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The manipulation of electronic device characteristics through electron spin represents a burgeoning frontier in
technological advancement. Investigation of magnetic and transport attributes of the Tl,Mo(Cl/Br)g double
perovskite was performed using Wien2k and BoltzTraP code. When the energy states between
ferromagnetic and antiferromagnetic conditions are compared, it is evident that the ferromagnetic state
exhibits lower energy levels. Overcoming stability challenges within the ferromagnetic state is achieved
through the manipulation of negative AH; within the cubic state. The analysis of the half metallicity
character involves an analysis of band structure (BS) and DOS, elucidating its mechanism through PDOS
using double exchange model p—d hybridization. The verification of 100% spin polarization is confirmed
through factors such as spin polarization and the integer value of the total magnetic moment. Furthermore,
the thermoelectric response, as indicated by the ratios of thermal-electrical conductivity and ZT,

rsc.li/rsc-advances

1. Introduction

Spintronics, a new research area at the intersection of physics
and electronics, has become particularly interesting owing to its
possible influence on the development of novel types of elec-
tronic devices based on electron spin (their intrinsic property).*
Unlike in traditional electronics, which mainly rely on electron
charges for data handling and storage, spintronics employs the
electron's spin degree of freedom, which results in the
appearance of electronic devices with novel and enhanced
functionalities.> Spintronics is actually a branch of electronics
based on one of the fundamental concepts, namely half met-
allicity, which is a special property of materials characterized by
the fact that they have different conductive properties for elec-
trons with different spin orientations. The interest in half-
metallicity lies in its spintronic features, where one spin is
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underscores the promising applications of these compounds in thermoelectric device applications.

conducting while the other spin is insulating.*” This property
provides completely novel capabilities for controlling and
manipulating the magnetic moment of itinerant electrons and
opens new avenues for utilizing this spin dependence in various
devices. The investigation of half-metallicity in spintronics has
opened up new avenues for the fabrication of spin-based elec-
tronic devices such as spin valves, magnetic tunnel junctions
and spin transistors, which depend on differentiating and
manipulating the spin-polarized currents.® In addition, the
design and production of half-metallic materials in spintronics
directly affect spin-dependent phenomena such as colossal
magneto-resistance and tunnel magneto-resistance, which are
limiting factors in high-density magnetic data storage and
spintronic memory devices.” Researchers have targeted the
inherent traits of the half metallic substances and intend to
outdo the outmoded limitations in electronic devices in terms
of power consumption, speed and scalability to ready the
juncture for the forthcoming spintronic innovations. Concur-
rently, the quest for new materials has made this discovery of
double perovskites, a very diverse group of compounds famed
for their versatile properties.® In this scenario, the origins of
spintronics, half-metallicity, and double perovskites are of great
importance, affecting material design and technological
innovation.

Besides the emergence of half-metallic materials, the class of
compounds known as double perovskite has gained attention
because of its unique properties of electronic and magnetic
capability due to its complex crystal structure and various
cationic  configurations. The perovskite structure is
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characterized by a simplified addressing by the general formula.
A,BB'Og can be regarded as a versatile framework for the
investigation of a broad spectrum of physical phenomena and
the design of material properties through composition engi-
neering.® Double perovskites, a subgroup of perovskite mate-
rials featuring the simultaneous occupation of two cations at
the B site, display various high-order electronic structures with
a rich phase space that can lead to numerous electronic trans-
port characteristics. Such engineering would yield a structure
with mutable electronic band structures through approaches
including, but not limited to, band engineering, strain engi-
neering, and doping. In addition, the functionality of the tran-
sition metal nodes of the perovskite lattice leads to significant
phase space, and the existence of electronic phenomena, such
as colossal magnetoresistance and multiferroicity, is possible.
Additionally, the intriguing interplay between phonon proper-
ties and electronic states in double perovskite material provides
a way to explore novel phenomena that may enhance the
properties of the thermoelectric ZT. The essence of the ther-
moelectric function of double perovskites is the complex rela-
tionship between the electronic structure, charge transport, and
phonon scattering mechanisms.’ The band engineering
possibilities from the dual-cation arrangement ensure that the
electronic states can be manipulated, and their mobility is
improved, thereby, in the process, boosting the thermoelectric
efficiencies.” Furthermore, particular d-electrons of transition
metal ions and conducting oxygen p-orbitals also play a role in
the complex electronic behavior of the materials; this means
that such compounds have ideal properties for further devel-
opment of thermoelectric properties.

