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hard segments content on the
properties of electrospun aliphatic poly(carbonate-
urethane-urea)s†

Karolina Rolińska, abc Hadi Bakhshi, d Maria Balk,e Paweł Parzuchowskia

and Magdalena Mazurek-Budzyńska *a

The study investigated the impact of hard segments (HS) content on the morphology and

thermomechanical properties of electrospun aliphatic poly(carbonate-urea-urethane)s (PCUUs). The

obtained nonwovens exhibited surface porosity ranging from 50% to 57%, and fiber diameters between

0.59 and 0.71 mm. Notably, the PCUUs nonwovens with the highest HS content (18%) displayed superior

mechanical properties compared to those with lower HS contents. This study highlights the ability to

customize the properties of polymeric nonwovens based on their chemical compositions, offering

tailored solutions for specific application needs.
1. Introduction

The soaring demand and pervasive acclaim for polyurethanes
(PUs) are rooted in their extraordinary physical and mechanical
attributes, encompassing unmatched resilience, exibility, and
resistance to abrasion. These versatile materials play a pivotal
role in shaping not only exible and rigid foams, but also nd
applications in adhesives, elastomers, bers, gaskets, and high-
performance coatings.1–3

Conventional PUs are typically synthesized using poly-
isocyanates, polyols, and chain extenders. PUs typically occur in
the form of multi-block copolymers, where distinct phases
occur due to the presence of two types of segments within the
chains: rigid (hard) and elastic (so). The so segments,
primarily composed of linear polyols, contrast with the rigid
segments formed by derivatives of isocyanate groups and chain
extenders. The materials' properties hinge on the molecular
conguration of these segments and their relative molar ratios.

The versatile nature of PUs arises from the ability to tailor
their properties by carefully selecting the reacting components.
Polyester diols, when used as so segments in PUs, contribute
to polymers with commendable physical properties. However,
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these formulations are prone to hydrolytic degradation due to
the susceptibility of ester linkages to hydrolysis.4 In contrast,
PUs based on polyether diols offer enhanced resistance to
hydrolysis, making them preferable in applications where
hydrolytic stability is crucial. Nonetheless, poly(ether-urethane)
s are susceptible to oxidation processes. To address these
drawbacks, a promising solution involves replacing the poly-
ester or polyether segments with polycarbonate counterparts.5,6

This strategic substitution not only overcomes the susceptibility
to hydrolytic degradation seen in poly(ester-urethane)s but also
mitigates the oxidation vulnerability observed in poly(ether-
urethane)s.7 These attributes make poly(carbonate-urethane)s
(PCUs) highly desirable as biomaterials for enduring long-
lasting implantation applications, such as in the spine, as
meniscus implants, or as components for articial hearts.8–14

PCUs stand out not only for their exceptional mechanical
and biological properties but also for being an environmentally
friendly starting material. The conventional method of
production of PCUs utilizes so segment precursors known as
oligocarbonate diols (OCDs). OCDs can be obtained from
dimethyl carbonate (DMC) at a low reaction temperature,
specically at the boiling point of the DMC/methanol azeotrope
(64 °C).15,16 This approach offers the added benet of conduct-
ing the reaction without the need for additional organic
solvents. The incorporation of carbon dioxide in the synthesis
of OCDs enhances their environmental credentials, positioning
them as environmentally friendly “green starting materials.”

Electrospinning (ES) is one of the methods, which enables the
creation of brous structures similar to the natural extracellular
matrix.17 The application of the ES technique for manufacturing
bers compared to traditional spinning methods is distin-
guished by the smaller diameter of the obtained bers. ES allows
obtaining uniform bers in the diameter range in micro- and
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d4ra01726a&domain=pdf&date_stamp=2024-05-15
http://orcid.org/0000-0002-4357-0260
http://orcid.org/0000-0002-1272-8942
http://orcid.org/0000-0002-7292-7409
https://doi.org/10.1039/d4ra01726a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra01726a
https://pubs.rsc.org/en/journals/journal/RA
https://pubs.rsc.org/en/journals/journal/RA?issueid=RA014022


