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ach performance in calculating
the ligand-binding free energy†
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Alchemical binding free energy calculations are one of the most accurate methods for estimating ligand-

binding affinity. Assessing the accuracy of the approach over protein targets is one of the most

interesting issues. The free energy difference of binding between a protein and a ligand was calculated

via the alchemical approach. The alchemical approach exhibits satisfactory accuracy over four targets,

including AmpC beta-lactamase (AmpC); glutamate receptor, ionotropic kainate 1 (GluK1); heat shock

protein 90 (Hsp90); and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease

(Mpro). In particular, the correlation coefficients between calculated binding free energies and the

respective experiments over four targets range from 0.56 to 0.86. The affinity computed via free energy

perturbation (FEP) simulations is overestimated over the experimental value. Particularly, the electrostatic

interaction free energy rules the binding process of ligands to AmpC and GluK1. However, the van der

Waals (vdW) interaction free energy plays an important role in the ligand-binding processes of HSP90

and SARS-CoV-2 Mpro. The obtained results associate with the hydrophilic or hydrophobic properties of

the ligands. This observation may enhance computer-aided drug design.
Introduction

Binding processes between biomolecules are crucial in physical
chemistry and related elds.1 Fundamental problems are
associated with chemical reactions, including the interaction of
a gene with another gene,2 of a gene with a protein,3 of a protein
with another protein,4 and of a compound with a protein,5 etc.
Among these, noncovalent binding free energy, DGbind, can be
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computed via molecular dynamics (MD) simulations.6 The
metric is related to the inhibition constant, ki, via the formula
DGbind = RT ln(ki), where T is the absolute temperature and R is
the gas constant.

In computer-aided drug design (CADD), accurately esti-
mating the value of DGbind is a crucial task owing to its asso-
ciation with the protein–ligand binding mechanism.6–10

Moreover, the performance of the estimation of ligand-binding
affinity relates to the reduction of therapeutic cost.11,12 There-
fore, scientists have developed several computational methods
to characterize ligand-binding free energies using physics as
well as knowledge-based methods.13–29 Generally, the more
accurate and precise the approach, the more the cost of
computing resources.30–33 Among these, the free energy pertur-
bation method,34 which is also known as the alchemical
approach, is recognized to be one of the most accurate methods
for determining ligand-binding affinity till date.1,35However, the
computational approach forms the correlation coefficient,
which varies in a large range.36,37 Additionally, assessing the
performance of a computational approach across different
targets is interesting.28,29,38–40 More details, performance of
AutoDock Vina over 800 experimental complexes were bench-
marked.39 The SQM/COSMO lter scoring over various protein
targets including acetylcholine esterase, TNF-a converting
enzyme, aldose reductase, HIV-1 protease, and carbonic anhy-
drase II was tested.28,29 In these works, the SQM/COSMO lter
scoring dominated over various approaches.
RSC Adv., 2024, 14, 14875–14885 | 14875
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Recently, several studies were attempted to enhance the
performance of alchemical calculations.40–43 However, overall,
all of these schemes require massive costs of computing
resources compared with the traditional ones. The combined
approaches are less popular than the original FEP method. FEP
calculations estimates absolute binding free energy between
two biomolecules via two states without reference to a third
state.44–46 FEP simulations are also performed to simply calcu-
late the relative binding free energy between two biomolecules
upon two states relative to a third state, which is typically the
ground state.47–49 In addition, the performance of a computa-
tional approach strongly depend on applied targets,28,29,50 FEP
performance over considered proteins is required to access.

Herein, the performance of the alchemical approach on 4
protein targets including AmpC beta-lactamase (AmpC), gluta-
mate receptor, ionotropic kainate 1 (GluK1), heat shock protein
90 (Hsp90), and SARS-CoV-2 Mpro was assessed. The targets
included AmpC involving 1XGI,51 1XGJ,51 2HDU,52 2PU2,53

2R9W,53 2R9X,53 3GR2,54 4KZ3,55 4KZ5,55 and 4OKP;56 GluK1
involving 1VSO,57 2PBW,57 2ZNS,58 2ZNU,58 3FV1,58 3FV2,58