Numerous researchers have allocated their findings specifi-
cally to studying the double perovskite group due to the
intriguing thermoelectric properties of this material. Mahmood
et al. studied the ferromagnetic thermoelectric response of
K,Z(Cl/Br)s (Z = Ta, W, Re), which is related to its application in
spintronics and energy. Their investigation delivered an in-depth
description of the features of these materials when comparing
them in terms of their different possible uses in future techno-
logical developments. Mahmood et al's findings provide
a significant impetus for research in materials for spintronic and
energy applications.” Alburaih et al presented a theoretical
investigation, relying thoroughly on DFT calculations, of vacancy-
ordered single-crystalline K,TcZs (Z = Cl, Br) systems searching
owing to their suitable characteristics for spintronic applications.
Their work focused on the electronic structure and magnetic
response in the studied composition and provided a basis for the
development of new spintronic devices and data storage.™ In the
research by Mahmood et al. (2022), the impact of 5d electrons on
half metallic ferromagnetic behavior and conduction of Cs,Z(Cl/
Br)s (Z = Os, Ir) for devices in spintronics was explored.*® The
study featured a comprehensive analysis of the behavior of these
materials, which served as the basis for the development of novel
spintronic devices. The authors explored the relationship
between 5d electrons and their proprieties in detail, providing
contributions that can be valuable for materials. Their findings
emphasize that the Cs,Z(Cl/Br)s (Z = Os, Ir) compound might
play a key role in the development of spintronics, which again
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makes them theoretically critical for future science and tech-
nology. The molecules Mo and Tl provide remarkably strong
spins used in the devices to store and process information using
spins. As far as the tunability of Tl and Mo and the possibility of
application in devices with the magnetization effect are con-
cerned, magnetronics could be a crucial field. With our calcula-
tions, we are confident that Tl,Mo(Cl/Br)s will definitely be the
best composition in spin-based technology. Perovskites with
halide composition exhibit applications in several spintronic
gadgets, including magnetic memory, spin valves, and spin orbit
applications due to the unique magnetic and electrical tunability
of the combination. Spintronics has been performing very well,
and further advancements in this area will potentially command
various possibilities and highly adaptive spintronic device func-
tionalities. The principal objective of the present investigation is
to acquire a more comprehensive understanding of the charac-
teristics of TI1,Mo(Cl/Br)s, covering aspects such as structural,
electronic, elastic, magnetic, and transport properties.

2. Computational methodology

The stability of a material's structure is crucial because it
governs numerous physical attributes. In this study, Tl,Mo(Cl/
Br)s was analyzed using a DFT-based FP-LAPW approach
implemented using Wien2k code.'® Ground-state energies were
computed using the PBE-sol approximation, with adjustments
made to accurately determine bandgaps through the mBj
potential.’” Notably, PBE-sol, a modified version of PBE, incor-
porates different constraints, offering improved accuracy,
particularly for heavy metal systems related to PBE. The TB-mB]J
potential, known for its precision akin to HSE06, was employed
for electronic BS and DOS computations, alongside consider-
ation of spin-orbit coupling.’®'® To ensure convergence, a K-
mesh of 2000 k-points (12 x 12 x 12) was utilized and later
increased to 20 x 20 x 20 for thermoelectric calculations.
Parameters such as (muffin-tin radius) Ryt X Kmax (K-vector),
Imax (angular momentum vector) and Gp,.x (Gaussian factor)
were carefully selected for accuracy, with computed results
converging to the order of 10~° mRy. Transport response was
estimated utilizing the BoltzTrap code, providing an inclusive
analysis of the material's properties.*

3. Results and discussion
3.1 Structural analysis

The optimization of energy release from compounds with Fm3m
(no. 225) space group in cubic phase and determination of
ground-state parameters were conducted using the Birch-

Table1 Computed lattice parameters, bulk modulus values, ground-
state energy differences, Curie temperature (T.) and formation energy
(AH: (eV)) of DPs TlLMo(Cl/Br)g

Chalcogenides a, (A) B, (GPa) AE = Eppy — Exm Te (K)  AH;
Tl,MoClg 9.95 43.75 22.66 567 —1.44
Tl,Mo0Brg 10.54 35.95 14.88 533 —1.18

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Unit cell of DP TI;Mo(Cl/Br)g: (a) ball-stick and (b) polyhedral model. Gray, pink and green balls show Tl, Mo, and Cl/Br atoms, respectively.

