# **RSC Advances**



# PAPER

View Article Online



Cite this: RSC Adv., 2024, 14, 5846

# Highly electron-deficient 1-propyl-3,5dinitropyridinium: evaluation of electron-accepting ability and application as an oxidative quencher for metal complexes†

Akitaka Ito, \*\*D\*\*ab Yasuyuki Kuroda, \*\* Kento Iwai, \*\*D\*\*ab Soichi Yokoyama \*\*D\*\*±ab and Nagatoshi Nishiwaki (1) \*ab

Received 2nd February 2024 Accepted 8th February 2024

DOI: 10.1039/d4ra00845f

rsc.li/rsc-advances

Impacts of the nitro groups on the electron-accepting and oxidizing abilities of N-propylpyridinium were evaluated quantitatively. A 3,5-dinitro derivative has efficiently quenched emission from photosensitizing Ru(II) and Ir(III) complexes owing to the thermodynamically-favored electron transfer to the pyridinium whose LUMO is greatly lowered by the presence of electron-withdrawing nitro groups.

## Introduction

Pyridines are typical electron-deficient heterocyclic compounds that can be seen all around us as substructures of functional materials such as pharmaceuticals, ligands, and optical and electronic devices.1 The nucleophilic ring nitrogen, furthermore, undergoes N-alkylation, resulting in pyridinium salt. Owing to their highly electron-deficient aromatic character, pyridinium skeletons have been utilized in a variety of natural/ artificial systems as electron acceptors as represented by NAD<sup>+</sup>,<sup>2</sup> methyl viologen<sup>3</sup> and so forth.<sup>4</sup> On the other hand, a nitro group exhibits strong electron-withdrawing ability due to both resonance and inductive effects, with the latter effect equivalent to two chloro groups.5 Therefore, a combination of the highly electron-deficient pyridinium and strong electron-withdrawing nitro group is expected to significantly increase the oxidation or electron-accepting abilities.

In our previous work, we have demonstrated that 1-propyl-3,5-dinitropyridinium salt 2a · OTs is formed in situ upon treatment of N-propyl- $\beta$ -formyl- $\beta$ -nitroenamine 1a (R = Pr) with ptoluenesulfonic acid (TsOH), and formation of the salt 2a · OTs is confirmed by trapping as 4-arylated 1,4-dihydropyridine derivatives 3 with electron-rich benzenes.6 On the other hand, 3,5-dinitropyridine 4 was obtained when N-tert-butylenamine

## **Experimental**

## Preparation of 2a · OTf

A mixture of 3,5-dinitropyridine 4 (86 mg, 0.5 mmol) and PrOTf (122 mg, 0.63 mmol) was stirred without solvent at room temperature for 2 d. Colorless precipitates were collected and washed with CH<sub>2</sub>Cl<sub>2</sub> to afford 2a · OTf (95 mg, 0.28 mmol, 56%) as colorless powder, mp 217.0-217.8 °C. <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN)  $\delta$  1.03 (t, J = 7.6 Hz, 3H), 2.12 (tq, J = 7.6, 7.6 Hz, 2H),

Scheme 1 Generation of 1-alkyl-3,5-dinitropyridinium salts 2.OTs in situ from N-alkyl-β-formyl-β-nitroenamines 1.

**<sup>1</sup>b** (R = t-Bu) was subjected to the same reaction, which is because a stable tert-butyl cation is readily eliminated (Scheme 1). The easy access to 3,5-dinitropyridine 4 facilitates N-modification to afford versatile N-alkyl-3,5dinitropyridinium salts 2. Indeed, treatment of 4 with propyl triflate (PrOTf) proceeded at room temperature to furnish 2a · OTf. This easily modifiable feature prompted us to evaluate the electron-acceptability of its N-alkylated form (2a<sup>+</sup>) by comparing with 3-nitro and unsubstituted pyridinium relatives (5<sup>+</sup> and 6<sup>+</sup>) that are prepared from commercially available pyridines by N-propylation.