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

/1
9/

20
26

 7
:2

3:
31

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
nanometers.18 Electrospun nonwovens are oen used as dressing
materials due to their good barrier properties and oxygen
permeability.19–22 PUs are oen employed to produce nanobers
due to their chemical stability and excellent ber-forming prop-
erties.23 PU nonwovens have been applied in e.g. high-efficiency
air lters, protective textiles, dressing materials, sensors, and
drug carriers.20–22 PCU bers can also be obtained using the ES
technique,24,25 especially for application in tissue engineering.26

For example, PCU nonwovens have been used for fabricating
vascular gras (VGs).27–31 Recently, a green chemistry approach
was utilized to obtain high-molecular-weight non-isocyanate
polyurethanes (NIPUs) based on polycarbonate diols, which can
be processed by ES process and have shown good adhesion of
broblasts and epithelial cells.32 A polyhedral oligomeric silses-
quioxane poly(carbonate-urea-urethane) (POSS–PCUU) was also
utilized in the ES process and provided appropriate surface and
mechanical properties for the fabrication of small-diameter
vascular gras with a single-layer endothelial barrier at the
luminal surface.33–35 Furthermore, a PCUU called MyoLink™ was
reported to be a good candidate for tissue engineering
purposes.36–41

Recently, we have focused on the potential use of PCUU in
the tissue engineering eld. In a previous study42 we analyzed
the chemical composition of PCUUs and selected the soluble
polymer structures. Furthermore, we investigated the inuence
of the ES solution concentration on the thermal, mechanical,
and biological properties of electrospun PCUU nonwovens.43

Here, we have investigated the effect of the PCUU structure, i.e.
hard segments (HS) content, on the morphology and thermo-
mechanical parameters of the obtained PCUU nonwovens.
2. Experimental
2.1. Materials

Tetrahydrofuran (THF, purity $ 99%) and N,N-dimethylforma-
mide, (DMF, purity $ 99%) were purchased from POCH (Gli-
wice, Poland). Isophorone diisocyanate (IPDI, purity $ 98%)
was purchased from Sigma-Aldrich (Poznań, Poland). Materials
were used without any further purication. Oligo(deca-
methylene carbonate)diol (OCD) was synthesized according to
the literature42 The detailed procedure for the synthesis of OCD
is provided in ESI.† The synthesized OCD was characterized
using 1H NMR and FTIR spectroscopy (Fig. S1 and S2 in ESI†).
The molecular weight (Mn) of OCD determined from the 1H
NMR spectrum was equal to 3000 g mol−1.
Table 1 The molecular weight of PCUUs determined by means of
GPC

Sample HS (wt%) Mn (g mol−1) Mw (g mol−1) DI

PCUU_3.0 18 � 1 23 600 2 008 000 85.3
PCUU_2.5 15 � 1 56 300 1 674 000 29.7
PCUU_2.0 13 � 1 43 800 2 665 000 60.9
PCUU_1.5 10 � 1 64 600 1 169 000 18.1
2.2. Synthesis of PCUUs

The synthesis of PCUUs was performed according to the prepol-
ymer method; in the rst step, carbonate–urethane prepolymers
were synthesized and in the second step, further chain-extended
with water. The carbonate–urethane prepolymers were obtained
accordingly: a total of 20.00 ± 0.15 g of OCD was placed in the
reaction ask equipped with a thermometer and mechanical
stirrer, and it was dried under reduced pressure at 90 °C for 1.5 h.
Aerwards, IPDI was added in various molar ratios relative to OCD
(OCD/IPDI: 1/1.5, 1/2, 1/2.5, and 1/3) and the reaction was
© 2024 The Author(s). Published by the Royal Society of Chemistry
continued at 80 °C without solvent or catalyst (Table S1 in ESI†).15

The synthesized carbonate–urethane prepolymers were character-
ized through FTIR spectroscopy (Fig. S3–S6 in ESI†).

The chain-extension reaction of the carbonate–urethane
prepolymers with water vapor was performed in an open glass
mold (10 cm × 10 cm) placed in a climatic chamber at 75 °C
and 5% relative humidity for 1 day, then at 70 °C and 10%
relative humidity for a further 4 days, and continuing at 60 °C
and 40% relative humidity for 2 days. These reaction conditions
were optimized to minimize the gelation/crosslinking
phenomenon. The progress of the chain-extension reaction
was controlled through FTIR spectroscopy to observe the
disappearance of the peak of the isocyanate (NCO) group at
2260 cm−1. Filtration trials to remove the possibly generated
gel/crosslinked parts were not successful and the obtained
PCUUs were used without further purication. The synthesized
PCUUs were named accordingly: PCUU_X where X means the
molar ratio of IPDI to OCD used for the synthesis. For example,
PCUU_1.5 means that the PCUU was obtained from OCD and
IPDI in the molar ratio of 1/1.5.