3FVG,58 3FVK,58 4E0X,59 and 4DLD;60 Hsp90 involving 2QG0,61

2QG2,61 3K97,62 3NMQ,63 3QDD,64 3 R4M,65 4CWF,66 4CWT,66

4NH8,67 and 4O07;68 and SARS-CoV-2 Mpro involving 6M2N,69

6WTT,70 6XBG,71 6XMK,72 7B3E,73 7L8I,74 7LDL,75 7NG3,76

7CBT,77 and 8A4T.78 Alchemical calculations yielded an appro-
priate result for the three targets including AmpC, GluK1, and
Hsp90. Moreover, applying FEP on SARS-CoV-2 Mpro requires
additional calibrate.
Material and methods
Protein–ligand complexes

The three-dimensional structure of 40 complexes (cf. Fig. 1 and
Table S1 of the ESI†), whose identies are expressed below, was
obtained from the Protein Data Bank. Among these, proteins
were parameterized via the Amber99SB-ILDN force eld.79 The
ligands were topologized by the general Amber force eld.80 In
particular, the charge of the ligands was achieved via the
restrained electrostatic potential scheme81 using the quantum
calculation at the B3LYP/6-31G(d,p) level of theory. Notably, the
ligand protonation state was estimated via the chemicalize
webserver.82 During simulations, the complex and individual
ligand were inserted into a solvated box, which water molecule
was parameterized via the TIP3P water model.83 Besides, the
covalent binding between SARS-CoV-2 Mpro and ligand was not
modelled in traditional MD simulations.
Alchemical calculations

The perturbation simulations were performed to change the
system from state A (bound) to B (unbound).34 In particular,
a coupling parameter l is typically used to conduct the task, and
the process is known as perturbation simulations. The free
energy change, DG, from different states was obtained via
several perturbation simulations. Several values of l, which
include two sets of lelec and lvdW changing electrostatic and
vdW interactions, respectively, ranging from 0 to 1 can be used
14876 | RSC Adv., 2024, 14, 14875–14885
to turn the Hamiltonian of the system from state A to B. Thus,
DG can be computed via formula as follows

DGl¼0/1 ¼ �kBT ln

*
e
� DH
kBT

+
l¼0

(1)

where H is the systemic Hamiltonian, kB is the Boltzmann
constant, and T is the absolute temperature. The Bennett
acceptance ratio (BAR) method84 is employed to calculate the
value.

The binding free energy between two biomolecules, DGFEP,
can thus be calculated as follows

DGFEP = DG3 − DG1 (2)

where DG3 and DG1 are the free energy changes between two
states A and B of the protein–ligand in solution and ligand in
solution (cf. Fig. S1 of the ESI†), respectively.
Molecular dynamics simulations

GROMACS version 2019.6 with the general-purpose graphics
processing unit acceleration was performed to simulate the
complex and isolated ligand in solution systems.85 During the
simulation, the periodic boundary condition was used on both
systems. The MD simulation parameters were chosen referring
to the previous work. In particular, the time step was selected as
0.002 ps during the Langevin dynamics simulations. The non-
bond pair with a cut-off of 0.9 nm was refreshed every 10 steps
of each integration. The particle-mesh Ewald method86 was
used to present the electrostatic interaction at a cut-off of
0.9 nm. A cut-off scheme with a radius of 0.9 nm was utilized to
treat the van der Waals (vdW) interaction.

The protein–ligand system in the solution was energy mini-
mized using the steepest descent method. The simulations,
which used NVT and NPT ensembles at 310 K with a length of
100 ps each simulation, were subsequently performed to relax
the system. The Ca protein atoms were positionally xed during
NVT simulations using a harmonic potential. The solvated
protein–ligand complex and free ligand in solution were simu-
lated over 50 and 5 ns of MD simulations, respectively. The nal
conformations of both systems were used as the initial shape of
perturbation simulations. The simulations were repeated two
times.