OTs 1a (R = Pr)

aSchool of Engineering Science, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan. E-mail: ito.akitaka@kochi-tech.ac.jp, nishiwaki.nagatoshi@ kochi-tech.ac.jp

<sup>&</sup>lt;sup>b</sup>Research Center for Molecular Design, Kochi University of Technology, Tosayamada, Kami, Kochi 782-8502, Japan

<sup>†</sup> Electronic supplementary information (ESI) available: Cyclic voltammograms of the metal complexes and emission quenching data by 5<sup>+</sup> and 6<sup>+</sup>. See DOI: https://doi.org/10.1039/d4ra00845f

<sup>†</sup> Present address: The Institute of Scientific and Industrial Research (SANKEN). Osaka University, Ibaraki, Osaka 567-0047, Japan.

4.80 (t, J = 7.6 Hz, 2H), 9.78 (t, J = 2.0 Hz, 1H), 9.94 ppm (d, J = 2.0 Hz, 2H);  $^{13}$ C NMR (100 MHz, CD<sub>3</sub>CN)  $\delta$  10.2 (CH<sub>3</sub>), 25.3 (CH<sub>2</sub>), 66.5 (CH<sub>2</sub>), 121.8 (q, J = 318.0 Hz, CF<sub>3</sub>), 135.9 (CH), 147.3 (CH), 147.9 ppm (C);  $^{19}$ F NMR (376 MHz, CD<sub>3</sub>CN)  $\delta$  79.36 ppm; HRMS (ESI-TOF) calcd for C<sub>8</sub>H<sub>10</sub>N<sub>3</sub>O<sub>4</sub> (M<sup>+</sup>): 212.0666, found: 212.0676.

#### Characterization of 5 · OTf

Paper

mp 102.3–102.7 °C. ¹H NMR (400 MHz, CD<sub>3</sub>CN) δ 1.00 (t, J=7.2 Hz, 3H), 2.06 (tq, J=7.2, 7.2 Hz, 2H), 4.66 (t, J=7.2 Hz, 2H), 8.30 (dd, J=8.4 Hz, 6.2 HZ, 1H), 9.01 (dd, J=6.2, 2.0 Hz, 1H), 9.18 (ddd, J=8.4, 2.0, 1.2 Hz, 1H), 9.63 ppm (d, J=1.2 Hz 1H);  $^{13}$ C NMR (100 MHz, CD<sub>3</sub>CN) δ 10.3 (CH<sub>3</sub>), 25.2 (CH<sub>2</sub>), 65.2 (CH<sub>2</sub>), 125.1 (q, J=319 Hz, CF<sub>3</sub>), 130.4 (CH), 141.0 (CH), 142.7 (CH), 147.8 (C), 150.1 ppm (CH);  $^{19}$ F NMR (376 MHz, CD<sub>3</sub>CN) δ 79.31 ppm; HRMS (ESI-TOF) calcd for C<sub>8</sub>H<sub>11</sub>N<sub>2</sub>O<sub>2</sub> (M<sup>†</sup>): 167.0815, found: 167.0819.

#### Characterization of 6 · OTf

<sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN) δ 1.00 (t, J = 7.6 Hz, 3H), 2.06 (tq, J = 7.6, 7.6 Hz, 2H), 4.49 (t, J = 7.6 Hz, 2H), 8.03 (br, 2H), 8.51 (t, J = 7.6 Hz, 1H), 8.70 ppm (d, J = 5.6 Hz, 2H); <sup>13</sup>C NMR (100 MHz, CD<sub>3</sub>CN) δ 9.3 (CH<sub>3</sub>), 24.0 (CH<sub>2</sub>), 62.9 (CH<sub>2</sub>), 120.9 (q, J = 318 Hz, CF<sub>3</sub>), 128.1 (CH), 144.2 (CH), 145.5 ppm (CH); <sup>19</sup>F NMR (376 MHz, CD<sub>3</sub>CN) δ 79.30 ppm; HRMS (ESI-TOF) calcd for C<sub>8</sub>H<sub>12</sub>N (M<sup>+</sup>): 122.0964, found: 122.0966.

