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Carbon-based perovskite solar cells (PSCs) have emerged as a hopeful alternative in the realm of photovoltaics.
They are considered promising due to their affordability, remarkable durability in humid environments, and
impressive electrical conductivity. One approach to address the cost issue is to use affordable counter
electrodes in PSCs that do not require organic hole transport materials (HTMs). This study utilized an
innovative and economical method to create NiO,/PANI nanocomposites. Later, these nanoparticles were
integrated into a carbon paste to act as an HTM. This incorporation is intended to optimize charge
extraction, improve interfacial contact, align energy levels, reduce energy loss, minimize charge
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Accepted 13th April 2024 recombination, and protect the perovskite (FAPbIz) surface from degradation. The optoelectronic properties
of these devices were investigated, and all cells showed improved efficiency compared to control cells. The

DOI- 10.1039/04ra01287a NiO,/PANI doped carbon (NiO,/PANI+CE) exhibited excellent performance due to strong hole conductivity,
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1. Introduction

Photovoltaic devices are recognized as an innovative energy source.
Current solar cell generations that utilize solution-based methods,
such as organic, dye-sensitized, quantum dot, and perovskite-
based technologies,'* have made significant advances in recent
years compared to traditional silicon- and thin-film-based solar
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well-aligned energy levels, and the formation of stepwise band alignment at the perovskite interface.

cells.>® Metal halide perovskite solar cells have been extensively
studied, have shown considerable performance improvements,
and are the subject of further commercial investigation.”®

Perovskite solar cells are recognized for their usefulness and
efficiency.” Organic components such as spiro-OMeTAD, PTAA,
and PCBM have been utilized for electron and hole transport in
PSCs.'” However, these materials have significant limitations,
including complex and expensive synthesis, possible low
mobility, poor crystallinity, and possible degradation due to
environmental factors. Therefore, there is a great desire to
replace these with nanocomposites.'>*?

Although major efforts have been made to improve the effi-
ciency of PSCs, concerns remain about their cost and the need
for high-temperature processing, which may hinder their
widespread use. The high cost is due to the complex synthesis
process and strict purity requirements of organic hole transport
materials (OHTMs) such as spiro-OMeTAD and PTAA, as well as
the use of noble metal electrodes such as gold and silver.”
Additionally, high-temperature annealing steps increase
production costs and energy consumption, especially in meso-
scopic devices. The use of OHTMs-free PSCs and low-cost
counter electrodes containing nickel and carbon is one tactic
to overcome these problems.**® This approach has the poten-
tial to reduce costs and simplify the manufacturing process.
Among the various inorganic materials used for charge trans-
port, NiO, stands out as a very affordable and abundant p-type
semiconductor. Its properties include a wide bandgap, high
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hole mobility, strong thermal and chemical stability, and good
energy compatibility with carbon materials and perovskites.'”**
Moreover, the incorporation of NiO, NPs into carbon elec-
trodes, such as single-walled carbon nanotubes or graphite/
carbon black, effectively promoted the extraction of holes
between the perovskite layer and the back electrode.® Addi-
tionally, the use of two-dimensional carbon materials in PSC
structures may lead to unwanted charge recombination through
poor layer-to-layer contact.*® To maximize the benefits, one
effective approach is to react carbon nanomaterials with
a polymer material, forming composites.>® These composites
exhibit a synergistic effect between the nanofillers and polymer,
resulting in boosted properties under various conditions.
Currently, the primary focus on regulating the performance of
carbon electrodes for PSCs has centered around the selection of
graphite and carbon black. Limited research has been conducted
to explore the enhancement of their photovoltaic properties
through surface treatment. Various tactics including doping
p-type nanoparticles (NPs), bilayer engineering, and material
processing might increase efficiency.”*>* Additionally, a key
factor in achieving high conductivity and sufficient porosity for
precursor infiltration is proper sintering.>** The cathode layer's
conductivity and hole extraction are successfully increased by the
p-type nanostructured additives (such as NiO, CuS, CuSCN, and
Cul) with comparatively high hole mobility.>>**>** The introduc-
tion of surface B doping and bulk P doping may endow high
charge carrier mobility. Recent studies have shown that the role
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of NiO, nanoparticles.
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of P atoms could enhance n-type behavior and B atoms could
promote hole extraction.””** The main function of doping is to
lower or raise the Fermi level of carbon via the addition of donors
or acceptors, respectively.” In addition, the heteroatom doping-
induced charge redistribution, regardless of a higher (such as N)
or lower (such as B, P) electronegativity than that of carbon,
could break electroneutrality and enhance the conductivity of
carbon.”**® In the perovskite layer, carbon-polymer nano-
composites can play various roles. As an example, Rajamanickam
et al. reported depositing a graphene-PANI composite on top of
the CH;NH;PbI; layer to protect it from degradation.*