Murnaghan equation of states (Table 1).>* Fig. 1 illustrates unit
cells in both ball-stick (left) and polyhedral (right) formats,
showcasing atomic arrangement and geometric configuration,
respectively. Within MoCl/Brs octahedra, the Tl atom fills
vacancies, which exhibit 12-fold coordination with Cl/Br atoms,
resulting in individual octahedra being distinct from the others.
The Mo atoms occupies the center of the octahedra, encircled by
six Cl/Br atoms, while the Mo atoms are also present at the face
centers and corners.>* Wyckoff positions for Tl (8c), Mo (4a), and
Cl/Br (24e) were utilized for structure generation and optimi-
zation. Through the replacement of Cl with Br, atomic radii
increase, consequently enlarging the lattice constant in the
range of 9.95-10.54 A and inter-atomic distance, thus reducing
material density and solidness, and leading to a decrease in
bulk moduli (B) from 43.75-35.95 GPa.*® The same type of
variation in the lattice constant has also been observed by
Mahmood et al in Cs,ReCl/Brs double perovskites."* The
considerable bulk modulus of Tl,MoBr, suggests greater stiff-
ness compared to Tl,MoCls. Energy plots against volume in the
ferromagnetic (FM) and anti-ferromagnetic (AFM) phases, as
displayed in Fig. 2, reveal higher energy release in the FM state,
indicating its greater favorability. Furthermore, energy forma-

AI-If = ETotal(TllMOm(CUBr)n) - lETl - mEMo - nECl/Br>

where Er., denotes the total energy of double perovskites; Eqy,
Ewmo, and Ecypr denote energies of Tl, Mo, and Cl/Br, respec-
tively; / denotes the number of TI; m denotes the number of Mo
and n denotes the number of Cl/Br atoms.>® The AH; for Tl,-
MoClg is calculated as —1.44 eV. Similarly, for TI,MoBrs AH¢ are
found to be —1.18 eV for Br. This indicates the thermal stability
of the compounds, as evidenced by the negative values of AH¢in
the ferromagnetic state. Another crucial aspect of FM materials
in spintronic device applications is the ability to maintain
ferromagnetism above RT. To determine Curie temperature
(T.), the Heisenberg model T, = 2AE/3xKp was employed, where
x represents the Mo concentration and AE = Expv — Epy, a8
illustrated in Table 2. The computed T, for Tl,MoCle is 567 K

Table 2 Computed elastic constants (Cy1, Cip, Cgq) and computed
mechanical parameters for TLMo(Cl/Br)g

Ciy Ciz Ciys By G Y By/G v o

TI,MoCls 88.09 20.82 13.81 43.24 19.90 51.77 2.17 0.30 0.41

tion was computed to evaluate thermal stability using the TI,MoBrs 71.55 16.13 14.06 34.60 18.51 47.13 1.86 0.27 0.51
following equation:**
-94758.940 = -120488.140
TL,MoCl, — FM T1L,MoBr, — FM
-94758.945 — AFM = -
-120488.144 o
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Fig. 2 Energy against volume plot for TlbMoClg and Tl,MoBrg in ferromagnetic (FM) and anti-ferromagnetic (AFM) states.
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and for Tl,MoBr, is 533 K, indicating that the FM nature is
above room temperature (RT).®