#### Other chemicals

 $[Ru(bpy)_3](PF_6)_2$  (bpy = 2,2'-bipyridine) is the same sample which has been used in the earlier literatures.  $^7$  [Ir(ppy)\_2(bpy)]PF\_6 (ppyH = 2-phenylpyridine) was synthesized and purified similarly to the reported procedure.  $^8$  Tetra-n-butylammonium hexafluorophosphate (TBAPF\_6, Wako Pure Chemical Industries) was purified by repeated recrystallizations from ethanol. Ferrocene (Wako Pure Chemical Industries) was used as supplied. Anhydrous or spectroscopic-grade CH\_3CN (Wako Pure Chemical Industries) was used without further purification for the electrochemical or spectroscopic measurements, respectively.

## **Electrochemical measurements**

Cyclic voltammetry of the complexes in CH<sub>3</sub>CN at 298 K was performed by using a BAS ALS-1202A electrochemical analyzer with a three-electrode system using glassy-carbon working, Ag auxiliary, and Ag/AgNO<sub>3</sub> reference electrodes ( $\sim$ 0.01 mol dm<sup>-3</sup> (=M) in CH<sub>3</sub>CN containing  $\sim$ 0.1 M TBAPF<sub>6</sub>) supplied by BAS Inc. The sample solutions containing a pyridinium salt or metal complex ( $\sim$ 1.0 mM) and TBAPF<sub>6</sub> as a supporting electrolyte ( $\sim$ 0.1 M) in the absence or presence of ferrocene as an internal standard were deaerated by purging an argon-gas stream over 20 min prior to measurements. The potential sweep rate was 100 mV s<sup>-1</sup>.

#### **Emission quenching study**

Emission spectra were recorded and emission quantum yields  $(\Phi_{\rm em})$  were determined by the absolute method using

a Hamamatsu Photonics Quantaurus-QY Plus C13534-02. Emission intensity at each wavelength was corrected for system spectral response so that the vertical axis of a spectrum corresponds to the photon number at each wavelength. Emission decay profiles of [Ir(ppy)<sub>2</sub>(bpy)]PF<sub>6</sub> was measured by using a Hamamatsu C4334 streak camera with a C5094 polychromator by exciting at 400 nm using second harmonics of a femtosecond-pulse mode-locked Ti:sapphire laser (MKS Instruments Spectra-Physics Tsunami<sup>®</sup> 3941-M1BB and 3980 frequency doubler/pulse selector, 1 MHz) and analyzed by a single exponential decay function. Sample solutions were deaerated by purging with an argon-gas stream for over 30 min.

Free energy changes for the electron-transfer processes  $(-\Delta G)$  were calculated by:

$$\begin{split} -\Delta G &= nF[E_{1/2}(\mathbf{Q}^{+/0}) - E_{1/2}(\mathbf{M}^*)] + Z_{\mathbf{Q}}Z_{\mathbf{M}}e^2/D_sd = nF[E_{1/2}(\mathbf{Q}^{+/0}) \\ &- E_{1/2}(\mathbf{M})] + E_0(\mathbf{M}^*) + Z_{\mathbf{Q}}Z_{\mathbf{M}}e^2/D_sd \quad \ \ (1) \end{split}$$

In eqn (1),  $E_{1/2}(Q^{+/0})$  is the reduction potential of  $Q^+$ , and  $E_{1/2}(M)$ is the oxidation potential of the complex (1.32 and 1.63 V vs. SCE for [Ru(bpy)<sub>3</sub>]<sup>2+</sup> and [Ir(ppy)<sub>2</sub>(bpy)]<sup>+</sup>, respectively, see Fig. S1†).  $E_0(M^*)$  is the excited-state zeroth energy and has been determined to be 16 360 and 16 850 cm<sup>-1</sup> for  $[Ru(bpy)_3]^{2+}$  and [Ir(ppy)<sub>2</sub>(bpy)]<sup>+</sup>, respectively, by the Franck-Condon analysis. 10  $Z_{\rm O}$  and  $Z_{\rm M}$  are the charges of Q<sup>+</sup> and complex. d is the sum of effective radii of Q<sup>+</sup> and complex estimated for the optimized geometries by DFT calculations (4.7, 4.6, 4.4, 6.2 and 6.2 Å for  $2\mathbf{a}^+, \mathbf{5}^+, \mathbf{6}^+, [\text{Ru}(\text{bpy})_3]^{2+} \text{ and } [\text{Ir}(\text{ppy})_2(\text{bpy})]^+, \text{ respectively}). D_s, n, F$ and e are the static dielectric constant of the solvent (relative dielectric constant of CH<sub>3</sub>CN: 37.5), the number of electrons transferred, the Faraday constant and the formal charge, respectively. It should be noted that, in eqn (1), an electrostatic work term for the electron-transfer products was omitted since the reduced pyridiniums are charge-neutral.