The systemic Hamiltonian was modied over perturbation
simulations under constant pressure conditions according to
previous works.87 Among these, the electrostatic interaction
between an inhibitor and surrounding atoms was changed
through eight values of lelec, including 0.00, 0.10, 0.20, 0.35,
0.50, 0.65, 0.80, and 1.00. The vdW interaction was modied via
nine values of lvdW concerning 0.00, 0.10, 0.25, 0.35, 0.50, 0.65,
0.75, 0.90, and 1.00. The coupling parameters were chosen
referring to the previous work.8,87 Each perturbation simulation
had a length of 3.0 ns. The free energy changes, which include
DG3 and DG1, were thus computed via the BAR method.84 The
binding free energy of an inhibitor to a receptor was determined
according to eqn (2).
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Initial conformation of considered systems including AmpC (A), GluK1 (B), Hsp90 (C), and SARS-CoV-2 Mpro (D).

Fig. 2 SC and HB contacts between essential residues of AmpC and
inhibitors. The values were computed over an interval of 25–50 ns of
MD simulations.
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Analysis tools

Because ligand protonation states are crucial in the protein–
ligand binding process,88 chemicalize webserver, a ChemAxon
tool, was employed to predict ligand protonation states. The
correlation coefficient error and the root-mean-square error
(RMSE) were estimated using 1 000 000 rounds of the boot-
strapping method.89 Sidechain (SC) contact between a ligand
and an individual residue of a receptor was counted when the
pair between nonhydrogen atoms of two groups is <4.5 Å. The
hydrogen bond (HB) contact between a ligand and an individual
© 2024 The Author(s). Published by the Royal Society of Chemistry
residue of a receptor was measured when the angle donor–
hydrogen–acceptor is >135° and the spacing between donors
and acceptors is <3.5 Å. All-atom root-mean-square deviation
(RMSD) of the complex and ligand systems was estimated via
the GROMACS tools “gmx rms”. The experimental binding free
energy, DGEXP, was calculated according to the formula

DGEXP = RT ln(ki) (3)

or

DGEXP = RT ln(IC50), (4)

where R is the gas constant, T is the absolute temperature, ki is
the inhibition constant, and IC50 is the half-maximal inhibitory
concentration.
Results and discussion

Assessing the performance of a computational approach is of
useful as it may guide the following researchers who will
consider the investigated targets.90–94 In particular, the bench-
marking of the ability of a method depending on the targets
probably has a large inuence on the effectiveness and timeli-
ness of the study.95–97 Further, although the alchemical
approach is known as one of the most accurate protocols for
determining the ligand-binding affinity, the obtained correla-
tion coefficient varies in a large range.36,37 Herein, the accuracy
RSC Adv., 2024, 14, 14875–14885 | 14877
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Table 1 Calculated versus experimental binding affinities between AmpC and its inhibitors

No. PDB ID XLogP3a DGcou DGvdW DGFEP DGEXP
b

1 1XGI51 1.8 −6.11 −2.97 −9.08 � 0.77 −6.66 (ref. 51)
2 1XGJ51 1.2 −23.84 −3.67 −27.51 � 1.23 −8.24 (ref. 51)
3 2HDU52 1.2 −0.19 −2.82 −3.01 � 0.12 −3.16 (ref. 52)
4 2PU2 (ref. 53) 1.7 −25.69 −2.73 −28.43 � 0.48 −6.08 (ref. 53)
5 2R9W53 3.3 −17.55 −0.89 −18.44 � 0.87 −7.00 (ref. 53)
6 2R9X53 3.2 −20.63 −4.40 −25.03 � 0.66 −6.66 (ref. 53)
7 3GR2 (ref. 54) 0.5 0.50 −1.41 −0.91 � 2.60 −3.46 (ref. 54)
8 4KZ3 (ref. 55) 1.0 −2.53 −2.98 −5.51 � 0.73 −3.80 (ref. 55)
9 4KZ5 (ref. 55) 1.9 −0.39 −2.12 −2.51 � 0.48 −2.75 (ref. 55)
10 4OKP (ref. 56) −2.8 4.58 −5.48 −0.90 � 0.13 −3.70 (ref. 56)

a The values were obtained from the PubChem database.104 b The experimental binding free energies were computed based on the inhibition
constant ki. The computed error was obtained using the bootstrapping method. The unit is kcal mol−1.