3.2 Mechanical properties

The material's performance under stress is defined by elastic
constants, ensuring a mechanically stable crystal structure.””
Cubic symmetric properties rely on three elastic constants
(C11, C12, and Cy,y4), where Born stability conditions (Cy; — C15 > 0,
Cy4 > 0, C11 + 2Cy15 > 0, and Cy, < By < Cy4) support mechanical
stability, as listed in Table 2.>® The B parameter, calculated as B,
= (Cy1 +2C1,)/3, elucidates mechanical behavior, indicating that
T1l,MoBre exhibits lower output compared to Tl,MoClg, which is
consistent with B calculated from optimization.*® Ductility
differentiation between materials was determined by controlling
Poisson's (v > 0.26) and Pugh's (By/G > 1.75) ratio.”® When the
component number exceeds the cut-off value, it signifies greater
deformability than rigidity. The investigated composition's
ductility is presented in Table 2. Anisotropy (A = 2C44/(C11 — C12))
provides additional insight into directional characteristics, where
isotropic materials possess a unit value and anisotropic materials
exhibit a value less than unity (Table 2).*

3.3 Elastic anisotropy

Elastic anisotropy represents the significant physical charac-
teristics of a material, indicating variations in physical and
chemical properties with directional changes.*” Isotropic

Linear Compressibility Young’s Modulus

Fig. 3 Representation of elastic moduli in 3-D.
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materials maintain reliable characteristics irrespective of
measurement directions, exhibiting identical performance
values in all directions. Fig. 3 depicts 3-D surface ¢ representa-
tions of Youngs (Y), shear (G) moduli, and Poisson (») ratio for
T1,Mo(Cl/Br)s. Isotropic materials manifest spherical 3D
surface structures, while deviations from a sphere denote
anisotropy, with greater deviations indicating stronger anisot-
ropy.**** The 3-D figures for T1,MoCls do not resemble spheres,
confirming its anisotropic nature. Further investigation into
T1,Mo(Cl/Br)s elastic anisotropy involves examining values such
as ﬂmax; ﬁmim Ymaxs Yminy Omax Gminy Ymax and Vmin along with
ratios such as Bnax/Bmin, Ymax/Yminy Gmax/Gmin, aNd ¥max/Vmin
(Table 3). For an isotropic material, the ratio of the maximum to
minimum elastic modulus is equal to 1,** whereas anisotropic
materials exhibit ratios different from 1, with higher ratios
indicating stronger anisotropy. In the case of T1,MoCls, Bmax/
Bimin = 1, Ymax/Ymin = 1.841, Gmax/Gmin = 9.742, and Vmax/Vmin =
0.259, indicating greater anisotropy compared to Tl,MoBre.
Among the studied allotropes, TI,MoCls demonstrates the
highest anisotropy.*®

3.4 Electronic properties

To elucidate the electronic behavior of TIl,Mo(Cl/Brs), we
generated visual representations of band structures (BS) in
Fig. 4, and the density of states (DOS) is depicted in Fig. 5 and 6.
The band structures unveil state presence at Fermi level (Ef)

Poisson’s ratio

Shear’s Modulus

ot

02
: ”

2
o
00 0
v 5 o !
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0
o

Table 3 Maximum and minimum values of elastic moduli and their anisotropy for Tl,Mo(Cl/Br)e

Linear compressibility

B) (TPa™™) Young's modulus (Y) (GPa) Shear modulus (G) (GPa) Poisson's ratio (v)
Parameters ﬁmin ﬁmax A Ymin Ymax A Gmin Gmax A Vmin Vmax A
T1,MoClg 129730 129730 1 0.01135 0.0209 1.841 0.00743 0.072411 9.742 —0.91325 —0.23635 0.259
Tl,MoBrg 103 810 103 810 1 0.01397 0.0255 1.821 0.00902 0.071124 7.883 —0.87943 —0.22544 0.256
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within spin-up (1) configuration, exhibiting characteristics akin
to direct bandgap semiconductors. Conversely, within the down
(1) spin channel, the E; resides in the band-gap, indicating
insulating properties.®” This transition of states between the up
(1) and down (] ) configurations underscores the manifestation
of the ferromagnetic character. It is imperative to note that
achieving complete 100% spin-polarization serves as a funda-
mental prerequisite for half-metallic FM behavior. Hence, spin-
polarization is quantitatively assessed via the equation P =
(N, (Er) — N1(Eg))/(N,(Er) + N1(Eg)), where N (Eg) denotes the
DOS in the down () spin and N;(Ex) denotes the DOS at E¢ in
the up (1) spin configuration. Notably, within the up (1) spin
configuration, states are situated precisely at Er, whereas in the
down () spin configuration, the E; is notably absent at that
position, as depicted in Fig. 5 and 6. Consequently, the inves-
tigated halides exhibit complete spin polarization (P = 1).*
Furthermore, to give an inclusive insight into ferromagnetism,