In this study, we introduce a novel method for constructing
a carbon electrode by integrating a NiO,/PANI nanocomposite onto
the carbon surface using in situ polymerization. This structural
modification enhances conductivity and improves the contact
characteristics with the perovskite, resulting in a carbon electrode
system with a strong ability to collect holes. The outcomes
demonstrate significant advancements in photovoltaic parameters,
leading to an increase in the power conversion efficiency (PCE)
from 14.46% (control devices) to 18.30%. Notably, the modified
carbon electrode also significantly enhances the PSCs' stability.
These findings highlight a promising method for enhancing the
optoelectrical properties of carbon electrodes in PSCs.
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(a) XRD patterns of different materials. (b) FTIR spectra and (c) UV-Vis spectra of PANI, NiO,, and NiO,/PANI (3 : 7) materials. (d) TEM image
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2. Results

Fig. 1a depicts the XRD patterns of PANI, NiO, nanoparticles,
and NiO,/PANI (3 : 7 mass/mass). In the range of 26 from 20 to
70°, PANI exhibits a broad peak at 25.2°, corresponding to the
(322) lattice plane.* NiO, nanoparticles with a cubic structure
show diffraction peaks at 37.40° (111), 43.44° (200), and 63.01°
(220).* In Fig. S1 and S2,} the XRD patterns of the NiO,/PANI
[1:9 (mass/mass)] suggest that the intensity of the peaks of
nickel nanoparticles is intense, while the peaks of PANI are seen
with very low intensity in the composite. The characteristic
peaks of NiO, shift to higher angles in the XRD pattern of the
NiO,/PANI (3 : 7) due to the interaction of PANI chains and NiO,
nanoparticles. Fig. 1b depicts the FTIR spectra of PANI, NiO,,
and NiO,/PANI (3 : 7) materials.

In the FTIR spectra of NiO,, the main characteristic peaks
were found at 564, 656, and 1110 cm ™', assigned to the vibra-
tion mode of the Ni-O band.*® The strong peaks observed in the
range of 1100-1600 cm ™" in the FTIR spectra of PANI can be
correlated to the quinonoid and benzenoid vibrational bands.
Specifically, the main peaks at 1584 cm ' and 1497 cm '
correspond to the C=N and C=C stretching vibration modes,

respectively. Additionally, the peaks around 1170 cm ™' are
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linked to the C-N benzenoid ring stretching mode.**** When
comparing the FTIR spectra of NiO,/PANI materials to those of
PANI and NiO, individually, some noticeable changes can be
observed. Firstly, there is a small shift in the wavenumber of the
peaks, indicating a modification in the molecular structure.
Secondly, the intensity of the peaks also changes, suggesting
alterations in the bonding environment. For the nano-
composites NiO,/PANI, the peaks detected at 1620 cm™ " and
1520 cm™ " can be attributed to the C=N and C=C vibration
modes of for various weight ratios of the nanocomposites,
indicating the presence of both quinonoid and benzenoid units.
Furthermore, the peak around 1147 cm ™ is associated with the
C-N stretching mode of the benzenoid ring.*”** An interesting
observation is the appearance of bands at 573 and 1106 cm ™,
which can be attributed to the presence of NiO, in the nano-
composite. This indicates a strong interaction between the PANI
molecules and the NiO, NPs. Hence, it can be concluded that
there are significant reactions between NiO, and PANI mate-
rials, leading to the formation of NiO,/PANI within the PANI
matrix. Fig. 1c shows the absorbance spectra of PANI, NiO,, and
NiO,/PANI. As shown, the PANI sample has a characteristic peak
at 377 nm and the NiO, sample has a peak at 332 nm. In the
absorbance spectra of NiO,/PANI material, a peak around

SEM MAG: 135 kx
Det: SE
Date(m/dly): 01/02/24

WD: 5.99 mm
SEM HV: 15.0 kV

MIRA3 TESCAN|

|
200 nm

SEM MAG: 135 kx
Det: SE
Date(m/dly): 01/02/24

'WD: 5.68 mm | MIRA3 TESCAN|

SEM HV: 150KV | 200 nm

Fig. 2 FESEM image of (a) PANI, (b) 1:9, (c) 3:7, and (d) 4 : 6 NiO,/PANI.
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332 nm with a slight blue shift is observable, and a shoulder
peak around 377 nm, which affirms the successful formation of
NiO,/PANI. The TEM images of NiO, nanoparticles are shown in
Fig. 1d. The morphology of NiO, nanoparticles is spherical, with
an approximate diameter of about 40 nm.