The synthesized PCUUs were characterized through 1H NMR
and FTIR spectroscopy (Fig. S7–S15 in ESI†). The molecular
weights of synthesized PCUUs were determined by means of
GPC (Table 1 and Fig. S16–S19 in ESI†).
2.3. ES process

PCUUs were dissolved in DMF/THF mixture (50/50, wt/wt) at
a concentration of 4 wt% at room temperature by stirring for
72 h. The ES process was performed in the laboratory spinning
unit equipped with a drum collector (MTI Corporation, model:
MSK-ESDC-80-4000) with dimensions of 80 × 200 mm with
a speed controller. The rotational speed of the drum collector
was 150 rpm. The distance from the collector to the nozzle was
20 cm. Each solution was placed in a 20 ml syringe and elec-
trospun on the collector (covered with aluminum foil) through
a 22 G needle with a 0.41 mm inner diameter. The power supply
was set up for a positive voltage of 18 kV. The ow rate of the
solution was set up on the syringe pump at 1.5 ml h−1. The
relative humidity and temperature values at the time of the
experiments ranged from 40 to 52% and from 24 to 27 °C,
respectively. The obtained nonwovens were named accordingly:
N_X where X means the molar excess of the IPDI used for the
synthesis of PCUUs. For example, N_1.5 means that the elec-
trospun mat was obtained from 4 wt% solution of PCUU
synthesized using OCD (Mn = 3000 g mol−1) and IPDI in the
molar ratio of 1/1.5.
RSC Adv., 2024, 14, 15766–15775 | 15767
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Scheme 1 The synthesis of PCUUs; (a) synthesis of carbonate–
urethane prepolymer and its' hydrolysis, (b) formation of urea bonds in
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2.4. Instruments and methods
1H-NMR spectra were recorded at 298 K on a Varian VXR 400
MHz Spectrometer (Palo Alto, CA, USA) using tetramethylsilane
as an internal reference and CDCl3 as a solvent and were
analyzed with MestReNova v.6.2.0-7238 (Mestrelab Research
S.L) soware. The error of the method was estimated based on
the error of the integral peak area (around 5%).

ATR-FTIR spectra were recorded on a Thermo Scientic
Nicolet iS5 FTIR spectrometer using an ATR iD7 accessory. 32
scans were recorded for each sample.

The gel permeation chromatography (GPC)measurements were
performed using a Malvern ViscotekGPCMax TDA 305 apparatus,
equipped with a Jordi Labs DVD Mixed Bed column of 30 cm long
and with an internal diameter of 7.8 mm. The apparatus had four
detectors: refractometric, light scattering, viscometric, and UV-
PDA. The measurement was carried out at a temperature of 30 °
C and with an eluent ow (DCM) of 1mlmin−1. The apparatus was
calibrated using sharp PS standards. Approximately 2–3 mg of the
solid sample was dissolved in 1.5 ml of DCM with the addition of
1% vol. CHCl3. Aer complete dissolution, the solutions were
passed through a syringe lter with a 0.2 mm PTFE membrane.

The surface morphology of nonwovens was investigated by
SEM measurements, where samples were cut using sharp razor
blades and stuck on specic holders with conductive adhesive.
The samples were sputtered with gold achieving a thickness of
5 nm. Samples were then investigated with a desktop-SEM
Phenom G2 from PhenomWorld (LOT-Oriel Group Europe,
Darmstadt, Germany). To investigate the cross-section, samples
were moistened with isopropanol, cooled with liquid nitrogen,
broken by a blade, and stuck on specic holders with conduc-
tive adhesive. The samples were sputtered with iridium
achieving a thickness of 4 nm and were investigated with a SEM
Supra 40VP (Carl Zeiss Company, Oberkochen, Germany).

The average ber diameter and surface porosity of the elec-
trospun samples was calculated from SEM images of the top
sides at a magnication of 5000 and 500 using ImageJ soware
(version 1.52p). The reported values were calculated based on
three batches of electrospun nonwovens.

