and interaction capabilities.****> The architecture of
an ENN might include specialized layers designed to simulate
various emotional states and responses, thereby enabling the
network to adjust its behavior in a context-aware manner. This
could mean enhancing the AI's ability to interpret information,
respond to changing environments more effectively, and engage
in more naturalistic human-computer interactions. The
potential advantages of such a system are vast, ranging from
improved decision-making in emotionally charged situations to
advancements in fields requiring a deep understanding of
human behaviour, like customer service, therapeutic support,
and educational technology. Recent advancements suggest that
incorporating artificial emotions into neural networks could
significantly enhance learning abilities, drawing on the analogy
of hormonal influences on neurophysiological responses in
animals.*®*” This feedback loop between ‘emotional’ and neural
systems in ENNs could cover the way for AI that not only thinks
but feels, marking a bold leap towards Al systems that mirror
the emotional depth and adaptability of human beings.>**

3. Model building and validation

The proposed methodology integrated data collection from
a DFT-derived study on adsorption energy (AE) in crown-
embedded 2D materials, followed by rigorous preprocessing
to ensure dataset cleanliness and normalization.*® Subse-
quently, a 70/30 split facilitates calibration (training) and veri-
fication (testing), with internal validation via k-fold cross-
validation ensuring model robustness. To enhance model reli-
ability and interpretability, both external and internal valida-
tion strategies are employed.®* In this context, the ENN and RF
models were utilized to incorporate response analysis to capture
emotions in the data. The black-box model based on the cali-
bration set involves hyperparameter tuning and feature engi-
neering, while evaluation metrics assess model performance.
Parallelly, RF contributes by providing an ensemble approach,
enhancing prediction accuracy and offering insights into
feature importance, thus bolstering our model's explanatory
capacity. Furthermore, employing SHAP (SHapley Additive
exPlanations) analysis facilitates explainability, offering
insights into feature importance and model decisions. Inte-
gration into an eXplainable Al (AIX) framework ensures user-
friendly deployment for predicting brine mining based on
crown-embedded 2D materials, with a focus on continuous
improvement informed by stakeholder feedback and evolving
domain insights. Data preprocessing is crucial in the context of
predicting adsorption energy (AE) in crown-embedded 2D
materials for brine mining applications, as it lays the founda-
tion for accurate and reliable model development. The data
used in this study includes enthalpy of adsorption (kcal mol ")
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(EA), Gibbs free energy of adsorption (GFE), and average pore
distance (A) (APD) as the input with adsorption energy (kcal
mol™") (AE) as output. Firstly, preprocessing ensures the
cleanliness of the dataset by handling missing values, outliers,
and erroneous entries, which could otherwise skew model
predictions. Normalization of features is essential to bring all
variables to a similar scale, preventing certain features from
dominating the model training process due to their larger
magnitude.”® Moreover, preprocessing techniques such as
feature scaling and transformation help improve the conver-
gence of optimization algorithms during model training,
leading to faster and more efficient learning. By carefully pre-
processing the data, we can mitigate biases and noise, resulting
in a more robust and generalizable predictive model for AE in
crown-embedded 2D materials, thus enhancing the reliability
and applicability of predictions in real-world brine mining.

4. Results and discussion

The proposed study on ML models and AIX application for brine
and crown-embedded 2D materials indicates a transformative
approach to sustainable mineral extraction. By harnessing the
unique ion-selectivity of crown-embedded 2D materials, this
research aims to revolutionize brine mining, enhancing effi-
ciency and reducing environmental impact. Integrating
emotional learning with AIX addresses the complex modelling
of these processes, offering transparent, interpretable solutions
for optimization and troubleshooting. This innovative inter-
section of Al and materials science not only promises signifi-
cant advancements in mining technology but also sets a new
benchmark for AI applications in sustainable industrial
processes, marking an essential step towards intelligent
resource extraction.

