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S–NN model based on mid-
infrared spectroscopy in the origin identification of
Cornus officinalis†

Bing Liu, *a Junqi Wangb and Chaoning Lic

Mid-infrared spectroscopy has been increasingly used as a nondestructive analytical technique in Chinese

herbal medicine identification in recent years. In this study, a new chemometric model named as PLS–NN

model was proposed based on the mid-infrared spectral data of Cornus officinalis samples from 11 origins.

It was realized by combining the partial least squares and neural networks for the identification of the origin

of Chinese herbal medicines. First, we extracted features from the spectral data in 3448 bands using the

partial least squares method, and extracted 122 components that contained more than 95% of the

information. Then, we trained the PLS–NN model by neural network using the extracted components as

inputs and the corresponding origin classes as outputs. Finally, based on an external test set, we

evaluated the generalization ability of the PLS–NN model using metrics such as accuracy, F1-Score and

Kappa coefficient. The results show that the PLS–NN model performs well in all three metrics when

compared to models such as Decision trees, Support vector machine, Partial least squares Discriminant

analysis, and Naive bayes. The model not only realizes the dimensionality reduction of full-spectrum data

and improves the training efficiency of the model, but also has higher accuracy compared with the full-

spectrum data model. The PLS–NN model was applied to identify the origin of Cornus officinalis with an

accuracy of 91.9%.
1. Introduction

China is geographically and climatically very favorable for the
growth of herbal medicines, which has resulted in many
Chinese-grown herbal medicines enjoying a good reputation
both at home and abroad and being exported to many regions
and countries.1 Compared with synthetic drugs, herbal medi-
cines have the advantages of stable efficacy, low toxicity and side
effects, adaptability to individual differences and natural raw
materials, which has made more and more regions and coun-
tries begin to pay attention to the value of herbal medicines.2–4

However, with the gradual deterioration of the natural ecolog-
ical environment, the growing environment of wild Chinese
herbal medicines has been damaged, and the supply of some
wild Chinese herbal medicines is in short supply, leading to
confusion in the market of Chinese herbal medicines. In
addition, there is a wide variety of traditional Chinesemedicinal
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materials, and different regions have different medicinal prac-
tices. The common occurrence of homonyms, synonymous
names, and mixed varieties makes authenticating traditional
Chinese medicines a challenge.5,6

Traditional herbal medicine identication methods include
appearance identication, physical and chemical properties
identication and microscopic identication.7,8 Appearance
identication is mainly carried out by observing the external
form, color, smell and other characteristics of herbs. This
method is simple and easy to implement, and is applicable to
some herbs with obvious appearance characteristics, but it does
not have high accuracy for herbs with similar appearance.9,10

Physical and chemical property identication is carried out by
testing the physical and chemical properties of herbs, such as
solubility, melting point and specic gravity. This method relies
on the physicochemical characteristics of the herbs and can
provide some basis for qualitative identication, but is limited
for quantitative and specic identication. Microscopic identi-
cation is carried out by microscopic observation of the cellular
structure, tissue structure and other characteristics of the
herbal medicine. This method can provide more detailed
morphological information and has a certain degree of accuracy
for the identication of specic herbs.11 However, microscopic
identication mainly relies on morphological and anatomical
features of herbs, and it is difficult to draw quantitative
conclusions about the quality of herbs, and the method can
RSC Adv., 2024, 14, 15209–15219 | 15209
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only be used for auxiliary identication, but not for quality
evaluation alone.

With the continuous progress of science and technology, the
application of modern chromatographic coupling techniques
has led to a signicant improvement in the efficiency and
accuracy of the detection of herbal medicines. Chromato-
graphic techniques commonly used for the identication of
herbal medicines include high performance liquid chromatog-
raphy,12,13 capillary gas chromatography,14,15 thin-layer chroma-
tography16,17 and liquid chromatography-mass spectrometry.18,19

The advantages of these methods are the qualitative and
quantitative analysis of the chemical constituents of herbal
medicines with excellent characteristics such as accuracy,
sensitivity, rapidity and good reproducibility at the same time,
which can provide a scientic basis for the quality control and
safe use of herbal medicines. However, chromatographic tech-
niques also have some shortcomings in the identication of
herbal medicines, such as high requirements for instrumenta-
tion, complex analytical methods and difficulties in sample
preparation.20–22