The morphology of PANI and NiO,/PANI (1:9, 3:7, and 4:6)
was investigated using scanning electron microscopy (SEM) and
shown in Fig. 2. Fig. 2a illustrates that the PANI nanofiber has
a porous morphology, resulting in a larger surface area. The
FESEM image of the NiO,/PANI indicates the incorporation of NiO,
in the polymer matrix, with an average diameter in the nanometer
range, likely due to the -7 and electrovalent interactions between
the PANI molecules and NiO,.*** EDX-mapping analysis (Fig. 3)
confirmed the successful formation of the nanocomposite, with
well-distributed C, N, O, and Ni elements. In Fig. S3,} the elemental
composition of the NiO,/PANI materials was also studied by EDX,
with no trace of impurities observed. Fig. 4a—c show the synthesis
of PANI NPs, NiO,~PANI, and NiO, NPs respectively. Complete
details of device fabrication is given in ESL}

The devices were also assembled with the following config-
uration: FTO/TiO,/FAPbI; perovskite/HTM doped carbon. J-V
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measurements were used to evaluate the performance of PSCs
under AM 1.5G irradiance (Fig. 5a). Based on the J-V curves, the
photovoltaic parameters of the devices, including FF, open-
circuit voltage (Voc), short circuit current density (Jsc), and
PCE, were calculated and are given in Table S1.{ In general, the
addition of NiO,/PANI as a HTM to carbon paste improves Jsc,
Voc, and FF parameters and raises device PCE. In which the
device exhibited an improved PCE of 17.52%, along with a Voc
of 1.114 V, a Jsc of 23.00 mA cm ™2, and an FF of 68.39. Notably,
the PCE was further enhanced to 18.30% when NiO,/PANI was
doped within the carbon electrode.

To determine the ideal weight ratio and study the effects of
different NiO,/PANI weight ratios on photovoltaic performance,
different perovskite solar cell amounts were made, and their J-V
characteristics were assessed. The J-V curves of the best devices
with various NiO,/PANI in carbon are displayed in Fig. 5a.
Interestingly, mixing carbon paste with NiO,/PANI (3 : 7) yields
the best results. Fig. 5b shows the j-V curve for the best-
performing device under AM 1.5G illumination without HTM
(control), NiO,, and PANI, as well as the device using NiO,/PANI
(3:7) as HTM in carbon-based devices. Table S1t lists the
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Fig. 3 Mapping FESEM to show elements distribution of C, N, Ni, and O on the NiO,/PANI hanocomposite.
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Fig. 4 Synthesis of (a) PANI-NPs (b) NiO,/PANI nanocomposite and (c) NiO, NPs.

associated photovoltaic parameters that were taken from the J-V
curve. The device incorporating NiO,/PANI (3:7)+CE HTM
exhibits a notable enhancement in V¢ and Jsc. The integration
of NiO,/PANI (3 : 7)+CE HTM is responsible for the increase in
Voc because it shifts the Fermi level of carbon downward.

It is worth mentioning that the inclusion of NiO,+carbon
results in inferior device performance, despite having a slightly
higher Vo compared to a device without a hole transport
material (HTM). The reduced efficiency can be attributed to the
limitation in charge transport caused by the inadequate
conductivity of NiO, HTM. Conversely, the introduction of NiO,/
PANI greatly enhances the transfer of holes from the light-
harvesting layer to the carbon electrode.

Fig. 5c displays the incident photon-to-electron conversion
efficiency (IPCE) responses and integrated short circuit current
density (Jsc) for the control cell and perovskite solar cells (PSCs)
utilizing NiO,/PANI(3:7)+CE as the hole transport material
(HTM) and counter electrode. The results demonstrate that the
PSC incorporating NiO,/PANI(3 : 7)+CE exhibits a distinct IPCE
spectrum shape and higher IPCE value within the 350 to 900 nm
range compared to devices utilizing pure carbon. Consequently,
the integrated Jsc values of 22.74 and 22.80 mA cm? align with

13378 | RSC Adv,, 2024, 14, 13374-13383

the J-V characteristics of the devices. Fig. 5d illustrates the
standard J-V curves of PSCs fabricated with two types of cells:
the control cell and PSCs based on NiO,/PANI(3 : 7)+CE. In both
the forward and reverse scan directions, the J-V curves were
measured. The hysteresis problem of the current-voltage curve
of the HTL-free carbon-based PSCs, in particular, can also be
resolved by the NiO,/PANI. The electrical properties of the cells
acquired from both the forward scan (FS) and reverse scan (RS)
directions are shown in Table 1. Eqn (1) was utilized to evaluate
the hysteresis changes and determine the hysteresis index (HI),
which represents the degree of hysteresis.