It is essential to note that key hyperparameters must be
finetuned appropriately to predict brine mining outcomes using
crown-embedded 2D materials with an RF algorithm. For
example, the number of trees (estimators) is set to 500 for
a balance between accuracy and computational efficiency; the
maximum depth of trees (max depth) at 20 to capture complex
patterns without overfitting; minimum samples split and
minimum samples leaf at 4 and 2, respectively, to prevent
overfitting by ensuring that splits and leaf nodes are based on
significant patterns; max features recommended as sqrt
(features) to consider a sufficient subset of features for each
split, optimizing for the model's complexity and dataset's
characteristics; Bootstrap sampling (bootstrap) set to true to
utilize sampling with replacement, enhancing model robust-
ness; and the Criterion (Criterion) suggested as “gini” for
calculation efficiency. To empirically determine the optimal
settings for the specific dataset and modelling goals of brine
mining with crown-embedded 2D materials, ensuring a balance
between model complexity, accuracy, and computational feasi-
bility, hyperparameter tuning methods such as grid or random
search should be paramount.

For optimizing an ENN in the advanced context of predicting
outcomes in brine mining with crown-embedded 2D materials,
several specific hyperparameters were fine-tuned. The learning

© 2024 The Author(s). Published by the Royal Society of Chemistry
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rate, crucial for dictating the speed of model updates, was
considered within the range of 0.001 to 0.01, balancing rapid
learning with the risk of overshooting minimal loss values. An
emotion decay rate, unique to ENNs and controlling how
emotional states influence learning over time, was between 0.05
and 0.1 to ensure the model remains responsive to new data
without being overly influenced by past states. The architecture,
including the number of layers and units per layer, with 2-10
hidden layers and 50-500 units, respectively, to match the
data's complexity and avoid overfitting. Batch size, affecting
generalization and training speed, was between 32 and 128,
optimizing computational efficiency and feedback sensitivity.
An emotional learning rate modifier, adjusting the learning rate
based on the model's emotional state, was considered between
0.8 to 1.2, offering a dynamic learning pace adjustment. These
initial settings serve as a foundation for iterative adjustment
through techniques like cross-validation, crucial for modifying
the ENN to the demands of modelling brine mining processes
with crown-embedded 2D materials. This iterative tuning not
only aims to enhance predictive accuracy but also to calibrate
the model's emotional learning aspects for optimal decision-
making performance. Therefore, the current study involves
using a new generation emotional Al technique informed of
ENN and RT for modelling both crown 5 and crown 6 based on
three different models (M1-M3). Whereby M1 is composed of
GFEA, M2 consists of EA and GFEA, and M3 comprises APD, EA
and GFEA as the input combinations for modelling of the target
inform of AE. Therefore, Table 1 depicts the performance of the
model combinations for modelling AE in both the calibration
and verification phases, respectively. Based on the perfor-
mances, it can be observed that M3 showed superior perfor-
mance than M2 and M1 for both ENN and RT models used in
modelling AE in crown 5.

From Table 1, it's clear that the three combinations of ENN
models (ENN-1, ENN-2, ENN-3) demonstrate varying levels of
accuracy, with ENN-2 showing the highest accuracy among
them. ENN-2 has the lowest error rate, indicating that its
predictions are consistently close to the actual values. This

Table1 Predictive results for crown 5 — 2D embedded material for AE
modelling

R* NSE PCC MSE MAPE MAE PBIAS
Calibration phase
ENN-1 0.8487 0.7648 0.9419 0.0007 4.6544 0.0047 —0.0946
ENN-2 0.8770 0.8427 0.9381 0.0006 3.7408 0.0049 —0.0105
ENN-3 0.8840 0.8563 0.9419 0.0006 3.5970 0.0050 0.0283
RT-1 0.8934 0.8802 0.9458 0.0005 3.0466 0.0046 0.0273
RT-2 0.8737 0.8514 0.9460 0.0006 4.0976 0.0040 —0.0983
RT-3 0.9149 0.9053 0.9565 0.0004 3.1975 0.0042 —0.0019
Verification phase
ENN-1 0.7761 0.7474 0.8999 0.0006 0.6264 0.0051 0.0515
ENN-2 0.7998 0.8000 0.9000 0.0005 0.5914 0.0045 0.0041
ENN-3 0.7560 0.7918 0.8990 0.0006 0.7597 0.0053 0.0416
RT-1 0.8527 0.8589 0.9393 0.0004 0.3583 0.0027 0.0441
RT-2 0.7930 0.8150 0.9037 0.0005 0.6220 0.0044 0.0010
RT-3 0.8093 0.8362 0.9165 0.0005 0.6575 0.0045 0.0195