Infrared spectroscopy stands as a commonly utilizedmethod
for the identication and characterization of chemical
substances. It has a wide range of applications in the eld of
herbal medicine identication and continues to make progress
with the development of technology.23,24 Infrared spectroscopic
identication is based on the principle of using the vibration
and rotation of molecules in a specic frequency range to
produce a characteristic spectral image by absorbing, scattering
or transmitting light. These spectra can be used to identify and
quantitatively analyze the chemical constituents in the sample.
The use of infrared spectroscopy to realize the identication of
Chinese herbal medicines has the advantages of high efficiency,
non-destructiveness and reliability. Yang et al. successfully
identied Bupleuri Radix based on geographic origin by using
Principal Component Analysis (PCA), Partial Least Squares
Discriminant Analysis (PLS-DA), and Support Vector Machine
(SVM) based on near-infrared spectra.25 Using mid-infrared
spectroscopy in combination with chemometrics, Guo et al.
developed a quantitative method to assess the quality of
danshen granules. The results of the study showed that Fourier
transform mid-infrared spectroscopy combined with Partial
Least Squares (PLS) regression is a rapid and valuable analytical
tool to accurately determine the water-soluble extract of single
yinpian in danshen granules based on excipient content.26 Jin
et al. used PCA to dimensionalize the Cornus officinalis spectral
data, and then realized the identication of Cornus officinalis
origin using SVM, and the results indicated that the accuracy of
this combined model was 84.8%.27

Cornus officinalis is the dried mature fruit pulp of Cornus
officinalis, a plant in the Cornaceae family.28 It has the effects of
tonifying the liver and kidneys, astringent and astringent, in
addition to its cardiotonic, anti-inammatory, antibacterial,
anti-stress, antioxidant and hypolipidemic effects. Cornus offi-
cinalis is native to China and is mainly found in the northern
and southwestern parts of the country. In addition, Cornus
officinalis is also distributed in some other Asian countries such
as Mongolia, North Korea and South Korea. We collected mid-
15210 | RSC Adv., 2024, 14, 15209–15219
infrared spectral data of Cornus officinalis from a total of 11
origins (OP 1–OP 11) in Zhejiang, Anhui, Jiangxi, Shandong,
Henan, Hunan, Sichuan, Shaanxi, and Gansu for identication
modeling. PLS was used to implement dimensionality reduc-
tion on full-spectrum data and combined with Neural Networks
(NN) to model the identication of Cornus officinalis origin. In
this paper, we refer to this PLS combined NNmodel as the PLS–
NN model. Comparison with other common classication
discriminant models such as Decision trees, SVM, PLS-DA, and
Naive bayes model reveals that our model performs excellently
in some common evaluation metrics such as accuracy, F-Score,
and Kappa coefficient.29–31 The model not only provides an
accurate nondestructive method for the rapid identication of
the origin of Cornus officinalis, but also can be extended to the
identication of other Chinese herbs, which is of positive
signicance for the control of the quality of traditional Chinese
medicine and the promotion of the development of the tradi-
tional Chinese medicine industry.

2. Material and methods
2.1. Data source and preprocessing

The spectral characteristics of different herbs vary greatly. Even
for the same herb from different places of origin, they will
exhibit distinct spectral features under near-infrared and mid-
infrared irradiation, primarily due to differences in the chem-
ical composition of inorganic elements and organic substances.
Therefore, these features can be effectively utilized for the
identication of Chinese herbal medicines in terms of their
types and origins.

In this study, a set of spectral data of Cornus officinalis
measured by Chengdu University of Traditional Chinese Medi-
cine was collected with the aim of constructing an origin
identication model for Chinese herbal medicines (https://
www.mcm.edu.cn/html_cn/node/
90d223833c1eb50f899aa096a66c6896.html). The dataset
contained 658 samples of Cornus officinalis from 11 different
origins. Each sample was subjected to infrared spectroscopy
measurements in the wavenumber range of 551–3998 cm−1,
and their absorbance was recorded.

Before the sample data can be analyzed, the collected data
needs to be preprocessed. The outlier detectionmethod based on
interquartile range was used in the study to identify data greater
than 1.5 times the sum of the le and right nearest neighbor
values as outliers. For outliers and missing values, we used the
moving average interpolation method for data processing.
Considering the wide range of spectral wave numbers and the
limitations of sample measurement accuracy, no special treat-
ment would be given to duplicate values in the data. The mid-
infrared spectral data processed by the moving average interpo-
lation method were summarized, and the summarized absor-
bance range was −0.007–1.487 AU. It should be noted that 626
sets of data in the last 184 bands have negative absorbance
values, which is due to the fact that the absorbance data collected
are instrumentally corrected values. Since these negative values
are small in absolute value and do not exceed 0.001% of the total
data, they are not treated specically. There are 31 141 data in the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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sample with absorbance greater than 1 AU, accounting for
1.373% of the total. However, the maximum value of absorbance
did not exceed 1.5 AU, and did not deviate from the Lambert–
Beer law, so it was not treated specically in this study.
2.2. PLS–NN model construction process

The core of the PLS–NN model is to combine the PLS and NN
models to realize the dimensionality reduction and origin
identication of the spectral data. Fig. 1 demonstrates its
specic ow. The processed dataset is rst randomly divided
into training set and test set.