_ PCE, — PCE;

HI
PCE,;

(1)

In the equation, PCE,s represents the calculated PCE from
the reverse scan, while PCEg represents the calculated PCE
from the forward scan. Larger HI values correspond to
increased hysteresis. As depicted in Table 1, the control device
exhibits the highest HI value at 10.28%. In contrast, the device
incorporating NiO,/PANI showcases a lower HI value of 6.95%.
The significant hysteresis observed in the control device is
attributed to the poor interface between the light-harvester layer

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 J-V curves of different HTL-free CPSCs with carbon electrodes contained different NiO,/PANI nanocomposites. (b) J-V curves of
devices with pure carbon electrode (control), carbon electrodes contained NiO,, PANI, and NiO,/PANI (3:7). (c) IPCE curves of controland 3:7
carbon electrode-based devices. (d) J-V curves of control and 3: 7 devices in forward and reverse directions.

Table1 PCE of controland 3:7 based HTL-free CPSCs in reverse and
forward sweeping directions to measure hysteresis index

Device name PCE reverse (%) PCE forward (%) HI (%)
Control 14.02 12.58 10.28
3:7 17.75 16.52 6.95

and the carbon electrode, which negatively affects carrier
transport through the interface. On the other hand, the NiO,/
PANI-based devices demonstrate improved interfacial contacts,
resulting in reduced hysteresis and enhanced carrier transport.

In this study, we conducted a comparison of the stability
between the device based on NiO,/PANI and the control cell.
The intrinsic affinity of FAPbI; perovskites to reaction with
moisture poses a challenge to the stability of PSCs, making it
a primary concern. To evaluate the stability, the cells were
exposed to ambient air with a relative humidity of 30-40% at
room temperature in dark conditions, without encapsulation.
Fig. 6a illustrates the stability of the cells over a period of 2400
hours. The PSC incorporating NiO,/PANI+CE maintained 96%
of its initial power PCE, while the control device retained 93% of
its original performance. Furthermore, Fig. 6b displays the

© 2024 The Author(s). Published by the Royal Society of Chemistry

stability of the PSCs under simulated sunlight irradiance at
a humidity level of 25-30% and room temperature. The graph
indicates that PSCs utilizing the NiO,/PANI exhibit higher
stability compared to the control PSCs. This enhanced stability
can be attributed to the small porosity of NiO,/PANI+carbon,
resulting from the smaller size of the metal oxide on the carbon
material and thick NiO,/PANI+CE coating (~15 um). The long-
term stability performance of the NiO,/PANI-based devices
may be attributed to this decreased porosity, which prevents
oxygen and moisture from penetrating through the counter
electrode.

Next, we use the PSC's capacitance-voltage (C-V) curve to
measure the carrier concentration. The Mott-Schottky equation
(M-S) is used to calculate the carrier density based on the
curve's slope. To determine the built-in potential (Vbi), the
linear portion of the Mott-Schottky plot in Fig. 7a was utilized.
The Vbi of the NiO/PANI device was higher than that of the
control device. This indicates that a high Vo is produced by the
NiO,/PANTI's ability to increase charge separation and decrease
carrier rearward movement at the carbon-perovskite interface.*!
Fig. 7b presents the impedance spectroscopy spectra obtained
from various cells: the control cell, PSCs based on NiO+CE,
PAN+CE, and NiO,/PANI(3:7)+CE. The measurements were

RSC Adv, 2024, 14,13374-13383 | 13379
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Fig. 6 Stability tests of control and 3:7-based HTL-free CPSCs against (a) ambient air with relative humidity of 30—-40% in dark conditions at
room temperature and (b) simulated sunlight irradiance at a humidity level of 25-30% at room temperature.