© 2024 The Author(s). Published by the Royal Society of Chemistry
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suggests that incorporating emotional factors into the neural
network may improve the ability to model the complex, variable-
rich process of brine mining using crown-embedded 2D mate-
rials. However, the RT models generally show a higher accuracy
in their predictions compared to the ENN models, with RT-1
showing the highest accuracy and a very low error rate among
all six models. The precision of the RT models in capturing the
intricate patterns of the data might be due to their ensemble
nature, which could potentially handle the non-linearity and
high dimensionality of the data effectively. ENNs are designed
to mimic aspects of human emotional processing, potentially
allowing them to make better decisions in uncertain or complex
environments, such as the process conditions in brine mining
with advanced materials. RTs, on the other hand, benefit from
their structure, which naturally handles feature interactions
and can capture more straightforward yet highly dimensional
patterns. The quantitative analysis indicated that RT-1 outper-
forms other models with the highest NSE value of 0.8589,
closely followed by RT-3 and RT-2, indicating strong model-
data correlations. At the same time, ENN-2 leads among the
ENNs with a commendable NSE of 0.8000, reflecting the
potential of emotional learning in modelling complex data
patterns, and ENN-1 and ENN-3 also show good predictive
capabilities with NSE values above 0.74 (see Fig. 6).

These results are promising to consider the complexity of
brine mining, particularly with novel materials like crown-
embedded 2D structures. They demonstrate the potential of
advanced computational models to optimize mining processes,
reduce environmental impact, and enhance the efficiency and
selectivity of mineral extraction. It is also notable that while the
RT models appear to outperform ENN models in accuracy, the
difference in their results is relatively small, suggesting that
with further tuning and integration of emotional learning
aspects, ENNs could potentially match or exceed the perfor-
mance of RT models. Moreover, these results underline the
importance of ML model selection based on the specific char-
acteristics of the task at hand and the potential benefits of
exploring novel Al approaches, such as ENNs, for complex
industrial applications. Further research might involve deeper
analysis into the specific features each model type is leveraging
to make predictions, potentially offering insights into the
processes governing brine mining with crown-embedded 2D
materials. It is important to validate the present study with the
existing literature for instance Lew et al, explore a deep-
learning LSTM to predict the graphene mechanism. The
outcomes demonstrate the technique's effectiveness in
modeling nanomaterial behaviour and highlight deep learn-
ing's potential in materials science.®” Similarly, Dong et al.
developed the ML model for the prediction of graphene and
boron nitride with more than 90% accuracy.® Baboukani et al.,
designed a study on 2D-based nanoscale friction prediction
using Al models. The results indicated a justifiable performance
in the validation phase.**

Moreover, the comparative performance of the models can
equally be visualized using the 2D Taylor diagram as presented
in Fig. 7. Relative to the highest NSE value by RT-1 (85%) in the
verification phase, the models ENN-1, ENN-2, ENN-3, RT-2, and
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Fig. 6 Time series plot for AE modelling in crown 5.

RT-3 achieve 77%, 79%, 75%, 79%, and 80% of its efficiency,
respectively. When compared to the highest R*> achieved by RT-
1, the percentage differences in goodness-of-fit values indicate
the relative variance explained by each model. RT-1, with an R*
of 0.8527, is the benchmark, explaining the highest proportion
of variance within the dataset among all models. ENN-1, with an
8.98% lower R”, suggests that this model, despite integrating
emotional factors into its predictions, does not capture the
data's variability as well as RT-1, potentially due to the
complexity of the emotional learning component or the need for
further hyperparameter tuning. Similarly, ENN-2, showing only
a 6.20% lower R?, indicates a notably closer performance to the
benchmark model. This smaller gap suggests that the configu-
ration of ENN-2 is better optimized for capturing the variability
of the dataset or that the features relevant to brine mining
processes are well-represented within this model's structure.
The ENN-3 has the largest discrepancy from RT-1 with an
11.34% lower R*, implying that this iteration of the emotional
neural network may not be as adept at explaining the variability
in the data. It could be that ENN-3 is either overfitting or
underfitting the data or that the emotional aspects of the model
are not aligning with the underlying patterns of the dataset.
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Further quantitative comparison shows that RT-2 and RT-3,
with 7.00% and 5.09% lower R> values, respectively, indicate
a relatively high degree of variance capture but do not quite
reach the benchmark set by RT-1. The slight differences may be
attributed to the random nature of tree generation in Random
Forest models or could suggest minor inefficiencies in how
these iterations are capturing the data's structure compared to
RT-1. The differences in R reflect the unique ways in which
each model processes and learns from the data. The RT models,
particularly RT-1, seem more effective at capturing the data's
variability, which might be attributed to their ensemble nature,
leveraging multiple decision trees to reach a more accurate
consensus. In contrast, while ENNs incorporate a novel
approach to learning, their performance indicates a need for
refinement to fully exploit their emotional learning capabilities
in modelling the complex interactions present in brine mining
data involving crown-embedded 2D materials.