Differential scanning calorimetry (DSC) was performed on
Netzsch DSC 204 (Netzsch Ltd Selb. Germany) in sealed Al-pans
under N2-atmosphere between−70 and 150 °C with heating and
cooling rates of 10 °C min−1.

Wide angle X-ray scattering (WAXS) measurements were con-
ducted at ambient temperature in transmission geometry utilizing
the X-ray diffraction system Bruker D8 Discover (generator oper-
ated at 40 kV and 40 mA) with a two-dimensional detector from
Bruker AXS (Karlsruhe. Germany). The X-ray beam (Cu-Ka1-radi-
ation. l = 0.154 nm) was provided by a graphite monochromator
and a pinhole collimator with an opening of 0.8 mm. Sample-to-
detector distance was 15 cm applying an irradiation time of 120
seconds. Integration of the 2-D intensities gave linear intensity
curves I (2q). Crystallinity values were calculated as an average of
three individual ts of the scattering curve with Pearson 7 func-
tions utilizing TOPAS(R) soware from Bruker AXS.

Dynamic mechanical thermal analysis (DMTA) measure-
ments were performed on Eplexor 25 N (Gabo. Ahlden.
15768 | RSC Adv., 2024, 14, 15766–15775
Germany) equipped with a 25 N load cell using the standard
type test specimen (DIN EN ISO 527-2/1BB). The applied oscil-
lation frequency was 1 Hz. The measurements were performed
in the temperature sweep mode from −100 to 150 °C with
a constant heating rate of 3 °C min−1.

Tensile tests were conducted with standard samples (ISO
527-2/1BB) cut from mats on a tensile tester Z75 (Zwick, Ulm,
Germany) equipped with thermo-chamber (Mytron Bio-und
Solartechnik, Heilbad Heiligenstadt, Germany), temperature
controller Eurotherm control 2408 (Eurotherm Regler, Limburg,
Germany), and load cells suitable to determinemaximum forces
of 200 N (Zwick, Ulm, Germany). The strain rate in the uniaxial
tensile test was 10 mm min−1. The average value of the tensile
strength (s), elongation at break (3), and Young's modulus (E)
for each type of material were determined from ve specimens.
Measurements were performed at room temperature and 37 °C.
3. Results and discussion
3.1. Synthesis and ES of PCUUs

The primary objective of this study was to investigate the
applicability of PCUUs for the ES process and to assess the
resulting nonwovens. Our focus was on evaluating how
PCUU.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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variations of HS content in PCUUs could inuence the proper-
ties of the corresponding nonwovens. PCUUs were obtained
using OCD as polyol according to the prepolymer method based
on IPDI and water as a chain-extension precursor (Scheme
1).6,44–47 Four various molar ratios of OCD/IPDI were used (1/1.5,
1/2, 1/2.5, and 1/3).42 The reaction was carried out without
solvent or catalyst. The obtained isocyanate prepolymers were
poured into an open glass mold (10 cm × 10 cm) and placed in
a climatic chamber, in which the chain-extension reaction
proceeded under controlled conditions of humidity (5–40%)
and temperature (60–70 °C). Water vapors were used to hydro-
lyze the isocyanate to amine groups (Scheme 1a). Following
reaction of the amine with diisocyanate groups resulted in
polymer chain-extension whereby urea groups were formed
(Scheme 1b). Importantly, the reaction rate constant for the
hydrolysis of isocyanate groups (k1) is much slower than reac-
tion rate constant for the urea formation (k2). Therefore, stoi-
chiometry of the reaction is controlled and chain-extension
progress is provided.

The chain-extension reaction conditions were optimized to
minimize the gelation/crosslinking phenomenon. More details
about this procedure can be found in ref. 42. Crosslinking can
occur through the reaction of isocyanate groups with either
urethane or urea bonds, resulting in allophanate and biuret
groups, respectively, which are possible in the presence of
catalysts and at temperatures higher than 90 °C. Filtration trials
to remove the possibly generated gel/crosslinked parts were not
Fig. 1 1H NMR (CDCl3, 400 MHz) spectra of N_1.5.

© 2024 The Author(s). Published by the Royal Society of Chemistry
successful and the obtained PCUUs were used without further
purication.

