
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
Fe

br
ua

ry
 2

02
4.

 D
ow

nl
oa

de
d 

on
 1

0/
26

/2
02

5 
10

:3
9:

31
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Highly electron-
aSchool of Engineering Science, Kochi Unive

Kochi 782-8502, Japan. E-mail: ito.akitaka

kochi-tech.ac.jp
bResearch Center for Molecular Design, Koch

Kami, Kochi 782-8502, Japan

† Electronic supplementary information (E
the metal complexes and emission que
https://doi.org/10.1039/d4ra00845f

‡ Present address: The Institute of Scient
Osaka University, Ibaraki, Osaka 567-0047

Cite this: RSC Adv., 2024, 14, 5846

Received 2nd February 2024
Accepted 8th February 2024

DOI: 10.1039/d4ra00845f

rsc.li/rsc-advances

5846 | RSC Adv., 2024, 14, 5846–58
deficient 1-propyl-3,5-
dinitropyridinium: evaluation of electron-accepting
ability and application as an oxidative quencher for
metal complexes†

Akitaka Ito, *ab Yasuyuki Kuroda,a Kento Iwai, ab Soichi Yokoyama ‡ab

and Nagatoshi Nishiwaki *ab

Impacts of the nitro groups on the electron-accepting and oxidizing abilities of N-propylpyridinium were

evaluated quantitatively. A 3,5-dinitro derivative has efficiently quenched emission from photosensitizing

Ru(II) and Ir(III) complexes owing to the thermodynamically-favored electron transfer to the pyridinium

whose LUMO is greatly lowered by the presence of electron-withdrawing nitro groups.
Introduction

Pyridines are typical electron-decient heterocyclic compounds
that can be seen all around us as substructures of functional
materials such as pharmaceuticals, ligands, and optical and
electronic devices.1 The nucleophilic ring nitrogen, further-
more, undergoes N-alkylation, resulting in pyridinium salt.
Owing to their highly electron-decient aromatic character,
pyridinium skeletons have been utilized in a variety of natural/
articial systems as electron acceptors as represented by NAD+,2

methyl viologen3 and so forth.4 On the other hand, a nitro group
exhibits strong electron-withdrawing ability due to both reso-
nance and inductive effects, with the latter effect equivalent to
two chloro groups.5 Therefore, a combination of the highly
electron-decient pyridinium and strong electron-withdrawing
nitro group is expected to signicantly increase the oxidation
or electron-accepting abilities.

In our previous work, we have demonstrated that 1-propyl-
3,5-dinitropyridinium salt 2a$OTs is formed in situ upon treat-
ment of N-propyl-b-formyl-b-nitroenamine 1a (R = Pr) with p-
toluenesulfonic acid (TsOH), and formation of the salt 2a$OTs
is conrmed by trapping as 4-arylated 1,4-dihydropyridine
derivatives 3 with electron-rich benzenes.6 On the other hand,
3,5-dinitropyridine 4 was obtained when N-tert-butylenamine
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1b (R = t-Bu) was subjected to the same reaction, which is
because a stable tert-butyl cation is readily eliminated
(Scheme 1). The easy access to 3,5-dinitropyridine 4 facilitates
the N-modication to afford versatile N-alkyl-3,5-
dinitropyridinium salts 2. Indeed, treatment of 4 with propyl
triate (PrOTf) proceeded at room temperature to furnish
2a$OTf. This easily modiable feature prompted us to evaluate
the electron-acceptability of its N-alkylated form (2a+) by
comparing with 3-nitro and unsubstituted pyridinium relatives
(5+ and 6+) that are prepared from commercially available
pyridines by N-propylation.

Experimental
Preparation of 2a$OTf

A mixture of 3,5-dinitropyridine 4 (86 mg, 0.5 mmol) and PrOTf
(122 mg, 0.63 mmol) was stirred without solvent at room
temperature for 2 d. Colorless precipitates were collected and
washed with CH2Cl2 to afford 2a$OTf (95 mg, 0.28 mmol, 56%)
as colorless powder, mp 217.0–217.8 °C. 1H NMR (400 MHz,
CD3CN) d 1.03 (t, J = 7.6 Hz, 3H), 2.12 (tq, J = 7.6, 7.6 Hz, 2H),
Scheme 1 Generation of 1-alkyl-3,5-dinitropyridinium salts 2$OTs in
situ from N-alkyl-b-formyl-b-nitroenamines 1.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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4.80 (t, J = 7.6 Hz, 2H), 9.78 (t, J = 2.0 Hz, 1H), 9.94 ppm (d, J =
2.0 Hz, 2H); 13C NMR (100 MHz, CD3CN) d 10.2 (CH3), 25.3
(CH2), 66.5 (CH2), 121.8 (q, J = 318.0 Hz, CF3), 135.9 (CH), 147.3
(CH), 147.9 ppm (C); 19F NMR (376 MHz, CD3CN) d 79.36 ppm;
HRMS (ESI-TOF) calcd for C8H10N3O4 (M+): 212.0666, found:
212.0676.