In assessing the PBIAS values from Table 1, ENN-2 and RT-2
demonstrate exceptional predictive balance with PBIAS scores
of 0.0041 and 0.0010, respectively, indicating an almost negli-
gible bias in overestimation or underestimation of the observed
data in the context of brine mining with crown-embedded 2D

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Predicted results of both crown 5 and crown 6 embedded 2D material.

materials. The remaining models exhibit a slight underesti-
mation trend, with ENN-1 at 0.0515, ENN-3 at 0.0416, RT-1 at
0.0441, and RT-3 at 0.0195, suggesting these models slightly
undervalue the outcomes when compared to the actual values,
although they are still within a reasonable range of accuracy.
These PBIAS figures point to the overall precision of the models
in quantity estimation, with the lower values representing
a closer match to the true values in the mining process and
highlighting areas where calibration could further refine model
performance. Looking at these values, ENN-2 and RT-2 stand
out for their minimal bias, indicating a highly accurate repre-
sentation of the observed data quantity in their predictions.
These models, according to PBIAS, would be less likely to
introduce significant errors in terms of the magnitude of
predictions when applied to brine mining operations using
crown-embedded 2D materials. The rest of the models, while
having slightly higher PBIAS values, remain within a reasonable
range, suggesting they are generally accurate but could benefit
from calibration to reduce their slight underestimation
tendencies. Generally, the lower the absolute value of PBIAS, the
better the model is at predicting the true magnitude of the
parameter of interest, which in this case, is likely related to the
quantity of minerals extracted from the brine solution using the
specified nanomaterials.®>* The predictive results of crown 6
are presented in Table 2.

The quantitative performance skills of the emotional AI
techniques are demonstrated in Table 2. Whereby, the calibra-
tion phase indicates the robust ability of ENN-1, ENN-3, RT-1

© 2024 The Author(s). Published by the Royal Society of Chemistry

and RT-2 in modelling AE for crown 6 with a minimum NSE
value of 0.8. Moreover, for the verification phase, only RT-1 and
RT-2 present a performance with NSE values higher than or
equal to 0.8. Hence, the performance depicted by crown 6 is
comparatively lower than crown 5 for AE modelling. The RT-2
depicts superior performance for crown 6 modelling in both
the training and verification phases respectively. Furthermore,
the performance can be visualized graphically using the error
graph chart, which demonstrates the error fitness between the
experimental and simulated AE (kcal mol ") values for crown 6

Table 2 Crown 6 results for AE modelling

R? NSE PCC MSE MAPE MAE PBIAS
Calibration phase
ENN-1 0.8025 0.7804 0.8992 0.0007 2.5049 0.0056 0.0428
ENN-2 0.7838 0.7226 0.8899 0.0007 2.7747 0.0051 —0.0566
ENN-3 0.8035 0.7922 0.9008 0.0007 2.6121 0.0051 —0.0339
RT-1 0.8464 0.8688 0.9370 0.0005 1.6347 0.0037 —0.0646
RT-2 0.9265 0.9149 0.9631 0.0003 1.3208 0.0032 —0.0013
RT-3 0.7828 0.8085 0.9102 0.0007 2.4154 0.0048 —0.0902
Verification phase
ENN-1 0.7317 0.7661 0.8943 0.0007 0.7829 0.0056 0.0590
ENN-2 0.7985 0.7583 0.8945 0.0005 0.4839 0.0041 —0.0094
ENN-3 0.7584 0.7717 0.8922 0.0006 0.7159 0.0053 0.0410
RT-1 0.8145 0.8301 0.9122 0.0005 0.5729 0.0041 —0.0021
RT-2 0.8044 0.8302 0.9161 0.0005 0.4618 0.0031 —0.0282
RT-3 0.7672 0.7737 0.9022 0.0006 0.7000 0.0052 0.0549
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(see Fig. 8). The predictive performance of the models was
equally demonstrated using the Talor plot above. It indicates
how well the model was able to successfully capture the exper-
imental AE values.

