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echanical behavior of glass fiber
reinforced extruded polystyrene core material
composites

İbrahim Yavuz, *a Ercan Şiṁşiṙ a and Barış Şenol b

Layered composites are composite materials created by combining different layers of materials. Each layer

can possess unique properties, often tailored to meet specific application or design requirements. These

composites have found applications in various sectors due to their features, which include lightness,

excellent impact properties, and customization according to specific application areas. In this study,

glass fiber reinforced polymer foam core layered composite materials were produced. EPS polymer foam

was used as the core material. During production, polymer foams and fibers were bonded to the upper

and lower sides of the foams using resin. Samples were produced with 4 and 6 layers on both sides,

totaling 8 and 12 layers, respectively. The vacuum bagging method was employed in production, utilizing

the manual laying technique. Upon completion of production, the materials were cut into sizes

conforming to standards and converted into samples. Subsequently, three-point bending and low-speed

impact tests were conducted on the produced samples. As a result of the impact tests, perforation

occurred in the 8-layer samples of 200 g m−2 glass fiber composites, while rebound was observed in the

12-layer samples. Although more deformation occurred in the 8-layer glass fiber composites of 300 g

m−2 than in the 12-layer samples, both sets of experiments resulted in rebound. Similar results to the

impact tests were obtained in three-point bending tests, with higher strengths observed in the 12-layer

samples compared to the 8-layer samples. Composite samples with fiber layers of 300 g m−2 exhibited

better performance than samples with 200 g m−2
fibers.
1. Introduction

Composite materials have attracted increasing interest over the
last century. This heightened attention has led these materials
to nd a wide range of applications, earning them a signicant
place in various industries. Given the limitations of traditional
materials and the emergence of new requirements, there has
been a growing need for materials that are lighter,1–3 more
durable,4–6 corrosion resistant,7,8 and possess high thermal
resistance.9,10

Composite materials are created by combining different
components, typically comprising a matrix (matrix material)
and reinforcement elements.11,12 While various classications
exist, they can generally be broadly divided into classes such as
ber reinforced polymer composites (FRP), sandwich compos-
ites, metal matrix composites (MMC), ceramic matrix compos-
ites, polymer matrix composites, and bio-composites.13–16

Sandwich composites consist of a lightweight core material
sandwiched between two robust surface layers.17,18 The rein-
forcing surface layers are typically made from ber-reinforced
utomotive Engineering, Afyon Kocatepe
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polymer composites, while the core material is chosen from
lightweight materials.19,20 The surface layers contain a polymer
matrix with reinforcements such as glass ber, carbon ber, or
aramid ber.21–25 The purpose of these layers is to enhance the
overall durability and mechanical properties of the
composite.26–29 The core material generally comprises a light-
weight and low-density material, oen polymer foam, wood
panels, aluminum honeycombs, or other lightweight materials.
The core material contributes to increased structural strength,
simultaneously reducing the overall density of the composite.
This design offers the advantages of high strength and low
weight.

Due to these advantages, sandwich composites have a wide
range of applications. They are especially used in areas such as
aerospace,30 aviation,31–33 automotive,34–36 marine,37 construc-
tion38 and sports equipment. In the automotive industry, they
can be used to improve fuel efficiency due to their light
weight.39,40 They can also be used in structural elements to
increase the durability of vehicles41 as well as in the train and
aircra industries. Their durability and light weight make it
possible to use them in the construction of boat hulls and
yachts in the marine sector.42,43

As composite materials nd new areas of use every day,
studies on sandwich composites are increasing day by day. In
RSC Adv., 2024, 14, 13311–13320 | 13311
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Fig. 1 300 g m−2 and 200 g m−2 glass fibers used in the study.

Fig. 2 EPS foam.54
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some of these studies, metal foam was used as the core material
in layered composites. They carried out tests at high speeds,
especially for the defense industry such as armor etc. At the end
of the studies, they reached the conclusion that the core
material contributed signicantly to energy absorption.44–48 It is
seen that EPS foam is used mostly in the construction industry
as a building core material. It is stated that its purpose here is to
benet from features such as low thermal conductivity and
medium compressive strength.49,50 It is seen that EPS foam is
used as a core material in sports equipment such as suroards,
which is a different eld. At the end of the study, they concluded
that high foam density increased the mechanical properties of
composites such as exibility and fracture.51

In the study, expanded polystyrene (EPS) foams were utilized
as the core material. In the production of composite sheets,
foam was employed as the core, and layers of glass ber fabrics
were applied to both the top and bottom surfaces. The sheets
were produced using epoxy resin and the vacuum bagging
method. Samples were created with 4 and 6 layers on both sides,
resulting in a total of 8 and 12 layers. Two different glass bers,
weighing 200 g m−2 and 300 g m−2, were used as reinforcing
bers. Impact tests were conducted to assess the strength of the
samples.