Characterization of 5$OTf

mp 102.3–102.7 °C. 1H NMR (400 MHz, CD3CN) d 1.00 (t, J =
7.2 Hz, 3H), 2.06 (tq, J = 7.2, 7.2 Hz, 2H), 4.66 (t, J = 7.2 Hz, 2H),
8.30 (dd, J = 8.4 Hz, 6.2 HZ, 1H), 9.01 (dd, J = 6.2, 2.0 Hz, 1H),
9.18 (ddd, J = 8.4, 2.0, 1.2 Hz, 1H), 9.63 ppm (d, J = 1.2 Hz 1H);
13C NMR (100 MHz, CD3CN) d 10.3 (CH3), 25.2 (CH2), 65.2
(CH2), 125.1 (q, J = 319 Hz, CF3), 130.4 (CH), 141.0 (CH), 142.7
(CH), 147.8 (C), 150.1 ppm (CH); 19F NMR (376 MHz, CD3CN)
d 79.31 ppm; HRMS (ESI-TOF) calcd for C8H11N2O2 (M+):
167.0815, found: 167.0819.

Characterization of 6$OTf
1H NMR (400MHz, CD3CN) d 1.00 (t, J= 7.6 Hz, 3H), 2.06 (tq, J=
7.6, 7.6 Hz, 2H), 4.49 (t, J = 7.6 Hz, 2H), 8.03 (br, 2H), 8.51 (t, J =
7.6 Hz, 1H), 8.70 ppm (d, J = 5.6 Hz, 2H); 13C NMR (100 MHz,
CD3CN) d 9.3 (CH3), 24.0 (CH2), 62.9 (CH2), 120.9 (q, J = 318 Hz,
CF3), 128.1 (CH), 144.2 (CH), 145.5 ppm (CH); 19F NMR (376
MHz, CD3CN) d 79.30 ppm; HRMS (ESI-TOF) calcd for C8H12N
(M+): 122.0964, found: 122.0966.

Other chemicals

[Ru(bpy)3](PF6)2 (bpy= 2,20-bipyridine) is the same sample which
has been used in the earlier literatures.7 [Ir(ppy)2(bpy)]PF6 (ppyH
= 2-phenylpyridine) was synthesized and puried similarly to the
reported procedure.8 Tetra-n-butylammonium hexa-
uorophosphate (TBAPF6, Wako Pure Chemical Industries) was
puried by repeated recrystallizations from ethanol. Ferrocene
(Wako Pure Chemical Industries) was used as supplied. Anhy-
drous or spectroscopic-grade CH3CN (Wako Pure Chemical
Industries) was used without further purication for the elec-
trochemical or spectroscopic measurements, respectively.

Electrochemical measurements

Cyclic voltammetry of the complexes in CH3CN at 298 K was
performed by using a BAS ALS-1202A electrochemical analyzer
with a three-electrode system using glassy-carbon working, Ag
auxiliary, and Ag/AgNO3 reference electrodes (∼0.01 mol dm−3

(=M) in CH3CN containing ∼0.1 M TBAPF6) supplied by BAS
Inc. The sample solutions containing a pyridinium salt or metal
complex (∼1.0 mM) and TBAPF6 as a supporting electrolyte
(∼0.1 M) in the absence or presence of ferrocene as an internal
standard were deaerated by purging an argon-gas stream over
20 min prior to measurements. The potential sweep rate was
100 mV s−1.

Emission quenching study

Emission spectra were recorded and emission quantum yields
(Fem) were determined by the absolute method using
© 2024 The Author(s). Published by the Royal Society of Chemistry
a Hamamatsu Photonics Quantaurus-QY Plus C13534-02.
Emission intensity at each wavelength was corrected for
system spectral response so that the vertical axis of a spectrum
corresponds to the photon number at each wavelength. Emis-
sion decay proles of [Ir(ppy)2(bpy)]PF6 was measured by using
a Hamamatsu C4334 streak camera with a C5094 poly-
chromator by exciting at 400 nm using second harmonics of
a femtosecond-pulse mode-locked Ti:sapphire laser (MKS
Instruments Spectra-Physics Tsunami® 3941-M1BB and 3980
frequency doubler/pulse selector, 1 MHz) and analyzed by
a single exponential decay function. Sample solutions were
deaerated by purging with an argon-gas stream for over 30 min.