The progress of the chain-extension reaction was controlled
by means of the FTIR spectroscopy and carried out until the
disappearance of the signal assigned to stretching vibration of
NCO groups at 2260 cm−1. The amounts of reagents used are
summarized in Table S1 in ESI.† 1H NMR spectra of the ob-
tained PCUUs are shown in Fig. S7–S10 in ESI.† FTIR spectra of
the obtained PCUUs are shown in Fig. S11–S15 in ESI.† The
molecular weights of the PCUUs were determined using GPC
(Table 1 and Fig. S16–S19 in ESI†).

Electrospun nonwovens were also characterized by means of
FTIR (Fig. S20 in ESI†) and NMR spectroscopy (Fig. 1). Content
of HS in PCUUs is relatively low (10–18%), therefore signals
originating from urethane at 7.0–8.0 pm (‘a’) and of urea groups
at 4.5–5.0 ppm (‘b’) in 1H NMR spectra have very low intensity in
comparison to signals originating from so segments and are
too small for complex analysis and interpretation. However, due
to two types of amine groups in the IPDI structure, two types of
signals originating from urethane and urea groups in PCUU are
visible in spectra. The characteristic signals for CH2–OC(O)O in
the direct connection with carbonate group were observed at
4.1 ppm (signals ‘c’) and at 4.0 ppm (signals ‘d’) CH2–O(O)C–
NH- proton connected with urethane group are present. At 3.8–
3.6 ppm (signals ‘e’) signals of protons of CH2–NH–C(O)O- in
the direct connection with of urethane group, and at around
3.0 ppm (signals ‘f’) CH2- in the direct connection with –NH– in
the urea group were detected.
RSC Adv., 2024, 14, 15766–15775 | 15769
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Fig. 2 SEM micrographs of the surface (left) and cross-section (middle and right) of PCUU nonwovens.

Table 2 The morphological properties of PCUU nonwovens deter-
mined by SEM

Sample
Average ber
diameter (mm) Surface porosity (%)

N_3.0 0.50 � 0.09 57.4 � 1.5
N_2.5 0.59 � 0.08 54.1 � 1.1
N_2.0 0.60 � 0.16 55.0 � 6.7
N_1.5 0.71 � 0.18 50.4 � 2.8
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3.2. Morphology of PCUU nonwovens

Morphology is one of the most essential components charac-
terizing electrospun nonwovens. It depends on many factors,
such as the polymer and solvent types as well as ES process
parameters. The SEM micrographs for electrospun PCUU
nonwovens are collected in Fig. 2. The average ber diameter
and surface porosity extracted from SEM micrographs are pre-
sented in Table 2. Based on the results, it can be concluded that
the synthesized PCUUs are electrospinnable and can be used to
obtain uniform bers. However, in the case of N_1.5 and N_2.0,
surface irregularities in bers were observed. We observed some
crosslinked parts in the corresponding PCUU solutions. These
crosslinked parts can result in fragments within bers with
15770 | RSC Adv., 2024, 14, 15766–15775
bigger diameters. It is worth mentioning that due to the same
reason, N_1.5 and N_2.0 presented higher standard deviation
values for the average ber diameter (Table 2).

The diameters of the bers increased with the decrease in HS
content and were 0.50 ± 0.09 in the case of N_3.0 and 0.71 ±

0.18 mm in the case of N_1.5 (Table 2). Moreover, the surface
porosity of the nonwovens decreased with the increase of the
ber diameter from 57.4 ± 1.5% in the case of N_3.0 to 50.4 ±

2.8% in the case of N_1.5. The ber diameter could be affected
by the molecular weight of PCCUs. We have observed that in the
case of the highest Mn of the PCUU, the average ber diameter
was the largest. This phenomenon follows the general rule that
high molecular weight polymers give more viscose solutions,
slower jetting, and consequently bers with larger average
diameters.48,49 Dong et al. reported that the average diameter of
the electrospun PS bers increased with increasing polymer
molecular weight.50 Similarly, it was shown that the measured
ber diameter of PVA not only increased across polymer
concentrations but also with the increase to the higher molec-
ular weight.51 In the case of N_2.0 and N_2.5 the values of ber
diameter and surface porosity were similar. However, N_2.0 was
characterized by an inhomogeneous structure with very big
pores/holes (Fig. 2). We observed some crosslinked parts in the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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corresponding PCUU_2.0 solution, which may be attributed to
this phenomenon.
3.3. Crystallinity of PCUU nonwovens