In the training set, PLS regression was utilized for modeling.
PLS regression amalgamates the benets of multiple linear
regression, PCA and canonical correlation analysis. By
addressing the correlation among parameters, it effectively
mitigates multicollinearity issues within variables.32,33 For
modeling problems involving p dependent variables and m
independent variables, PLS regression is employed to examine
the statistical relationships among them. Given the observed n
sample points, data tables X and Y containing the independent
and dependent variables are compiled. In this context, PLS
regression initially extracts t and u from X and Y, respectively,
aiming to capture as much information as possible regarding
the variances in their respective data tables and to maximize
their correlation. Aer the rst component has been extracted,
PLS regression is implemented for X versus t and Y versus t,
Fig. 1 The flow chart of PLS–NN model based on the mid-infrared spe

© 2024 The Author(s). Published by the Royal Society of Chemistry
respectively. The algorithm terminates if the regression equa-
tion has reached a satisfactory accuracy, otherwise, a second
round of component extraction is performed using the residual
information aer X has been interpreted by t as well as the
residual information aer Y has been interpreted by t. This is
repeated until a more satisfactory accuracy can be achieved.34

The selection of the number of components needs to be
completed next to obtain a regression model with good
predictive power. For the number l of principal components to
be extracted for modeling, it can be determined by a cross val-
idity test. The i-th observation is removed each time and the
remaining n − 1 observations are used to model the regression
by PLS regression. The tted regression equation aer extract-
ing the h components is considered in the modeling process.
Substituting the removed i-th observation into the tted
regression equation obtains the predicted value yŷ(i)j(h) of yj(j =
1,2,/,p) at the i-th observation. Repeat the above validation for i
= 1,2,/,n to obtain the predicted residual sum of squares for
the j-th dependent variable yj(j = 1,2,/,p) at the time of
extracting h components (eqn (1)). Eqn (2) is the predicted
residual sum of squares of yj(j = 1,2,/,p), when PRESS(h) rea-
ches the minimum value, the corresponding h is the number of
extracted components.

PRESSjðhÞ ¼
Xn

i¼1

�
yij � ŷðiÞjðhÞ2

�
ðj ¼ 1; 2;/; pÞ (1)
ctral data of Cornus officinalis and K-fold cross validation.

RSC Adv., 2024, 14, 15209–15219 | 15211
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PRESSðhÞ ¼
Xp

j¼1

PRESSjðhÞ (2)

With the PLS model constructed on the training set, we
successfully extracted the components from both the training
and test sets. These extracted components not only preserve
crucial information but also eliminate redundant data, thereby
providing high-quality inputs for the subsequent training of the
NN model. Subsequently, utilizing the extracted training set
components as inputs, we proceeded to construct the NN
architecture and train it.

NN is a machine learning model used to solve classication
problems. Fig. 2 shows its architecture. It consists of multiple
layers, which include an input layer, hidden layers, and an
output layer. Each hidden layer consists of multiple neurons
(also referred to as the size of each layer) that are connected to
all the neurons in the previous layer through connection
weights. In a NN, each neuron receives inputs from the previous
layer and applies an activation function to nonlinearly trans-
form the inputs. RELU(x),tanh(x) and s(x) (eqn (3)–(5)) are the
commonly used activation functions. The number of neurons in
the hidden layer determines the complexity of the features that
the model can learn, while the number of hidden layers deter-
mines the depth and expressiveness of the model.35,36

RELUðxÞ ¼ maxðx; 0Þ ¼
(
0; x\0
x; x$ 0

(3)

f ðxÞ ¼ tanhðxÞ ¼ 2

1þ e�2x
� 1 (4)

f ðxÞ ¼ sðxÞ ¼ 1

1þ e�x
(5)

In the training process of the NN, we utilized K-fold cross
validation to partition the training set and employed the cross-
entropy loss function to quantify the difference between model
predictions and true labels. Eqn (6) is the cross-entropy loss
Fig. 2 The architecture of the neural network.

15212 | RSC Adv., 2024, 14, 15209–15219
function, where y is the true label vector, yŷ is the predicted
output vector of the NN, and p is the number of classes. The
connection weights are continuously adjusted by the optimi-
zation algorithm to minimize the loss function, so as to train
a PLS–NN model with good performance. Finally, the model is
applied to the components of the test set to complete the
prediction of the test set, and the results are compared and
analyzed, in order to test the performance and generalization
ability of the model.