Free energy changes for the electron-transfer processes
(−DG) were calculated by:9

−DG = nF[E1/2(Q
+/0) − E1/2(M*)] + ZQZMe2/Dsd = nF[E1/2(Q

+/0)

− E1/2(M)] + E0(M*) + ZQZMe2/Dsd (1)

In eqn (1), E1/2(Q
+/0) is the reduction potential of Q+, and E1/2(M)

is the oxidation potential of the complex (1.32 and 1.63 V vs. SCE
for [Ru(bpy)3]

2+ and [Ir(ppy)2(bpy)]
+, respectively, see Fig. S1†).

E0(M*) is the excited-state zeroth energy and has been deter-
mined to be 16 360 and 16 850 cm−1 for [Ru(bpy)3]

2+ and
[Ir(ppy)2(bpy)]

+, respectively, by the Franck–Condon analysis.10

ZQ and ZM are the charges of Q+ and complex. d is the sum of
effective radii of Q+ and complex estimated for the optimized
geometries by DFT calculations (4.7, 4.6, 4.4, 6.2 and 6.2 Å for
2a+, 5+, 6+, [Ru(bpy)3]

2+ and [Ir(ppy)2(bpy)]
+, respectively). Ds, n, F

and e are the static dielectric constant of the solvent (relative
dielectric constant of CH3CN: 37.5), the number of electrons
transferred, the Faraday constant and the formal charge,
respectively. It should be noted that, in eqn (1), an electrostatic
work term for the electron-transfer products was omitted since
the reduced pyridiniums are charge-neutral.

Theoretical calculations

Theoretical calculations for the compounds were conducted
with Gaussian 09W soware (Revision C.01).11 The ground-state
geometries of the pyridinium cations were optimized by using
density functional theory (DFT) using the restricted B3LYP
functional with 6-31+G(d,p) basis set. All the optimized geom-
etries did not gave any negative frequencies under identical
methodologies. Lowest-energy unoccupied molecular orbitals
were plotted using GaussView 5.12 All the calculations were
carried out as in acetonitrile by using a polarizable continuum
model (PCM).

Results and discussion

Down-eld shis of the ring protons in the 1H NMR spectra in
CD3CN were observed as the number of nitro groups increased
(Fig. 1), indicating a decrease in the electron density of the
pyridine ring. All the pyridiniums 2a+, 5+ and 6+ in CH3CN
exhibited an irreversible reduction wave as shown in Fig. 2. Half
reduction potential (E1/2) was shied to a positive potential
region with increasing the nitro group (E1/2 = −0.061 (2a+),
−0.41 (5+) and −0.80 V (6+) vs. saturated calomel electrode
RSC Adv., 2024, 14, 5846–5850 | 5847
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Fig. 1 Chemical shifts of 1H NMR in CD3CN (given in ppm) and LUMO
distributions/energies of pyridiniums 2a+, 5+ and 6+.

Fig. 2 Cyclic voltammograms of 2a$OTf (blue), 5$OTf (pink) and
6$OTf (red) in deaerated CH3CN containing 0.1 M TBAPF6. Reversible
waves at around +0.43 V represent redox couples of ferrocene as an
internal standard.

Fig. 3 Emission spectra of [Ru(bpy)3](PF6)2 (a, 3.8 × 10−5 M, lex = 500
nm) and [Ir(ppy)2(bpy)]PF6 (b, 3.8 × 10−4 M, lex = 470 nm) in the
absence and presence of dinitropyridinium salt 2a$OTf ((0.0–4.0) ×
10−3 M: orange/green / black) in deaerated CH3CN.
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(SCE)). These tendencies were supported by DFT calculations,
as the LUMO energy of 2a+ was lowered to−4.4 eV (see Fig. 1). It
is, furthermore, worth emphasizing that the E1/2 value of 2a+ is
surprisingly positive even by comparing with that of methyl
viologen (−0.44 V vs. sodium saturated calomel electrode
(SSCE)13). In contrast to fully reversible redox behavior of methyl
viologen and resulting applications as a redox shuttle,3 the
highly-positive reduction potential of 2+ is advantageously
utilizable as a sacricial electron acceptor in the various
photochemical systems.