performed under dark conditions at open-circuit voltage. The
inset of Fig. 5b showcases the equivalent circuit diagram that
was utilized to fit the EIS curves. The charge recombination
resistance (Ryc) in the low-frequency region exhibited a negative
correlation with the degree of charge recombination. Notably,
the NiO,/PANI+CE cell displayed a significantly higher R, value
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(1687 Q) in comparison to the NiO+CE cell (897 Q), the PANI+CE
cell (954 Q), and the control cell (784 Q). This indicates that the
addition of NiO,/PANI effectively suppressed charge carrier
accumulation at the interfaces and reduced charge carrier
recombination. These findings align with the results obtained
from photoluminescence (PL) measurements. A device was
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(a) Mote—-Schottky and (b) Nyquist plots of HTL-free CPSCs fabricated based on different carbon electrodes. Inset of Fig. 5b shows the

equivalent circuit diagram used to fit EIS curves. (c) Dark -V of different carbon electrodes. (d) PL response of FTO/ETL/FAPbIs/different carbon

electrodes.
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Fig. 8 (a) UPS spectra of control and 3:7 NiO,/PANI-contained carbon electrodes. (b) Energy band diagram of each component in the

fabricated HTL-free CPSCs with control and 3:7 NiO,/PANI-contained carbon electrodes, showing the separation and transport of photo-

generated carriers.

fabricated with a different carbon electrode architecture in
order to study the vertical charge transport properties. As ex-
pected, the I-V curve of the device containing a NiO,/PANI+CE
showed an enhanced slope when compared to the control
devices NiO,+CE and PANI+carbon electrode, as shown in
Fig. 7c. The improved conductivity observed in the NiO/PAN-
I+CE device can be attributed to its enhanced ability to extract
holes from the perovskite film. This increase in conductivity
aligns with the superior performance of the perovskite solar
cells (PSCs), as demonstrated by the higher Jsc and FF.*?
Furthermore, the linear relationship observed in the J-V curves
indicates the presence of good ohmic contacts in all device
configurations.****

To further validate the improved charge transport properties
resulting from the integration of NiO/PANI into the carbon
electrode (CE), Fig. 7d presents the steady-state photo-
luminescence (PL) spectra. The spectra compare a perovskite
absorber film deposited on a glass/fluorine-doped tin oxide
(FTO) substrate without any additional layers, with the struc-
tures FTO/ETL/FAPbI;/using different carbon electrodes. In the
absence of additional layers, the bare perovskite film exhibited
a distinct photoluminescence (PL) peak at 812 nm. The steady-
state PL spectra provide clear evidence that the NiO,/PANI+CE
configuration effectively suppresses the PL intensity, suggesting
enhanced charge transfer from the light-harvesting layer.*>*®
This confirms that the addition of NiO,/PANI enhances the
charge transport properties of the device.

To examine the band alignment between the NiO,/PANI+CE
material and the perovskite absorber layer, ultraviolet photo-
electron spectroscopy (UPS) test were measured. Fig. 8a displays
the UPS spectra for pure carbon and NiO,/PANI+CE. The results
indicate that the incorporation of NiO,/PANI has a minimal
effect on the band positions. There is a shift of 0.66 eV in the
work function (WF). The energy level at —5.39 eV for NiO,/
PANI+CE corresponds to an intermediate and favorable posi-
tion, which facilitates efficient hole transfer from perovskite to
the NiO,/PANI+CE (Fig. 8b).

© 2024 The Author(s). Published by the Royal Society of Chemistry

3. Conclusion

In our research, we implemented a doping technique that
involved incorporating a NiO,/PANI into the carbon electrode to
increase the photovoltaic properties of PSCs. The introduction
of this nanocomposite resulted in a beneficial energy band
alignment with both the perovskite and carbon materials,
leading to decreased resistance and improved conductivity. The
unique structure of the nanocomposite provided a larger
specific surface area compared to regular carbon, further facil-
itating the reduction of resistance and improvement of
conductivity. Furthermore, the inclusion of the nanocomposite
facilitated enhanced interface contact between the carbon
electrode and the perovskite layer, resulting in reduced defect
generation. The primary objective of incorporating the nano-
composite was to improve charge transfer, energy level align-
ment, and interface contact while also mitigating surface
degradation of the perovskite. These combined effects effec-
tively reduced charge recombination and minimized energy loss
in the system. As a result, the overall efficiency increased to
18.30%, which is 26.5% higher than that of devices using a pure
carbon electrode. Additionally, the NiO/PANI+CE-based PSCs
exhibited an encouraging 96% of initial power conversion effi-
ciency (PCE) after 2400 hours in an ambient atmosphere. The
successful utilization of NiO/PANI+CE as the hole transport
material and carbon electrode significantly contributed to the
stability test's positive outcome.
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