2. Material method
2.1 Production method

Vacuum bagging, one of the methods of composite material
production, is a manufacturing technology utilized in various
industries, particularly in sectors such as aerospace, automo-
tive, and marine. This method enables the production of
lightweight and durable composite parts with high strength-to-
reinforcement ratios. By utilizing vacuum pressure, this method
allows the material to conform to the desired shape within the
mold. Hence, the vacuum baggingmethod was employed in this
study.

In this method, the composite fabric material is placed into
a mold by hand and the resin is distributed into the mold by
hand. The vacuum bagging production method eliminates the
disadvantages of the hand placement method of composite
structure production and enables the production of durable and
lightweight composite structures. The application of negative
pressure in vacuum bagging allows the air between the resin
and the composite fabric to be drawn out. During the produc-
tion of sheet materials, MGS L285 epoxy material and MGS
H285 hardener were mixed and applied.

Two different specications of glass ber fabrics, 200 g m−2

and 300 g m−2, were used as reinforcement elements (Fig. 1).
Glass ber is a material formed by combining glass yarns
together. In the literature research, it is seen that glass bers
have an elasticity modulus of 25–35 GPa and a tensile strength
of around 800–900 MPa.52 Glass ber is used in a wide range of
industrial applications due to its durable, lightweight and high
strength properties.

Layered composite structures usually contain a core mate-
rial. This core material should generally be lightweight, stiff and
durable. Although rigid core material is generally used for high
13312 | RSC Adv., 2024, 14, 13311–13320
strength, porous structures are preferred for energy absorption.
In this study, expanded polystyrene rigid foam (EPS) was used
as the core material since it is an investigation of the energy
absorption capabilities of layered composites (Fig. 2).

EPS foam is a polymer foam material obtained by expanding
polystyrene polymer. EPS foam has lightweight, rigid and
insulating properties. These materials are lightweight, provide
energy absorption and are generally suitable for insulation
purposes. According to the literature review, it has been deter-
mined that the density of the EPS foam used in the tests varies
between 13.5 kg m−3 and 28 kg m−3, and its properties range
from 0.089 MPa to 0.165 MPa.53 They are also used in the
packaging industry to protect products during transportation.
The production and use of EPS foams also contributes to
sustainability efforts, as these materials can be recycled.

Fig. 3 shows a schematic view of the composite material
production stages. Firstly, epoxy resin hardener was prepared
with the help of a mixer. The prepared ber and core material
were combined with the resin using the hand lay-up method. It
was cured in a vacuum environment for about 3 hours at room
temperature. The prepared specimens were cut with a precision
band saw in accordance with the three-point bending and
impact test specimen standards. The production parameters of
the specimens are given in Table 1.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Stages of layered composite production.

Table 1 Production parameters of the specimens used in the tests

Abbreviations Core material
Fiber properties
(g m−2)

Number of
layers

Core material thickness
(mm)

Total thickness
(mm)

EPS-8-200 Expanded polystyrene
rigid foam

200 8 20 21
EPS-12-200 12 21.5
EPS-8-300 300 8 21.5
EPS-12-300 12 22
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2.2 Impact test methods

Various tests are utilized to assess the impact resistance of
layered composite materials. These tests are conducted to
comprehend the material's behavior under different conditions
and to ascertain its performance in the design process. The low-
speed impact test is a method employed to evaluate materials'
resistance to impact. It helps in understanding the material's
behavior under varied conditions, determining its performance
in the design process, and meeting specic application
requirements. In this test, a weight dropped from a certain
height impacts the material, and its behavior is assessed. Fig. 4
depicts the Instron Ceast 9350 instrument used in this test
method.

The Instron/Ceast 9350 Rapid Impact Tester is used to test
a wide range of specimens from composite materials to nished
products in various impact tests such as tensile impact, punc-
ture, Izod and Charpy.