### Theoretical calculations

Theoretical calculations for the compounds were conducted with Gaussian 09W software (Revision C.01).<sup>11</sup> The ground-state geometries of the pyridinium cations were optimized by using density functional theory (DFT) using the restricted B3LYP functional with 6-31+G(d,p) basis set. All the optimized geometries did not gave any negative frequencies under identical methodologies. Lowest-energy unoccupied molecular orbitals were plotted using GaussView 5.<sup>12</sup> All the calculations were carried out as in acetonitrile by using a polarizable continuum model (PCM).

## Results and discussion

Down-field shifts of the ring protons in the  $^{1}$ H NMR spectra in CD<sub>3</sub>CN were observed as the number of nitro groups increased (Fig. 1), indicating a decrease in the electron density of the pyridine ring. All the pyridiniums  $2\mathbf{a}^{+}$ ,  $5^{+}$  and  $6^{+}$  in CH<sub>3</sub>CN exhibited an irreversible reduction wave as shown in Fig. 2. Half reduction potential ( $E_{1/2}$ ) was shifted to a positive potential region with increasing the nitro group ( $E_{1/2} = -0.061$  ( $2\mathbf{a}^{+}$ ), -0.41 ( $5^{+}$ ) and -0.80 V ( $6^{+}$ ) vs. saturated calomel electrode

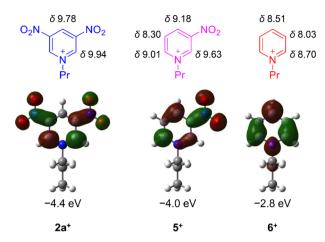



Fig. 1 Chemical shifts of  $^1H$  NMR in CD<sub>3</sub>CN (given in ppm) and LUMO distributions/energies of pyridiniums  $2a^+$ ,  $5^+$  and  $6^+$ .

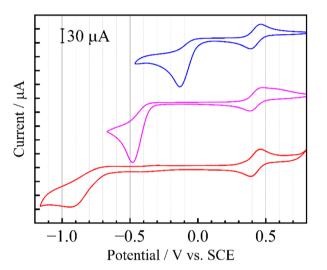
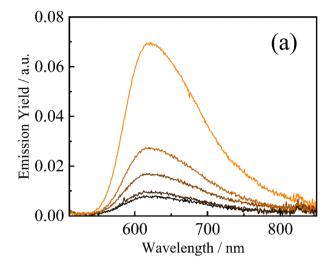




Fig. 2 Cyclic voltammograms of  $2a \cdot \text{OTf}$  (blue),  $5 \cdot \text{OTf}$  (pink) and  $6 \cdot \text{OTf}$  (red) in deaerated CH<sub>3</sub>CN containing 0.1 M TBAPF<sub>6</sub>. Reversible waves at around +0.43 V represent redox couples of ferrocene as an internal standard.

(SCE)). These tendencies were supported by DFT calculations, as the LUMO energy of  $2\mathbf{a}^+$  was lowered to -4.4 eV (see Fig. 1). It is, furthermore, worth emphasizing that the  $E_{1/2}$  value of  $2\mathbf{a}^+$  is surprisingly positive even by comparing with that of methyl viologen (-0.44 V  $\nu s$ . sodium saturated calomel electrode (SSCE)<sup>13</sup>). In contrast to fully reversible redox behavior of methyl viologen and resulting applications as a redox shuttle,<sup>3</sup> the highly-positive reduction potential of  $2^+$  is advantageously utilizable as a sacrificial electron acceptor in the various photochemical systems.