The WAXS analysis was performed to assess the impact of
varying IPDI excess on PCUU structures. This analysis is
particularly complex in the context of electrospun nonwovens
due to several key factors. ES processes yield intricate brous
structures, where the arrangement of polymer chains plays
a pivotal role. Additionally, WAXS can serve as a critical tool to
ensure the consistency and quality of the electrospun nonwo-
vens by conrming whether the desired structural properties
have been achieved. Moreover, understanding the structural
characteristics through WAXS analysis enables researchers to
establish essential correlations between the structure and
properties of electrospun nonwovens, which is vital for opti-
mizing their performance in various applications.

There was no signicant difference in the WAXS patterns
among different IPDI excess levels in the PCUU structures
(Fig. S21 in ESI†). Signals observed in WAXS spectra were
assigned only to crystalline phase of so segments (OCDs). The
average degree of crystallinity (DOC) was 28.4 ± 0.8% and 29.0
± 0.2% for N_3.0 and N_1.5, respectively, whereas the average
crystals size (lc) for N_3.0 and N_1.5 was 9.1± 0.2 nm and 14.4±
0.1 nm, respectively (Fig. 3, Table S3 in ESI†). The results
suggest that higher IPDI excesses tend to yield less crystalline
structures of OCDs, implying that increased IPDI content leads
Table 3 Thermal properties of the soft segments of PCUU nonwovens

Sample

1st run 2nd ru

Tm,1st (°C) DHm,1st (J g
−1) Tm,2nd

N_3.0 49 � 1 52 � 1 42 � 1
N_2.5 48 � 1 57 � 1 45 � 1
N_2.0 46 � 1 62 � 1 45 � 1
N_1.5 47 � 1 63 � 1 49 � 1

Fig. 3 Average degree of crystallinity and average crystal size of PCUU
nonwovens determined by WAXS.

© 2024 The Author(s). Published by the Royal Society of Chemistry
to the formation of less ordered and more amorphous polymer
chains, which is a consequence of asymmetric structure of IPDI,
which hinders the regular structure of PCUUs. The same
conclusion can be stated based on DSC results (Table 3). With
the increase of the HS content in PCUUs, melting enthalpy
(DHm) decreased, which is correlated with an decrease of crys-
talline phase of nonwovens.
3.4. Thermal properties of PCUU nonwovens

DSC was employed to investigate the thermal properties of
electrospun of PCUU nonwovens, including melting (Tm) and
crystallization (Tc) temperatures, and related enthalpies (DHm

and DHc). DSC analysis allows to characterize the thermal
stability of material and its response to temperature changes,
which is essential for determining their suitability for various
processing and application conditions. Additionally, DSC
provides valuable data on the impact of HS content on the
thermal behavior of material, facilitating material design and
selection. The results clearly demonstrated a pronounced
correlation between the Tc and Tm values and the HS content
within the PCUU structures – both, the Tc and Tm values (from
the second heating curve in DSC) decreased with increasing the
HS content of PCCU nonwovens (Table 3, and Fig. S22–S25†).
The highest Tc of 12 °C was observed for N_1.5, with the lowest
HS content among the PCUUs. It is related to the highest
content of easily crystallizable oligo(decamethylene carbonate)
s, which constitutes the so segments. Additionally, most of the
nonwovens exhibited elevated Tm,1st values (from the rst
heating curve in DSC) compared to Tm,2nd values (from the
second heating curve in DSC), attributed to an increased
proportion of the crystalline phase generated in the course of
the ES process. For example, in the case of N_3.0 Tm,1st of 42 °C
was observed, while for N_3.0 Tm,2nd took a value of 49 °C (Table
3). The stretching process between the needle and collector
leads to the alignment of the polymer chains, consequently,
resulting in an increase of the crystalline phase content (strain-
induced crystallization).52 Therefore, also signicantly higher
values of DHm,1st in comparison to DHm,2nd were observed for
example in case of N_3.0 from 23 to 53 (J g−1).