View Article Online
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the density of states (DOS) is graphically illustrated in Fig. 5 and
6. An analysis of the total density of states (TDOS) reveals that
the up (1) spin channel exhibits characteristics of direct
bandgap semiconductors along the I' symmetry direction,
whereas the down () spin channel demonstrates an insulating
nature. Consequently, the interplay between semiconductor
and insulator responses facilitates electron exchange, thereby
inducing ferromagnetic characteristics. The basic driver of
ferromagnetism in TI,MoCls and TI,MoBrs stems from the
individual electronic states of Mo, Tl, and Cl/Br hybridization.
Specifically, the d-state of Mo splits into t,, and e, states of Mo
upon encountering the octahedral and tetrahedral environ-
ments of halide atoms.* The e, state shifts to low energy levels,
whereas the t,, state ascends to high energy levels. Among
these, the t,, state, comprising d,y, d,, and d_, orbitals, exhibits
a linear trend and significantly contributes to hybridization,
whereas the e, state, comprising d,> and d,=_,» orbitals, displays
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Fig. 4 Band structures computed for Tl,Mo(CLl/Br)g for up (1) and down () spin configurations using mBJ potential.
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Fig. 5 Total and partial DOS for Tl,MoClg with Tl, Mo and Cl atoms in spin up (1) and down (] ) spin configurations.

nonlinear behavior and plays a negligible role in ferromagne-
tism. The distinction between e, and t,, states is quantified as
crystal field energy (ACy = eg — ty,).* To promote ferromagnetic
behavior, it is imperative to minimize the crystal field energy
through direct shifts of Mo d-states. The direct exchange energy
4,(d) = 4(d]) — 4(d1), representing the energy difference of
d states among down (| ) and up (1) spin configurations, must
exceed Cy energy (4,(d) > ACg) for ferromagnetism to prevail, as
illustrated in Table 4. Additionally, attention is drawn to indi-
rect exchange energy 4,(pd), derived from the VB edge in down-
spin (|), which manifests as negative. This negative (—ve) value
signifies the enhanced attractiveness of the down () spin
configuration for exchange mechanisms, thereby lowering the
system's energy and affirming ferromagnetic stability. Despite
the complexity of Mo's electronic configuration, d states of Mo
engage in hybridization with the valence states of Tl and the 3p
of Cl and 4p state of Br. Particularly, Mo's t,, states exhibit
robust hybridization with Cl's 3p state, with negligible influence
from TI's 6s-states, in energy ranges spanning from —0.24 eV to
Ep and from —4.02 to —4.3 eV in the up (1) spin configuration.
Furthermore, a hybridization zone between the t,, states of Mo
and Cl's 3p states emerges in the —2.2 to —4.8 eV energy range
although this range is not pertinent to our analysis.** Notably,
significant hybridization is observed between Mo's e, and ClI's
3p states in the vicinity of the CB edge. In the down (|) spin
configuration, hybridization arises among Mo's t,, and Cl's 3p

16864 | RSC Adv, 2024, 14, 16859-16869

states in VB and CB, respectively. However, the core region
witnesses negligible participation in the hybridization process,
as shown in Fig. 5. Similarly, robust hybridization is evident
between Mo's t,; and 4p states of Br, as illustrated in Fig. 6.
Additionally, reasonable hybridization between Mo's e, and Br's
4p states is observed in the conduction band. In the down ()
spin configuration, hybridization arises among Mo's t,4, Br's 4p
states, and TI's 6s states in VB and CB. We also computed
phonon dispersion curves for both investigated materials,
revealing that no imaginary mode is observed for T1,Mo(Cl/Br)s
(see Fig. 7). The positive value of the phonon frequency for both
materials indicates that they are dynamically stable in the given
temperature range.