The strong electron-accepting ability of  $2a^+$  is utilizable as an oxidative quencher in photoinduced electron-transfer reactions. As shown in Fig. 3(a), emission from a famous photosensitizer  $[Ru(bpy)_3]^{2^+}$  (ref. 14) in CH<sub>3</sub>CN (3.8 × 10<sup>-5</sup> M) was reduced upon addition of  $2a^+$  ((0.0–4.0) × 10<sup>-3</sup> M), and emission quantum yield ( $\Phi_{em}$ ) of  $[Ru(bpy)_3]^{2^+}$  was decreased from 0.096 to



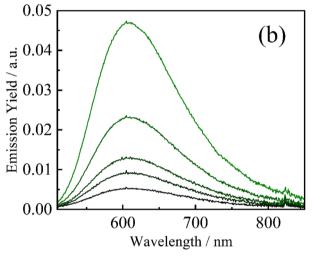



Fig. 3 Emission spectra of [Ru(bpy)<sub>3</sub>](PF<sub>6</sub>)<sub>2</sub> (a,  $3.8 \times 10^{-5}$  M,  $\lambda_{ex} = 500$  nm) and [Ir(ppy)<sub>2</sub>(bpy)]PF<sub>6</sub> (b,  $3.8 \times 10^{-4}$  M,  $\lambda_{ex} = 470$  nm) in the absence and presence of dinitropyridinium salt  $2a \cdot \text{OTf}$  ((0.0–4.0)  $\times 10^{-3}$  M: orange/green  $\rightarrow$  black) in deaerated CH<sub>3</sub>CN.

0.014 in the presence of  $2a^+$  (4.0  $\times$  10<sup>-3</sup> M). Emission from a cyclometalated iridium(III) complex [Ir(ppy)2(bpy)]+ in CH3CN  $(3.8 \times 10^{-4} \text{ M})$  was also quenched when  $2a^{+}$  coexisted in a solution ( $\Phi_{
m em}=0.085$  and 0.017 in the absence and presence  $(4.0 \times 10^{-3} \text{ M}) \text{ of } 2a^+, \text{ respectively})$  as shown in Fig. 3(b). Stern-Volmer plots for emission quenching of the complexes by  $2a^+$ are shown in Fig. 4, together with those by 5<sup>+</sup> and 6<sup>+</sup> (emission spectra are shown in Fig. S2-S5†). The plots exhibited good linear dependences, irrespective of the complex and pyridinium, as expressed by the Stern-Volmer equation:  $\Phi_{\mathrm{em,0}}/\Phi_{\mathrm{em}}$ = 1 +  $k_q \tau_0[Q^+]$  with  $\Phi_{\rm em,0}$  and  $\Phi_{\rm em}$  the emission quantum yields in the absence and presence of the quencher (i.e.,  $2a^+$ ,  $5^+$  or  $6^+$ ), respectively,  $k_q$  the quenching rate constant,  $\tau_0$  the excited-state lifetime of the complex in the absence of the quencher (890 and 300 ns for  $[Ru(bpy)_3]^{2+15}$  and  $[Ir(ppy)_2(bpy)]^+$ , respectively), and [Q<sup>+</sup>] the quencher concentration. As clearly seen in Fig. 4 and Table 1, emission quenching by  $2a^+$  ( $k_q = 1.6 \times 10^9$  and  $3.2 \times 10^9$  $10^9 \text{ M}^{-1} \text{ s}^{-1} \text{ for } [\text{Ru(bpy)}_3]^{2+} \text{ and } [\text{Ir(ppy)}_2(\text{bpy)}]^+, \text{ respectively)}$ 