Lðy; ŷÞ ¼ �
Xk

i¼1

yilogðŷiÞ (6)
3. Establishment of origin
identification model
3.1. Data exploratory analysis

Exploratory analysis of the data was highly benecial in gaining
initial insight into the relationship between spectral informa-
tion and origin. We plotted the spectral data for all Cornus
officinalis samples in Fig. 3. It can be seen that the infrared
spectral data are similar in 658 groups of Cornus officinalis,
which is due to the fact that different kinds of herbs usually
contain similar basic chemical constituents and functional
groups. These common chemical compositions and functional
groups can lead them to exhibit similar features in the infrared
spectrum.

The spectral data showed high absorbance in the intervals
3600–2800 cm−1 and 1800–1000 cm−1 with typical valleys and
peaks. The hydroxyl functional group in Cornus officinalis
exhibits a broad absorption peak appearing at 3600–3200 cm−1,
and this peak can be used for the detection of the content of
active ingredients in Cornus officinalis. The characteristic peaks
located in the range 3000–2900 cm−1 represent the stretching
vibrations of the aliphatic alkyl group. The ketone group func-
tional group appeared at 1700–1750 cm−1, which showed
a sharp absorption peak, and the wave number corresponding
to this peak can be used to determine the presence of ketones in
Cornus officinalis. The characteristic peak near 1400 cm−1 is the
aromatic ring backbone vibration absorption peak. There is
a characteristic peak in the interval 1200–1000 cm−1 repre-
senting the stretching vibration of glycogen. It can be intuitively
seen that in some bands, such as 3400–3200 cm−1 and 1700–
1550 cm−1 bands, there are some differences in the spectral
data of different origins. This is due to the fact that Cornus
officinalis from different origins is affected by the growing
environment, soil, climate and other environmental factors,
resulting in differences in its chemical composition, which in
turn presents differences in the infrared spectral data.

The spectral differences reect the differences in the
composition of Chinese herbal medicine samples, which can be
visually expressed by the degree of overlap of spectral lines in
the overlapping spectral graphs. These intuitive differences can
be quantitatively expressed by the Euclidean distance between
spectral vectors, the cosine of the included angle, and the
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 (A) Mid-infrared spectrograms of 658 samples of Cornus officinalis from 11 different origins; (B) comparison of average mid-infrared
spectra of Cornus officinalis samples from 11 different origins. Figures are generated using Matlab (Version R2023a, https://
www.mathworks.com/) [Software].
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Pearson linear correlation coefficient. In this paper, the Pearson
linear correlation coefficient (eqn (7)) is used to describe the
spectral differences of Chinese herbal medicines from different
origins.

r ¼
Pn
i¼1

ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðxi � xÞ2
s

$

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi � yÞ2
s (7)

Table 1 shows the correlation coefficients between the
spectral vectors of 11 different origins of Cornus officinalis. It can
Table 1 The Pearson linear correlation coefficients between the spectral
significant correlation at a significant level of 0.01)

OP OP 1 OP 2 OP 3 OP 4 OP 5

OP 1 1.000 0.996** 0.998** 0.990** 0.986**
OP 2 1.000 0.995** 0.995** 0.989**
OP 3 1.000 0.990** 0.985**
OP 4 1.000 0.998**
OP 5 1.000
OP 6
OP 7
OP 8
OP 9
OP 10
OP 11

© 2024 The Author(s). Published by the Royal Society of Chemistry
be seen that the cornelian cherry spectra of OP 7 and OP 11 have
the highest similarity with correlation coefficients as high as
0.999. This indicates that the composition of the Cornus offici-
nalis samples from the two origins is very similar, which is
related to the similar climatic and geographic conditions of the
two origins. The identication of these two origins by spectral
analysis is the most difficult. The lowest spectral similarity was
found between Cornus officinalis from OP 5 and OP 8, with
a correlation coefficient of 0.982, which suggests that there are
differences in the composition of Cornus officinalis samples
from these two origins. It is easier to identify the Cornus offici-
nalis from these two origins by spectral analysis. The spectral
vectors of Cornus officinalis from 11 different origins (band ** indicates

OP 6 OP 7 OP 8 OP 9 OP 10 OP 11

0.997** 0.996** 0.997** 0.989** 0.990** 0.998**
0.997** 0.998** 0.997** 0.992** 0.994** 0.998**
0.997** 0.996** 0.995** 0.991** 0.991** 0.997**
0.995** 0.996** 0.990** 0.998** 0.996** 0.996**
0.992** 0.990** 0.982** 0.998** 0.996** 0.992**
1.000 0.998** 0.995** 0.995** 0.993** 0.998**

1.000 0.998** 0.994** 0.991** 0.999**
1.000 0.986** 0.985** 0.996**

1.000 0.997** 0.995**
1.000 0.995**

1.000

RSC Adv., 2024, 14, 15209–15219 | 15213
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similarity of all Cornus officinalis samples between the origins
exceeded 0.98 and passed the correlation test at the 0.01 level of
signicance, indicating that the spectral vectors of the same
type of herbs are signicantly correlated.
3.2. Mid-infrared spectral feature extraction

The spectral vectors of the same type of herbs are similar, so in
order to effectively identify and differentiate the same herbs
Fig. 4 The principal component eigenvalues and the cumulative
contribution rate of the spectral data.