In impact tests, three damage modes usually occur: rebound,
stab and puncture. As seen in Fig. 5, for low energy impacts, the
curve is a parabolic curve. As the applied impact energy
increases, the resulting force also increases, and the maximum
force value is almost constant, as can be seen in the stub and
© 2024 The Author(s). Published by the Royal Society of Chemistry
puncture curves. When the specimen is punctured, the force
should be zero, but due to the friction between the striker and
the specimen, the end of the curve runs parallel to the hori-
zontal axis. Fig. 5 shows the force–displacement curves as
a result of the impact test.55
3. Findings
3.1 Impact test results

Since there are many different production parameters in impact
tests, tests were performed according to ASTM D7136 standard
at a constant energy of 50 joules.56 Production parameters were
compared by considering the force deformation curves as test
results. The specimen dimensions are 100 mm × 100 mm
square. Three specimens from each experiment were tested and
averaged and graphs were drawn.

3.1.1 Effect of layer thickness on impact strength. Fig. 6
shows the force–deformation graph of EPS-8-200 and EPS-12-
200 specimens. The puncture and rebound of the specimens
can be seen in the graph.

Perforation occurred in both the top and bottom layers of the
EPS-8-200 specimen due to impact energy (Fig. 7a). Perforation
RSC Adv., 2024, 14, 13311–13320 | 13313
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Fig. 4 Instron Ceast 9350 instrument.

Fig. 5 Force–displacement curves after impact test.55
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was observed in the top layer of EPS-12-200 specimen. Due to
the energy absorption of the core material, no perforation was
observed in the bottom layer, only trace and rebound occurred
(Fig. 7b). The maximum force at the EPS-8-200 maximum force
13314 | RSC Adv., 2024, 14, 13311–13320
point was observed to be approximately 3650 N. In EPS-12-200,
the maximum force was observed as 5100 N with a deformation
of approximately 19 mm.

Fig. 8 shows the force–deformation graph of EPS-8-300 and
EPS-12-300 specimens. At the end of the impact test, perforation
occurred in the upper layers of both specimens and the defor-
mation of the 8 and 12 layer specimens was approximately 16.5–
13.5 mm, respectively. In addition, no deformation was
observed in the bottom layer of both specimens (Fig. 9a and b)
and rebound occurred in both. At the end of the impact test for
EPS 300 8 and 12 layer specimens, themaximum force value was
close to each other and measured approximately 6800 N.

3.1.2 Effect of ber density on impact strength. When the
force–deformation graph in Fig. 10 is analyzed, it is observed
that the EPS-8-200 specimen was perforated, while the EPS-8-
300 specimen rebounded. A deformation of 16.5 mm occurred
in the EPS-8-300 specimen. In line with the data obtained from
the graph, it was determined that EPS-8-300 specimens showed
better strength than EPS-8-200 specimens.

In the graph in Fig. 11, rebound occurred in both EPS-12-200
and EPS-12-300 specimens. The approximate deformations of
EPS-12-200 and EPS-12-300 specimens were 19 mm and 13.5
mm, respectively. According to the data obtained from the
graph, it was determined that EPS-12-300 specimens showed
better strength than EPS-12-200 specimens.
3.2 Three point bending test results

Three-point bending tests were examined under 2 headings:
layer thickness and ber densities. The specimen dimensions
were 180 × 30 mm in length x width. The feed rate of the device
was selected as 1 mm min−1 according to D 7264/D 7264M-07
standard. In the experiments, an average deformation of
around 30 mm was applied to determine the fracture of the
substrate. Three specimens from each experiment were tested
and averaged and graphs were drawn.57

The reason why the force curves do not decrease to zero at
the end of the experiments is due to the porous structure of the
core layer in between. The decrease at the end of the graph is
due to the tearing of the core structure (EPS) structure (Fig. 12).
At the end of the experiments, no fracture occurred in the lower
layers due to the structure of the core material. For this reason,
the experiments were terminated as soon as deformations
started in the core structure.

3.2.1 Effect of layer thickness on three-point exural
strength. Fig. 13 shows the force–deformation graph of EPS-8-
200 and EPS-12-200 specimens obtained during the three-
point bending test.

When Fig. 14 is examined, the fracture of the EPS-8-200
sample occurred in the upper layer deformation around
12 mm and the maximum force here is around 160 N. In the
EPS-12-200 specimen, fracture occurred around 13 mm and
withstood a force of around 200 N. As a result of the test, EPS-12-
200 specimen gave better results than EPS-8-200.