The strong electron-accepting ability of 2a+ is utilizable as an
oxidative quencher in photoinduced electron-transfer reactions.
As shown in Fig. 3(a), emission from a famous photosensitizer
[Ru(bpy)3]

2+ (ref. 14) in CH3CN (3.8 × 10−5 M) was reduced
upon addition of 2a+ ((0.0–4.0) × 10−3 M), and emission
quantum yield (Fem) of [Ru(bpy)3]

2+ was decreased from 0.096 to
5848 | RSC Adv., 2024, 14, 5846–5850
0.014 in the presence of 2a+ (4.0 × 10−3 M). Emission from
a cyclometalated iridium(III) complex [Ir(ppy)2(bpy)]

+ in CH3CN
(3.8 × 10−4 M) was also quenched when 2a+ coexisted in
a solution (Fem = 0.085 and 0.017 in the absence and presence
(4.0 × 10−3 M) of 2a+, respectively) as shown in Fig. 3(b). Stern–
Volmer plots for emission quenching of the complexes by 2a+

are shown in Fig. 4, together with those by 5+ and 6+ (emission
spectra are shown in Fig. S2–S5†). The plots exhibited good
linear dependences, irrespective of the complex and pyr-
idinium, as expressed by the Stern–Volmer equation: Fem,0/Fem

= 1 + kqs0[Q
+] with Fem,0 and Fem the emission quantum yields

in the absence and presence of the quencher (i.e., 2a+, 5+ or 6+),
respectively, kq the quenching rate constant, s0 the excited-state
lifetime of the complex in the absence of the quencher (890 and
300 ns for [Ru(bpy)3]

2+ 15 and [Ir(ppy)2(bpy)]
+, respectively), and

[Q+] the quencher concentration. As clearly seen in Fig. 4 and
Table 1, emission quenching by 2a+ (kq = 1.6 × 109 and 3.2 ×

109 M−1 s−1 for [Ru(bpy)3]
2+ and [Ir(ppy)2(bpy)]

+, respectively)
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Stem–Volmer plots for [Ru(bpy)3]
2+ (top panel) and [Ir(ppy)2(-

bpy)]+ (bottom panel) quenching by 2a+ (blue), 5+ (pink) and 6+ (red) in
deaerated CH3CN. Solid lines represent linear regressions with the
intercept fixed at 1.

Table 1 Reduction potentials, driving forces for electron transfer and
quenching rate constants of pyridiniums 2a+, 5+ and 6+

Q+ E1/2/V

[Ru(bpy)3]
2+ [Ir(ppy)2(bpy)]

+

−DG/eV kq/10
9 M−1 s−1 −DG/eV kq/10

9 M−1 s−1

2a+ −0.061 +0.72 1.6 +0.43 3.2
5+ −0.41 +0.37 0.99 +0.084 1.0
6+ −0.80 +0.016 0.048 −0.30 <0.01
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was more efficient than those by 5+ and 6+ (kq # 1.0 × 109 M−1

s−1), indicating that the more nitro group, the stronger the
quenching ability.

The efficient emission quenching by 2a+ can be discussed in
terms of a driving force of the electron-transfer process (−DG,
Table 1), which is calculated from the reduction potentials of
the pyridinium, the oxidation potentials of the excited-state
complexes and so forth. The kq value correlates well with the
−DG value, suggesting that the observed emission quenching
originates in the electron transfer from the metal complex (i.e.,
[Ru(bpy)3]

2+ or [Ir(ppy)2(bpy)]
+) in the excited state to pyr-

idinium (i.e., 2a+, 5+ or 6+). It is worth noting that the electron
transfer between [Ir(ppy)2(bpy)]

+* to 6+ is highly an endergonic
process (−DG = −0.30 eV) and, therefore, no emission
quenching has been observed. Thus, an introduction of a nitro
© 2024 The Author(s). Published by the Royal Society of Chemistry
group(s) into a pyridinium skeleton improves the electron-
accepting ability.

Conclusions

A combination of an electron-decient pyridinium and
electron-withdrawing nitro group(s) enhanced electron-
accepting and oxidizing abilities. Each nitro-group introduc-
tion lowered the LUMO by several tenths of an electron volt, and
dinitropyridinium 2a+ especially served as an excellent oxidative
quencher in photoinduced electron-transfer reactions. Since
pyridinium derivatives have attracted increasing interest and
utilized in a variety of photochemical systems such as natural/
articial photosynthesis, these nitropyridiniums are possible
candidates as a new class of electron acceptors.
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