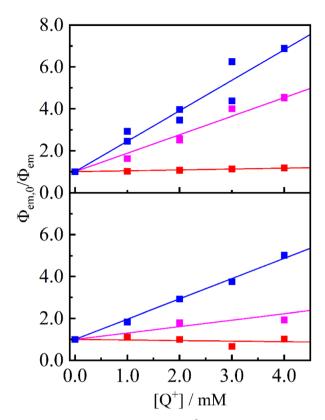



Fig. 4 Stem–Volmer plots for  $[Ru(bpy)_3]^{2+}$  (top panel) and  $[Ir(ppy)_2(-bpy)]^+$  (bottom panel) quenching by  $2a^+$  (blue),  $5^+$  (pink) and  $6^+$  (red) in deaerated CH<sub>3</sub>CN. Solid lines represent linear regressions with the intercept fixed at 1.

Table 1 Reduction potentials, driving forces for electron transfer and quenching rate constants of pyridiniums  $2a^+$ ,  $5^+$  and  $6^+$ 

|                                                     |                        | [Ru(bpy) <sub>3</sub> ] <sup>2+</sup> |                                            | ${\rm [Ir(ppy)_2(bpy)]^+}$ |                                            |
|-----------------------------------------------------|------------------------|---------------------------------------|--------------------------------------------|----------------------------|--------------------------------------------|
| $Q^+$                                               | $E_{1/2}/{ m V}$       | $-\Delta G/\mathrm{eV}$               | $k_{\rm q}/10^9~{\rm M}^{-1}~{\rm s}^{-1}$ | $-\Delta G/\mathrm{eV}$    | $k_{\rm q}/10^9~{\rm M}^{-1}~{\rm s}^{-1}$ |
| 2a <sup>+</sup><br>5 <sup>+</sup><br>6 <sup>+</sup> | -0.061 $-0.41$ $-0.80$ | +0.72<br>+0.37<br>+0.016              | 1.6<br>0.99<br>0.048                       | +0.43<br>+0.084<br>-0.30   | 3.2<br>1.0<br><0.01                        |

was more efficient than those by 5<sup>+</sup> and 6<sup>+</sup> ( $k_q \le 1.0 \times 10^9 \text{ M}^{-1} \text{ s}^{-1}$ ), indicating that the more nitro group, the stronger the quenching ability.

The efficient emission quenching by  $2\mathbf{a}^+$  can be discussed in terms of a driving force of the electron-transfer process  $(-\Delta G, \text{Table 1})$ , which is calculated from the reduction potentials of the pyridinium, the oxidation potentials of the excited-state complexes and so forth. The  $k_q$  value correlates well with the  $-\Delta G$  value, suggesting that the observed emission quenching originates in the electron transfer from the metal complex (*i.e.*,  $[\text{Ru}(\text{bpy})_3]^{2^+}$  or  $[\text{Ir}(\text{ppy})_2(\text{bpy})]^+)$  in the excited state to pyridinium (*i.e.*,  $2\mathbf{a}^+$ ,  $5^+$  or  $6^+$ ). It is worth noting that the electron transfer between  $[\text{Ir}(\text{ppy})_2(\text{bpy})]^{+*}$  to  $6^+$  is highly an endergonic process  $(-\Delta G = -0.30 \text{ eV})$  and, therefore, no emission quenching has been observed. Thus, an introduction of a nitro

group(s) into a pyridinium skeleton improves the electron-accepting ability.

## Conclusions

A combination of an electron-deficient pyridinium and electron-withdrawing nitro group(s) enhanced electron-accepting and oxidizing abilities. Each nitro-group introduction lowered the LUMO by several tenths of an electron volt, and dinitropyridinium  $2a^+$  especially served as an excellent oxidative quencher in photoinduced electron-transfer reactions. Since pyridinium derivatives have attracted increasing interest and utilized in a variety of photochemical systems such as natural/artificial photosynthesis, these nitropyridiniums are possible candidates as a new class of electron acceptors.

## Author contributions

A. Ito: conceptulization, data curation, writing – original draft, and supervision. Y. Kuroda, K. Iwai and S. Yokoyama: investigation. N. Nishiwaki: supervision and writing – review & editing.

## Conflicts of interest

There are no conflicts to declare.