Fig. 14 shows the force–deformation graph of EPS-8-300 and
EPS-12-300 specimens obtained during the three-point bending
test. In the EPS-8-300 specimen, the rst layer fracture occurred
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Effect of layer thickness on impact strength.

Fig. 7 Impact test results ((a) EPS-8-200, (b) EPS-12-200).
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at a deformation of around 14 mm and the maximum force is
around 255 N. In the EPS-12-300 specimen, the rst layer frac-
ture occurred around 22 mm and withstood a force of around
320 N. As a result of the test, EPS-12-300 specimen gave better
results than EPS-8-300.

3.2.2 Effect of ber density on three-point exural
strength. The graph in Fig. 15 shows the force–deformation graph
of EPS-8-200 and EPS-8-300 specimens obtained during the three-
© 2024 The Author(s). Published by the Royal Society of Chemistry
point bending test. In the EPS-8-200 specimen, the rst layer
fracture occurred at a deformation of around 12 mm and the
maximum force was around 160 N. In the EPS-8-300 specimen,
the rst layer fracture occurred at a deformation of around 14mm
and the maximum force here is around 255 N. As a result of the
test, EPS-12-300 specimen gave better results than EPS-8-300.

When the graph in Fig. 16 is examined, the rst layer fracture
occurred around 12 mm in the EPS-12-200 sample and
RSC Adv., 2024, 14, 13311–13320 | 13315
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Fig. 8 Effect of layer thickness on impact strength.

Fig. 9 Impact test results ((a) EPS-8-300, (b) EPS-12-300).
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withstood a force of around 200 N. In the EPS-12-300 specimen,
the rst layer fracture occurred around 22 mm and withstood
a force of around 320 N. Based on these data, EPS-12-300
specimens gave better results than EPS-12-200 specimens.
13316 | RSC Adv., 2024, 14, 13311–13320
4. Discussion and conclusion

In this study, the mechanical properties of glass ber reinforced
polymer foams were compared. Glass ber 200 g m−2 and 300 g
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 10 Effect of fiber density on impact strength.

Fig. 11 Effect of fiber density on impact strength.

Fig. 12 Compression test view of EPS 8-300 foam core specimen.

Fig. 13 Effect of layer thickness on three-point bending strength.

Fig. 14 Effect of layer thickness on three-point bending strength.
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m−2 were preferred as reinforcement material. EPS foam was
used in the core of the composite materials.

� When comparing the EPS 200 specimens with 8 and 12
layers, perforation was observed in the 8-layer specimens, with
a maximum impact force measured at approximately 3650 N. In
the 12 layers specimens, a force of approximately 5100 N was
measured, resulting in a deformation of approximately 19 mm,
with subsequent rebound.

� When comparing EPS 300 samples with 8 and 12 layers,
rebound occurred in both. In both cases, the maximum impact
© 2024 The Author(s). Published by the Royal Society of Chemistry
force was measured to be approximately 6800 N. The 8-layer
sample experienced a deformation of approximately 16.5 mm,
while the 12-layer samples showed a deformation of approxi-
mately 13.5 mm before rebounding. Based on the data ob-
tained, it has been determined that EPS-12-300 samples are
more durable than EPS-8-300 samples.

� In the three-point bending tests, 300 g m−2 force curves
showed decreases and increases. This is thought to be due to
the fact that the fabric is thicker due to its density and therefore
the layers are more brittle.

� At the end of the three-point bending test, deformation
could not occur in the lower ber layers. This is due to the
energy absorption of the foam layers.
RSC Adv., 2024, 14, 13311–13320 | 13317
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Fig. 15 Effect of fiber density on three-point bending strength.

Fig. 16 Effect of fiber density on three-point bending strength.
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� Similar results were obtained in three-point bending tests
as in impact tests. The 12-layer specimens had higher strengths
than the 8-layer specimens.

� In three-point bending tests, composite specimens with
300 g m−2

ber layer performed better than specimens with
200 g m−2

ber layer.
As a result of the study, as evident from the literature review,

it has been observed that EPS core material nds extensive
usage in automotive sector bumper applications, construction
sector, and sports equipment. Similarly, it is believed that it can
be employed in various applications across space, air, sea, and
land vehicles.
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