Fig. 5 (A) Distribution of three-dimensional principal component scores
dimensional principal component scores of Cornus officinalis sample
component scores of Cornus officinalis samples from OP 7–OP 9; (D) d
and OP 11 Cornus officinalis samples.

15214 | RSC Adv., 2024, 14, 15209–15219
from different origins, further chemometric modeling is
required. PCA was used to analyze the mid-infrared spectral
ensembles of Cornus officinalis samples from different origins
before constructing the model in order to visualize the differ-
ences of Cornus officinalis samples from different origins. As can
be seen from Fig. 4, the rst three eigenvalues of the mid-
infrared spectral matrix are 2755, 314.31 and 174.91, respec-
tively. The cumulative contribution rates of the rst three
eigenvalues are 80.8%, 89.9% and 95%, respectively, indicating
that the rst three eigenvalues can adequately represent the
collected spectral matrix.37

Fig. 5 shows the 3D plot of principal component scores
constructed from the rst 3 eigenvalues of the spectral matrix. It
should be noted that due to the large number of origins of
Cornus officinalis, samples of Cornus officinalis from 11 origins
were categorized into 3, 3, 3 and 2 different categorical groups
according to their quantities for comparison and analysis. We
can see that only the samples of Cornus officinalis from OP 1 and
OP 3 are relatively concentrated, while the samples from other
origins are relatively scattered. In addition, among the samples
of various origins, there are large crossings and overlaps
between them, and the boundaries between the samples are not
clear enough. This suggests that the differences between
samples of Cornus officinalis from various origins are not so
obvious that they cannot be effectively distinguished by PCA.
Therefore, we need to further resort to chemometric methods to
realize the identication of samples from different origins.
of Cornus officinalis samples fromOP 1–OP 3; (B) distribution of three-
s from OP 4–OP 6; (C) distribution of three-dimensional principal
istribution of three-dimensional principal component scores of OP 10

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 The plot of the number of PLS components versus the PRESS
distribution and percent variance explained, where the horizontal axis
represents the number of PLS components, the left vertical axis
represents PRESS, and the right vertical axis represents percent vari-
ance explained.
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The mid-infrared spectral data of Cornus officinalis from
different origins were divided into the training set and the test set
according to the ratio of 7 : 3. The spectral data were divided by
overall random partitioning, i.e., the 658 samples were regarded
as a whole, and then the samples were randomly assigned
according to a predetermined ratio. The training set was used to
establish the Cornus officinalis origin recognition model, and the
test set was used to test the identication effect of the model.
Unbalanced samples affect the robustness and generalization
ability of the model and may lead to bias, undertting, or over-
tting. Following the principle of balanced sample size leads to
a more accurate, robust and better generalized model. The
balance of the samples needs to be discussed as there were a total
of 11 origins of Cornus officinalis samples in this study and the
number of samples from each origin was different. As can be seen
from Fig. 6, in the training set, the maximum number of samples
fromOP 6 is 65, and theminimum number of samples fromOP 5
is 21. In the test set, the maximum number of samples from OP 1
is 30, and theminimumnumber of samples fromOP 5 is 8. In the
all sets, the maximum number of samples from OP 4 is 88, and
the minimum number of samples from OP 5 is 29. The ratio of
the maximum number of samples from different origins to the
minimum number of samples, whether in the training set, the
test set, or all sets, does not exceed 4 : 1, so we consider that
the model does not have a sample imbalance, and that no clas-
sication weights is needed in the model training process.

The number of variables in the full-spectrum data is large and
the spectral vectors are highly correlated with each other. Directly
inputting all variables into the origin identication model would
increase the computational complexity and may lead to multi-
collinearity in the model, thus reducing the generalization ability
of the model and increasing the risk of overtting. Both PCA and
PLS are commonly used methods for solving multicollinearity
problems in full-spectrum data. PCA is a simple and intuitive
linear transformation method that is easy to understand and
implement. However, it only considers the variance of the inde-
pendent variables and not the dependent variable. In contrast,
PLS is a supervised learning method that is able to consider the
relationship between the independent and dependent variables
Fig. 6 The number of samples in the training set, test set and all sets of
Cornus officinalis from different origins.