The results from Table 2 provide insights into the accuracy of
the models for AE (kcal mol~ ') modelling in the context of brine
mining with crown-embedded 2D materials. The MAE is
a measure of the average magnitude of errors in a set of
predictions, without considering their direction. Lower MAE
values indicate better model performance with fewer errors.
From the table, RT-2 shows the lowest MAE at 0.0031, indicating
it has the smallest average error in its predictions. ENN-2 and
RT-1 are next with an MAE of 0.0041, followed by ENN-3 at
0.0053, RT-3 at 0.0052, and ENN-1 at 0.0056, all of which are
reasonably low but suggest greater prediction errors compared
to RT-2. Similarly, MAPE, on the other hand, expresses the
average absolute percentage error between the predicted and
observed values. It provides an understanding of the prediction
error relative to the size of the actual value, with lower
percentages indicating better predictive accuracy. It can be seen
that ENN-2 performs exceptionally in this regard, with the
lowest MAPE at 0.4839%, suggesting that its predictions are, on
average, within 0.4839% of the actual value. RT-2 also performs
well with a MAPE of 0.4618%, followed by RT-1 at 0.5729%,
ENN-3 at 0.7159%, RT-3 at 0.7000%, and ENN-1 with the highest
MAPE at 0.7829%. The ENN-2 stands out for its combination of
low MAE and MAPE, implying it is not only accurate on average
but also consistent across different magnitudes of prediction.
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The RT-2 also shows strong performance with the lowest MAE
and a low MAPE, indicating accurate and consistent predic-
tions. The other models, while still within acceptable error
ranges, show room for improvement in both average error and
consistency, as indicated by their higher MAE and MAPE values.

4.1 Proposed eXplainable AI

eXplainable Artificial Intelligence (XAI) has become an
increasingly significant field, particularly for complex models
used in specialized domains such as predicting outcomes in
brine mining with crown-embedded 2D materials. XAI aims to
make the outputs of ML models more understandable to
humans, which is crucial for trust, accountability, and diag-
nostic purposes. Two prominent methods within XAI are
SHapley Additive exPlanations (SHAP) and Local Interpretable
Model Agnostic Explanation (LIME).

The SHAP is grounded in cooperative game theory and
explains the output of any ML model by attributing each
prediction to all the features involved in the model. Essentially,
SHAP values provide a measure of the impact of each feature on
the prediction. This can be particularly useful in brine mining
studies, where understanding the influence of specific nano-
material properties or environmental conditions on the mining
efficacy could lead to better material design and process opti-
mization. By applying SHAP, you can gain insights into which
features (such as pore size, enthalpy, Gibbs free energy of
adsorption, ionic affinity, material surface area, etc.).
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Fig. 8 Error-based performance of the predicted against the experimental AE values for crown 6.
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The function of the model, g(x) is defined as eqn (2),

M
g(x) =g+ @
i=1
where ' is the generalized input variables in vector form. M is
the number of features in the set. ¢, and ¢; are the attribution
value of each variable used in the study.

The additive feature is generally attributed to desired prop-
erties mainly as local accuracies, missingness and consistency.
If these properties are inhibited, a better explanation model g(x)
can be achieved with a unique solution which is explained by

eqn (3).

¢,(f,x) = % D USINV = IS| = DI (SU{x}) = /(S)]  (3)

SSP\x;

where, S is the feature subset used, x is the vector space of
feature values to be explained, f{S) refers to the model output
value for the specific feature combination.