# Notes and references

- 1 J. A. Joule and K. Mills, *Heterocyclic Chemistry*, Wiley-Blackwell, New York, 5th edn, 2010.
- 2 A. Fulton and L. E. Lyons, Aust. J. Chem., 1967, 20, 2267;
  G. Unden and J. Bongaerts, Biochim. Biophys. Acta, 1997, 1320, 217; J. Barber, Chem. Phys. Rev., 2009, 38, 185.
- 3 K. Kalyanasundaram, J. Kiwi and M. Grätzel, *Helv. Chim. Acta*, 1978, **61**, 2720; H. Misawa, H. Sakuragi, Y. Usui and K. Tokumaru, *Chem. Lett.*, 1983, **12**, 1021; A. Bose, P. He, C. Liu, B. D. Ellman, R. J. Twieg and S. D. Huang, *J. Am. Chem. Soc.*, 2002, **124**, 4; A. Ito, D. J. Stewart, Z. Fang, M. K. Brennaman and T. J. Meyer, *Proc. Natl. Acad. Sci. U.S.A.*, 2012, **109**, 15132; H. Yamamoto, M. Taomoto, A. Ito and D. Kosumi, *J. Photochem. Photobiol.*, *A*, 2020, **401**, 112771.
- 4 D. Mauzerall and F. H. Westheimer, *J. Am. Chem. Soc.*, 1955, 77, 2261; S. Fukuzumi, S. Koumitsu, K. Hironaka and T. Tanaka, *J. Am. Chem. Soc.*, 1987, **109**, 305; A. Kobayashi, H. Konno, K. Sakamoto, A. Sekine, Y. Ohashi, M. Iida and O. Ishitani, *Chem.–Eur. J.*, 2005, **11**, 4219; S. Ikeyama and Y. Amao, *ChemCatChem*, 2017, **9**, 833.
- 5 N. Nishiwaki and M. Ariga, Top. Heterocycl. Chem., 2007, 8, 43.
- 6 H. Asahara, M. Hamada, Y. Nakaike and N. Nishiwaki, RSC Adv., 2015, 5, 90778; Y. Nakaike, N. Nishiwaki, M. Ariga and Y. Tobe, J. Org. Chem., 2014, 79, 2163.
- 7 A. Ito, D. J. Stewart, Z. Fang, M. K. Brennaman and T. J. Meyer, *Proc. Natl. Acad. Sci. USA*, 2012, 109, 15132;
  A. Ito, D. J. Stewart, T. E. Knight, Z. Fang,

- M. K. Brennaman and T. J. Meyer, *J. Phys. Chem. B*, 2013, **117**, 3428; A. Ito, Z. Fang, M. K. Brennaman and T. J. Meyer, *Phys. Chem. Chem. Phys.*, 2014, **16**, 4880.
- 8 J. Sun, F. Zhong, X. Yi and J. Zhao, *Inorg. Chem.*, 2013, 52, 6299.
- 9 Gibbs energy of photoinduced electron transfer, in *IUPAC Compendium of Chemical Terminology*, International Union of Pure and Applied Chemistry (IUPAC), 3rd edn, 2019, DOI: 10.1351/goldbook.GT07388.
- 10 A. Ito and T. J. Meyer, *Phys. Chem. Chem. Phys.*, 2012, **14**, 13731.
- M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. J. A. Montgomery, J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd,
- E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, *Gaussian 09 (Revision C.01)*, Gaussian, Inc., Wallingford, CT, 2009.
- 12 R. Dennington, T. Keith and J. Millam, *GaussView Version 5*, Semichem Inc., Shawnee Mission, KS, 2009.
- 13 J. N. Younathan, W. E. Jones and T. J. Meyer, J. Phys. Chem., 1991, 95, 488.
- 14 D. W. Thompson, A. Ito and T. J. Meyer, *Pure Appl. Chem.*, 2013, **85**, 1257.
- 15 A. Nakagawa, E. Sakuda, A. Ito and N. Kitamura, *Inorg. Chem.*, 2015, 54, 10287.