© 2024 The Author(s). Published by the Royal Society of Chemistry
simultaneously. In addition, PLS tends to show excellent perfor-
mance in small sample datasets. Therefore, PLS is chosen in this
study to reduce the dimensionality of the full-spectrum data and
to deal with the multicollinearity problem in it. Fig. 7 shows the
plot of the number of PLS components versus the PRESS distri-
bution and Percent Variance Explained. It can be seen that the
PRESS value tends to decrease with the increase of the PLS
component, and when the PLS component exceeds 120, the
continued increase of the component has almost no effect on the
PRESS. At a PLS component of 122, the corresponding PRESS
value is 439.55. Meanwhile, the percentage of variance explained
by X is 100% and the percentage of variance explained by Y is
95.07%, i.e., what percentage of the total variance explained by
these PLS components is more than 95% for both the indepen-
dent and dependent variables. These results indicate that we can
choose 122 as the number of components in constructing the
origin identication model of Cornus officinalis samples.
3.3. PLS–NN model construction

NN are powerful nonlinear models that are adept at handling
complex classication tasks by capturing complex patterns in
data. In this study, a Cornus officinalis origin identication
model was established using NN based on the optimal number
of PLS components of Cornus officinalis infrared spectral data.
The spectral components extracted by PLS in the training set
were used as predictor variables, and Cornus officinalis origin
was used as response variable to build the model with the help
of NN classier in Matlab 2023a.

Overtting occurs when a model excels on training data but
falters on novel data. To address this in NN classiers, K-Fold
cross-validation is employed. In this technique, the dataset is
randomly partitioned into K mutually exclusive subsets. The
model is trained K times, utilizing K-1 subsets for training and
the remaining one for validation in each iteration. This gener-
ates K models, each validated once. The average performance
metrics across these models serve as the nal evaluation, as
RSC Adv., 2024, 14, 15209–15219 | 15215
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Fig. 8 10-fold cross-validation process description and
implementation.

Fig. 9 Confusion matrix for Cornus officinalis test samples. Each
column of the confusion matrix represents the true origin, and each
row represents the predicted origin.
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depicted in Fig. 8. This technique fully utilizes all the samples in
the dataset for training and validation, reducing the impact of
dataset partitioning on the training results. Since the number of
samples included in the training set is 461, in order to achieve
a more reliable performance evaluation of the model and to
reduce the bias that may be induced by the limited number of
samples, in this study K is selected as 10.

Accuracy is one of the most common metrics for evaluating
classication models. It indicates the proportion of samples that
the model predicts correctly out of the total number of samples.
The higher the accuracy, the better the performance of the
model. Eqn (8) is an expression for accuracy, where TP is true
positives, which means the number of samples that the model
correctly predicts as positive cases, FN is false negatives, which
means the number of samples that the model incorrectly
predicts as negative cases, FP is false positives, which means the
number of samples that the model incorrectly predicts as posi-
tive cases, and TN is true negatives, which means the number of
samples that the model correctly predicts as negative cases.

Accuracy ¼ TPþ TN

TPþ TNþ FPþ FN
(8)

In constructing the NN model, the data was rst normalized
to eliminate the scale difference between different features and
enhance the performance and stability of the model. Then the
selection of hyperparameters was carried out, which includes
the number of fully connected layers, rst layer size, second
layer size, third layer size, activation functions and regulariza-
tion strength. In practice, for simple problems, shallower NN
are usually used, and the number of fully connected layers is
usually between 1–3. For the size of each layer, we set it at [1300]
for optimization. ReLU, Tanh and s are commonly used acti-
vation functions and we search between all three of them. For
regularization strength, we use the default L2 norm regulari-

zation and set the search range to
�
10�5

n
;
105

n

�
, where n is the

number of observations.
15216 | RSC Adv., 2024, 14, 15209–15219
Bayesian optimizer is a commonly used optimization
method that has been widely applied to hyperparameter
tuning. It not only reduces the time and effort of manual
parameter tuning, but also improves the performance of the
model. In this study, we set the acquisition function in the
Bayesian optimizer to the soware's default expected
improvement per second plus and set the number of iterations
to 30 in order to optimize the search for the hyperparameters
of the NN model. With the help of Bayesian optimizer, the
optimal number of fully connected layers, rst layer size,
second layer size, third layer size, activation functions, regu-
larization strength are determined as 3, 206, 31, 27, Tanh and
5.41 × 10−5, respectively. At this point, the accuracy of the NN
model in the validation set reaches 100%. It shows that the
model has a good performance in the training set. With the
help of Matlab soware, the PLS–NN model of Cornus offici-
nalis origin identication was completed.