The local explain ability in Fig. 9a and b displayed the results
analysis of SHAP for a local explanation of 2D crown 5 and
crown 6 predictions, respectively based on the waterfall plots.
For this purpose, XGBoost model was utilized for the local
explain ability and contribution of each variable to the devel-
oped prediction approach. From the figures, the input variable's
(APD, EA and GFEA) contribution to the target variable AE was
broken down in depth. It is paramount to explain clearly the
waterfall diagram related to this study. The priority of features
(in grey numbers) was characterised from top to bottom on the
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left side based on their sensitivity and prediction effect. The red
and blue colours indicated the strength, sign and direction of
each variable based on the SHAP values. The arrows represent
the input variables that drive the XGBoost model to make
higher (red) and lower (blue) predictions until a nearly exact
prediction is determined. The final modelling result is the
cumulative of all SHAP values which are represented at the top
y-axis as f(x), for example, flx) is —537.25 and —481.699 for 2D
crown 5 and crown 6 predictions, respectively. It is worth noting
that the base value is different scale because of the distinct
structural nature of the 2D materials. The graph's design
highlights the additive nature of both advantageous and
disadvantageous factors, illustrating their collective influence
from a foundational value to generate the predicted outcome in
the XGBoost model, f{x). Global explain ability in SHAP is
crucial as it provides an overall understanding of feature
importance across the model, offering insights into how
different predictors collectively influence the model's decisions
on a wide scale. In this regard, bee swam plot (Fig. 9c and d)
present a detailed visualization of SHAP values, facilitating the
assessment of feature significance and their direct association
with the predicted outcomes. However, XGBoost gives us
different ways to figure out which features are important. But
these methods can be inconsistent, depending on how we
choose them, and sometimes it's hard to know which one to
use. SHAP values are better because they always give us a clear
idea of how important each feature is, which makes it easier for
us to understand. So, in our study, we used the average SHAP
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Fig. 9 SHAP waterfall plot visualizing the predicted feature contributions for (a) 2D crown 5 and (b) 2D crown 6. Summarized SHAP beeswarm
plot for explaining the global feature impacts on the (c) 2D crown 5 and (d) 2D crown 6. Feature importance of variables (e) 2D crown 5 and (f) 2D

crown 6.
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value across all the examples to see which features mattered
most (see Fig. 9e and f).

However, LIME, on the other hand, provides local explana-
tions for individual predictions regardless of the overall
complexity of the model. It works by perturbing the input data
and observing the changes in the model's predictions. This
approach can highlight how small changes in the input features
affect the output, which is essential when assessing the
robustness of your models' predictions regarding the variable
conditions encountered in brine mining. With LIME, you could
investigate, for instance, how slight variations in the concen-
tration of minerals in the brine or changes in temperature and
pressure conditions could lead to significant differences in the
extracted mineral predictions. Both SHAP and LIME can play
a crucial role in understanding and improving the models
developed in your study. They can help in identifying any
potential biases or errors in the models, thus ensuring that the
models are reliable, and their predictions are based on valid
and verifiable data patterns. This is particularly important when
the model decisions may have significant economic or envi-
ronmental implications, as is the case with mineral extraction
processes. Integrating the XAI methods in 2D and brine study
could thus not only enhance the transparency and interpret-
ability of your predictive models but also provide a deeper
understanding of the intricate relationship between the char-
acteristics of crown-embedded 2D materials and the efficiency
of brine mining processes. This can facilitate informed
decision-making and contribute to advancing the field of
material science and mining engineering.

5. Conclusion

Predicting brine mining outcomes for Li' adsorption with
crown-embedded two-dimensional materials through ML
models is a complex and specific task in the domain of material
science and environmental impacts. In the realm of brine
recovery and CE utilization, predictive modeling emerges as
a pivotal instrument for identifying specific adsorption loca-
tions and facilitating selective metal extraction. Both ENN and
RF algorithms prove effective in capturing complex data inter-
actions, with RT models generally outperforming in metrics
such as R> and NSE. However, ENN models, notably ENN-2,
show promise with competitive NSE values and minimal
prediction biases. This highlights the value of integrating
emotional learning components for discerning subtle data
intricacies. The minimal MAE and MAPE values, especially in
ENN-2 and RT-2, reflect high accuracy and consistency in
predictions, underscoring the potential of these methods in
enhancing the precision and reliability of brine mining opera-
tions. Integrating explainable AI techniques like SHAP and
LIME could further elucidate the feature contributions and
model pattern, paving the way for advancements in sustainable
adsorption of Li" for brine mining. As a result, a variety of
evolutionary ML methods were employed to improve the accu-
racy of predicting adsorption energy for both crown 5 and crown
6 molecules, leading to more dependable outcomes with
minimized error margins. Additionally, the utilization of
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eXplainable AI techniques like SHAP and LIME ensures trans-
parency in the decision-making process regarding extraction
methods involving CE of EA, GFE, APD and Li" AE. The inte-
grated approach of AI and ML utilizing ENN and RF algorithms
demonstrated that crown-embedded 2D materials have
a profound effect on the adsorption of Li" ions in brine mining
processes. This study would be an insight on development of
novel predictive models within computational strategies for the
efficient design of hierarchical 2D nanomaterial with CE for
efficient brine mining operations.
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