3.5 Magnetic properties

Understanding ferromagnetism relies significantly on the
splitting of VB and CB edges, particularly concerning the
interactions between s and d orbitals as well as p and
d orbitals.** These orbital interactions, denoted as s—d and p-
d couplings, respectively, are delineated based on the average
magnetic moments of Mo within the unit cell. The energy
discrepancy between the up (1) and down () spin configura-
tions at the CB edge (denoted as E.) predominantly reflects the
influence of s-d coupling. Conversely, at the valence band edge,
this energy difference (denoted as Ey) encompasses contribu-
tions from p-d coupling. The specifics of these interactions are

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Total and partial DOS for Tl,MoBrg with Tl, Mo and Br atoms in spin up (1) and down (|) spin configurations.

Table4 Calculated crystal field (ACf) energy, exchange splitting 4,(d),
and exchange constants (Noa and Nog) for TlMo(Cl/Br)e

ACy 4,(d) 44(pd) Nowt No8
TI,MoClg 3.0 4.1 -1.5 0.38 ~1.92
TI,Mo0Br, 2.6 3.8 -1.2 0.25 —0.93

further expounded through the elucidation of exchange
constants as follows:

AE,
x(8)’

AEy

Noa = (S)’

NoB =
where x represents the concentration of Mo and (S) denotes its
average magnetic moment.*® The presence of negative values for
No( indicates high level of attraction towards down (|) spin
configuration within the exchange mechanism, resembling the
characteristics of ferromagnetism, akin to exchange energy
A4(pd), as outlined in Table 4. The transition of electrons from
the down (|) spin to up (1) spin configuration, coupled with
robust hybridization between the d states of Mo, 3p state of Cl,
and Br 4p-states, introduces both orbital and spin magnetic
moments, highlighting their significance in spintronic devices.
Detailed magnetic moment data for individual elements Tl, Mo,
and Cl/Br, as well as compounds T1,Mo(Cl/Br)s, are provided in
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Table 5 Totaland local values of magnetic moments for Tl,LMo(Cl/Br)g

Mrotal M. M Mo MCI/Br
T1,MoClg 2.000 0.3489 —0.003 1.579 0.013
Tl,MoBrg 2.000 0.3824 —0.001 1.571 0.008

Table 5.* The presence of magnetic moments on nonmagnetic
elements arises from robust hybridization and SOC among the
d state of Mo, 3p state of Cl and Br-4p state, underscoring the
pivotal contribution of Mo's d state in spintronic applications.
Furthermore, Table 5 displays both the total and individual
magnetic moments for Tl,Mo(Cl/Br)e. The integral figures of
total magnetic moments signify complete spin-polarization of
the composition under investigation. The predominant source
of magnetic moments stems from the Mo-d state. Strong
hybridization particularly results in the transfer of the magnetic
moments from the Mo site to Tl and Cl/Br.*

w
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3.6 Thermoelectric properties

In recent years, noteworthy attention has been paid to the
potential of a thermoelectric material to convert thermal energy
into electrical energy across various applications.** This
phenomenon, known as the thermoelectric effect, relies on the
transfer of charge movement to generate a heat gradient,
thereby creating a potential difference. The thermoelectric
properties of Tl,Mo(Cl/Br)s were examined utilizing the Boltz-
TraP code with diverse parameters, as presented in Fig. 8(a-f).
Within the BoltzTraP simulation, the relaxation time, set at
107'* s, denotes the average duration between successive
collisions within the system. Electrical conduction induced by
charge carriers is determined by evaluating ¢/7.*” As depicted in
Fig. 8(a), the transition from CI to Br prompts a rapid escalation
in ¢/7, which is attributable to the heightened presence of free
electrons transitioning thermally from valence to the conduc-
tion band. At 200 K, ¢/t measures 2.5 x 10*° for TI,MoCls and

(@)— TI,MoCl,
— TIZMoBr6

o/7 (10" 1/Qms)
N

(b) 1

1 1 ] L 1 1 L | L 1 L 0
’“2() (d) °
wn Cc
~ 1 2
E -
< J4 E
= o

x 1 T OE
% ’\3'9

68/t (10" W/mK’s)
MO - D W A e N O

400 600
Temperature (K)

800 200

0
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Temperature (K)