The PLS–NN model achieved good performance in the
training set of Cornus officinalis samples, but the performance
in the test set was more important. The 197 test samples were
input into the trained PLS–NN model to compare the predicted
results with the true results. The confusion matrix is a tool
commonly used to evaluate classication model performance,
showing the relationship between predicted and true results in
a tabular format. Each column represents true results, each row
represents predicted results. Precision (eqn (9)) and recall (also
called Sensitivity, eqn (10)) are displayed on the rightmost side
of rows and bottom of columns, respectively, with accuracy at
the bottom right corner.38

Precisioni ¼ TPi

TPi þ FPi

(9)

Recalli ¼ TPi

TPi þ FNi

(10)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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It can be seen from Fig. 9 that all samples of Cornus officinalis
predicted to be OP 1, OP 2, OP 10 and OP 11 were from the
corresponding origins, all with 100% precision. Of the 27
samples predicted to be OP 7, only 19 are from OP 7, which has
the lowest precision of 70.4%. In addition, all samples of Cornus
officinalis from ve origins, OP 3, OP 4, OP 5, OP 6 and OP 11,
were identied by the model with 100% recall. Only 13 of the 18
samples from OP 10 were identied by the model, and it had the
lowest recall of 72.2%. There were 4 samples from OP 10 that
were incorrectly predicted as OP 7 by themodel, which indicates
that there is some difficulty in identifying between OP 10 and
OP 7 using the PLS–NN model. Overall, 181 out of 197 samples
were correctly predicted with an accuracy of 91.9%. This
maintains the same high accurate as the validation set, indi-
cating that the PLS–NN model has a strong generalization
ability and can effectively achieve the identication of the origin
of Cornus officinalis samples.
4. Discussion

The quality and efficacy of Chinese herbal medicines are oen
closely related to their origin, so rapid and accurate identica-
tion of the origin of Chinese herbal medicines is of great
practical signicance. Based on the mid-infrared spectral data,
the PLS–NN model can effectively realize the identication of
the origin of Cornus officinalis. In addition, Decision trees, SVM,
PLS-DA, Naive bayes and full-spectrum NN models can be
implemented to identify the origin of Cornus officinalis.

In order to make a quantitative comparison of the individual
models, we trained these models using the same training set
and compared the results of the test set to the PLS–NN model.
During model training, we still used 10-fold cross-validation
and optimized the hyperparameters of each model with the
help of the default Bayesian optimization in the classication
learner. In the Decision trees, the maximum number of splits
was chosen to be 92 and the splitting criterion was chosen to be
the maximum deviation reduction. In the SVM model, the
kernel function was chosen to be a Gaussian kernel, the kernel
scale was chosen to be 11, the box constraint level was chosen to
be 1, and the multiclass method was chosen to be one-vs.-one.
Table 2 Precision and Recall (sensitivity) of each Cornus officinalis ori
precision and TPR stands for sensitivity (values are measured in %)

OP

Decision trees SVM PLS-DA

PPV TPR PPV TPR PPV TP

OP 1 92.3 40.0 100 46.7 100 53
OP 2 44.4 70.6 100 70.6 100 64
OP 3 57.1 63.2 100 84.2 93.3 73
OP 4 70.0 84.0 100 96.0 100 84
OP 5 60.0 75.0 100 62.5 87.5 87
OP 6 52.2 54.5 58.8 90.9 72.2 59
OP 7 66.7 50.0 100 75.0 94.7 90
OP 8 52.9 56.2 100 56.2 100 62
OP 9 66.7 66.7 100 33.3 100 55
OP 10 47.1 44.4 34.6 100 30.0 10
OP 11 46.7 53.8 100 100 85.7 92

© 2024 The Author(s). Published by the Royal Society of Chemistry
In the PLS-DA model, the covariance structure was chosen as
diagonal covariance structure. In the Naive bayes model, the
kernel type was selected as Gaussian and the support option
was selected as unbounded. In the full-spectrum NNmodel, the
optimal number of fully connected layers, rst layer size, second
layer size, third layer size, activation functions, regularization
strength were determined as 3, 199, 33, 25, Tanh and 4.81 ×

10−5, respectively.
Based on the results in Table 2, we can observe that in terms

of precision: the SVM model achieves 100% precision in 9
origins but less than 60% in OP 6 and OP 10; the PLS-DA model
achieves 100% precision in 5 origins but only 30% in OP 10; the
Naive bayes model achieves 100% precision in 3 origins but less
than 40% in OP 5 and OP 10; and the PLS–NN model achieves
100% precision in 4 origins and is more than 70% precise in all
11 origins. In terms of recall, in OP 8 and OP 9, the NN model
has the highest recall, which is 81.2% and 100%, respectively. In
OP 10, the SVM model, the PLS-DA model and the NN model
have the highest recall, all at 100%. The PLS–NN model has the
highest recall for all but these three origins, and it has more
than 70% recall for all 11 origins.