Similarly, to the cast specimens, determining the glass
transition temperature (Tg) for nonwovens using conventional
DSC was challenging.42 Hence, DMTA was employed for deter-
mining Tg of PCUU nonwovens (Fig. 4 and Table 4), due to its
enhanced sensitivity to changes occurring during the glass
transition compared to DSC, wherein the aforementioned
thermal transition remained undetected. The Tg values
determined by DSC

n

Tc (°C) DHc (J g
−1)(°C) DHm,2nd (J g−1)

23 � 1 −9 � 1 23 � 1
26 � 1 −1 � 1 28 � 1
25 � 1 −2 � 1 24 � 1
43 � 1 13 � 1 40 � 1

RSC Adv., 2024, 14, 15766–15775 | 15771
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Fig. 4 The storage modulus (a) and tan d (b) as a function of temperature for PCUU nonwovens determined by DMTA.
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determined from tan d ranged between −11 and−16 °C with no
clear trend. When determined by the storage modulus (E0),
similar Tg values (within the margin of error) ranging between
−12 °C and −15 °C were obtained. The Tm could only be
determined for N_3.0 as other nonwovens broke during the
heating procedure. The obtained Tm of so segments (50 °C)
was similar to the determined value by DSC (49 °C). Interest-
ingly, nonwovens with lower HS content broke during the
heating procedure related to the melting of so segments,
Fig. 5 Mechanical properties of PCCU nonwovens at (a) RT and (b) 37 °

Table 4 Thermal properties of PCUU nonwovens determined by
DMTAa

Sample
Tg (°C)
from tan d

Tg (°C)
from E0

Tm (°C)
from E0

N_3.0 −14 � 1 −13 � 1 50 � 1
N_2.5 −16 � 1 −15 � 1 n.d.
N_2.0 −11 � 1 −12 � 1 n.d.
N_1.5 −14 � 1 −14 � 1 n.d.

a n.d. – not detected. Tm could not be detected as the sample broke
during heating.

15772 | RSC Adv., 2024, 14, 15766–15775
which indicates that N_3.0 obtained by 3 fold molar excess of
IPDI was physically crosslinked by the high content of urea and
urethane units. This could be also conrmed by the highest
mechanical strength, and more than 10 times higher storage
modulus of N_3.0 in comparison to other investigated
nonwovens.

3.5. Mechanical properties of PCUU nonwovens

Mechanical analysis of electrospun PCUU nonwovens was
conducted to assess their physical properties, such as strength,
exibility, and temperature-dependent behavior, providing
critical insights into their suitability for specic applications.
Performed analysis helps in understanding how HS content
impacts the mechanical performance of the PCUUs.

The analysis of mechanical properties (Fig. 5 and Table S4 in
ESI†) conducted at room temperature (RT) revealed that the
elongation at break increased with the higher IPDI content.
Furthermore, an increase in tensile strength and Young's
modulus (E) is a result of the higher content of rigid cycloali-
phatic groups of hard segments and physical crosslinking
among them.
C.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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At 37 °C, values of tensile strength and Young's modulus are
lower than at RT, which is related most probably to partial
melting of the so segments (OCD), as well as lower or lack of
inter-hydrogen bonding between polymer chains. Furthermore,
signicantly lower mechanical properties of N_2.0 were
observed and most probably related to the inhomogeneous
structure (morphology) of nonwoven, which contained very big
pours between bers (visible by SEM, Fig. 2). Surprisingly, N_1.5
at both temperatures has shown relatively high tensile strength.
This could be assigned to the high amount of crystalline phase,
which is a result of the high content of easily crystallizable so
segments and higher regularity in the polymer structure resul-
ted from the lower content of asymmetric IPDI.

4. Conclusions

In the presented study we have investigated the inuence of HS
content on the morphology, thermal, and mechanical proper-
ties of electrospun PCUUs. Obtained nonwovens were charac-
terized by a surface porosity in the range of 50 to 57% and a ber
diameter in the range of 0.59 to 0.71 mm. The sample with the
highest content of HS (N_3.0) was characterized by higher
mechanical properties in comparison to other samples.
Furthermore, the highest analyzed content of HS (urea and
urethane bonds) caused physical crosslinking, conrmed by the
DMTAmeasurement. We have shown that depending on the HS
content, various properties can be achieved, which can be
adjusted to the specic and application-related needs.
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