Fig. 8 Calculated (a) electrical conductivity (a/7), (b) thermal conductivity (ke/1), (c) Seebeck coefficients (S), (d) magnetic susceptibility (x). (e)

power factor and (f) ZT versus temperature for Tl;Mo(CLl/Br)s.
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2.7 x 10" (Q m s) " for TI,MoBr,. Analogous trends persist at
800 K. The increase in conductivity following the substitution of
Cl with Br can be ascribed to the larger ionic size and the
augmented contribution of free carriers. However, as the
temperature increases, conductivity decreases potentially due to
heightened resistance experienced by free carriers amidst
thermal agitation at higher temperatures. Thermal conductivity
(ke/7) represents the carrier's conduction because of heat, with
only the electronic component calculated while disregarding
lattice contributions. For Tl,MoClg, thermal conductivity esca-
lates from 1.0 x 10" at 200 K to 1.42 x 10 (Wm 'K 's 1) at
800 K, and a similar trend is observed for Tl,MoBrs, as illus-
trated in Fig. 8(c). The optimal performance is indicated by
minimizing «./t, as observed from «/o. The electronic to thermal
(x/o) conductivity ratio is in the order of 10~%,* emphasizing
their significance for thermoelectric applications due to their
lower k/t values related to ¢/7. The Seebeck coefficient (S) serves
as a crucial gauge of potential gradients and is charted against
the temperature. The polarity of S values, negative or positive,
delineates whether electrons or holes predominate as charge
carriers. For temperatures ranging from 200 to 800 K, Fig. 8(c)
illustrates the fluctuation in S. Notably, for TI,Mo(Cl/Br)e, the S
value increases as the temperature increases potentially due to
disparities in energy magnitude among the upper VB and E,*
as illustrated in Fig. 8(c). The magnetic response of materials is
characterized by their susceptibility, typically around 10~° for
semiconductors. At 200 K, T1,Mo(Cl/Br)s exhibits susceptibility
of 4.4 x 107° and 3.6 x 10~° m® mol ™, respectively; then, its
value decreases at 800 K, which is potentially influenced by
thermal effects on electron spin movement, as depicted in
Fig. 8(d). In Fig. 8(d), ¢5*/t, termed the power factor (PF), rep-
resenting the thermoelectric potency of materials, is drawn
against the temperature. The behavior of ¢/t and PF aligns
closely due to the extremely conductive response of a material.
As the temperature increases, PF diminishes upon substituting
Cl with Br.** Comparative analysis reveals that PF for TI,MoClg
surpasses that of TI,MoBrs due to the predominance of n-type
carrier contributions over p-type carriers.”* The figure of merit
(27), illustrated in Fig. 8(f), is expressed by ZT = S?¢/kT. A high
ZT value at low-temperature values indicates minimal thermal
conductivity alongside a small S and higher ¢/t. The relation-
ship for ZT demonstrates a direct proportional trend between
ke/t and o/t against temperature. The curve for Tl,MoBrg is
lower, attributed to slightly greater S and high «./t compared to
the TI,MoClg curve. The maximum ZT values are 0.33 for Tl,-
MoClg and 0.26 for Tl,MoBr, at 800 K.**

4. Conclusion

In the current study, a thorough analysis of the half metallic
ferromagnetic and thermoelectric responses of Tl1,Mo(Cl/Br)s
double perovskites was conducted to explore their perspectives
in spintronics and thermoelectric applications. Initially, struc-
tural optimization was performed in the ferromagnetic (FM)
and anti-ferromagnetic (AFM) phases, confirming the stability
of the FM phase. Additionally, the formation energies of Tl,-
MoCl¢ and Tl,MoBrg are —1.44 and —1.88 eV, respectively,

© 2024 The Author(s). Published by the Royal Society of Chemistry
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indicating thermodynamic stability. The 100% spin polariza-
tion was confirmed through spin-polarized electronic DOS,
revealing underlying hybridization and fractional magnetic
moments alongside higher T.. Exchange energies and valence
electron hybridization further confirmed the ferromagnetic
response attributed to electron spin instead of clustering.
Quantum confinement predominantly influenced negative
exchange coefficient values and p-d exchange energy. Moreover,
the calculations of S unveiled the existence of p-type semi-
conducting characteristics in T1,Mo(Cl/Br)s. The notably higher
ZT at 800 K observed as 0.33 and 0.26 for Tl,MoClg and TI,-
MoBrg, respectively, suggested their comparative suitability for
thermoelectric device application.
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