The F1-Score is ameasure of the performance of a classication
model, which is the harmonic mean of Precision and Recall. The
F1-Score ranges from 0 to 1, and the closer it is to 1, the better the
performance of the classication model. In multicategorization
problems, if the F1-Score of themodel is to be calculated, there are
two ways of calculating it, Micro-F1 and Macro-F1. The Micro-F1
Score is used when the classes are unbalanced and it focuses on
the predicted results for each sample, while the Macro-F1 Score is
used when each class has similar importance and it averages the
F1-Score for each class to obtain an overall F1-Score. Since there is
no sample imbalance in this study and the samples of Cornus
officinalis from various origins have similar importance, we used
Macro-F1 Score to measure the performance of each model. Eqn
(11) and (12) are its expressions.

The Kappa coefficient is a metric that measures the consis-
tency between classiers or evaluators. It is used to assess the
agreement between the predicted and actual results of a model
in a classication task. The Kappa coefficient ranges from −1
to 1, where a value of 1 indicates perfect agreement, 0 indicates
gin identification model in 11 different origins, where PPV stands for

Naive bayes NN PLS–NN

R PPV TPR PPV TPR PPV TPR

.3 93.8 50.0 100 83.3 100 90.0

.7 81.2 76.5 87.5 82.4 100 88.2

.7 100 68.4 73.9 89.5 95.0 100

.0 100 84.0 96.2 100 96.2 100

.5 38.5 62.5 88.9 100 88.9 100

.1 56.0 63.6 81.5 100 88.0 100

.0 84.6 55.0 85.7 60.0 70.4 95.0

.5 90.0 56.2 81.2 81.2 92.3 75.0

.6 100 44.4 100 100 88.9 88.9
0 29.6 88.9 100 100 100 72.2
.3 91.7 84.6 85.7 92.3 100 100
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Table 3 Comparison results of models for origin identification of Cornus officinalis based on mid-infrared spectroscopy

Evaluation metrics Decision trees SVM PLS-DA Naive bayes NN PLS–NN

Accuracy (%) 58.4 75.6 73.6 67.0 88.8 91.9
F1-Score 0.565 0.767 0.773 0.685 0.890 0.916
Kappa 0.539 0.729 0.708 0.635 0.876 0.910
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agreement no better than chance, and negative values indicate
agreement worse than chance. Eqn (13) is the formula for the
Kappa coefficient, where p0 denotes the observed accuracy of
the classication model, i.e., the proportion of predictions
made by the classication model that match the actual results,
and pe denotes the expected value of the stochastic agreement
between the classication model and the actual results.30

F1i ¼ 2$
precisioni$recalli
precisioni þ recalli

(11)

Macro� F1 ¼
Pn
i¼1

F1i

n
(12)

Kappa ¼ p0 � pe

1� pe
(13)

Accuracy, F1-Score and Kappa coefficient were used to
comprehensively compare the performance of each model in
Cornus officinalis origin identication. These three metrics can
evaluate the performance of identication models from
different perspectives. Accuracy measures the proportion of
samples correctly predicted by the classier, the F1-Score
combines the precision and recall of the classier, and the
Kappa coefficient measures how well the classier agrees with
the random consistency.

As can be seen in Table 3, each model has a certain classi-
cation effect in the identication of the origin of Cornus offi-
cinalis. However, the Decision trees and Naive bayes models
need to be improved for classication, while PLS-DA, SVM
model and NN model showed good performance in Cornus
officinalis origin identication. Both in terms of accuracy, F1-
Score and Kappa coefficient, our proposed PLS–NN model
obtains the best results, which indicates that the PLS–NNmodel
has high accuracy and robustness.
5. Conclusions

The study of the identication of the origin of Chinese herbal
medicines is of great signicance in ensuring the quality of
Chinese herbal medicines, eliminating market confusion,
promoting scientic research, and protecting the ecological
environment.24,26 In this study, based on the mid-infrared
spectral data of Cornus officinalis samples, we proposed a che-
mometric model combining PLS and NN. By extracting the
information of spectral data through PLS method and
combining the NN model, we successfully realized the identi-
cation of the origin of Cornus officinalis. By testing 197 samples
15218 | RSC Adv., 2024, 14, 15209–15219
from 11 different origins externally, the PLS–NN model has an
accuracy of 91.9%. Compared with the NN model based on full-
spectrum data, the PLS–NN model proposed in this study not
only realizes the dimensionality reduction of spectral data, but
also has higher prediction accuracy. In addition, we also
compared other common chemometric models such as Deci-
sion trees, SVM, PLS-DA, and Naive bayes, and the results show
that the PLS–NN model performs the best in three metrics:
accuracy, F1-Score, and Kappa coefficient. This study provides
a rapid and effective method for the identication of the origin
of Chinese herbal medicines, and it also serves as a reference for
research in similar elds. However, although the model shows
good accuracy and robustness in cross-testing and external
testing, further research is needed to expand and apply this
practical technique. Future research could further rene and
validate the model's performance by collecting more samples
from different origins.
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