Fig. 3 Correlation coefficients between calculated and experimental
binding fee energy of AmpC systems. The computed value was ob-
tained via FEP simulations.

Fig. 4 SC and HB contacts between essential residues of GluK1 and
inhibitors. The values were computed over an interval of 25–50 ns of
MD simulations of all complexes.
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of the alchemical calculation was thus evaluated over six targets
included AmpC, GluK1, Hsp90, and SARS-CoV-2 Mpro.

Initially, conventional MD simulations were performed to
turn the solvated system to stable states. Because the complexed
structure was achieved from the experiments, the system
rapidly reached equilibrium states (cf. Tables S2–S5 of the ESI†).
14878 | RSC Adv., 2024, 14, 14875–14885
In particular, the all-atom RMSD of the complex and ligand
systems arrives at the stable regions aer ca. 25.0 and 2.5 ns of
MD simulations, respectively. Two replicas of each system were
generated to reduce the error in the computation.

SC and HB contacts between protein–ligand complexes were
analyzed over an interval of 25–50 ns of MD simulations, which
corresponds to the equilibrium region. Results provide physical
insights into the binding process of a ligand to a receptor. The
results are shown in Fig. S2–S5 of the ESI.† By counting the
residues formed more than rigid SC and HB contacts to inhib-
itors, the most inuential factors controlling the inhibitor
binding was claried. The outcomes are described below.

The nal shape of the systems was engaged as an input for
free energy calculation via perturbation simulations. As
mentioned above, the ligand-binding free energy to the receptor
via the FEP approach, DGFEP, was calculated using the BAR
method.84 Results indicated that FEP simulation is good in
characterizing the ligand-binding free energy for the AmpC
system. It is a good approach in estimating the ligand-binding
affinity of three targets involving GluK1 and Hsp90. FEP calcu-
lations yield satisfactory results in the case of SARS-CoV-2.
Further, the obtained correlation coefficients are described
below. On average, the computed values, hDGFEPi = −14.62 ±

1.66 kcal mol−1, are overestimation compared with the respec-
tive experiments, hDGEXPi = −8.40 ± 0.34 kcal mol−1. Notably,
hDGFEPi and hDGEXPi are the mean of calculated and experi-
mental binding free energies over all of the considered systems.
The overestimation of perturbation simulations is consistent
with previous works.33,98,99 The uncorrected simulations of the
interaction between ligands and surrounding molecules prob-
ably causes the different energy.100,101 Furthermore, the contri-
butions of electrostatic, hDGcoui, and vdW, hDGvdWi, term to the
binding free energy are −7.57 ± 1.85 and −7.06 ±

0.86 kcal mol−1, respectively. In addition, a good correlation
coefficient between DGFEP and DGcou, R = 0.88 ± 0.02, was
found, conrming that electrostatic interaction plays an
important role in the binding process of the considered
systems.
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Calculated versus experimental binding affinities between GluK1 and its inhibitors

No. PDB ID XLogP3a DGcou DGvdW DGFEP DGEXP
b

1 1VSO57 −2.7 −3.57 −3.15 −6.72 � 0.95 −6.48 (ref. 57)
2 2PBW57 −1.3 −18.56 −1.74 −20.3 � 3.23 −11.33 (ref. 57)
3 2ZNS58 −3.7 −15.68 −0.76 −16.44 � 2.74 −8.97 (ref. 58)
4 2ZNU58 −5.1 −20.03 −3.47 −23.50 � 0.02 −11.14 (ref. 58)
5 3FV1 (ref. 58) −7.1 −45.54 −4.00 −49.54 � 4.39 −12.77 (ref. 58)
6 3FVN58 −2.8 −23.25 −1.51 −24.76 � 2.36 −9.30 (ref. 58)
7 3FVG58 −3.1 −14.56 −3.77 −18.33 � 0.23 −9.46 (ref. 58)
8 3FVK58 −4.1 −12.78 −4.01 −16.79 � 0.74 −12.11 (ref. 58)
9 4E0X59 −1.8 −3.05 −3.51 −6.56 � 2.58 −9.77 (ref. 59)
10 4DLD60 −1.2 −0.20 −3.81 −4.01 � 0.38 −7.99 (ref. 60)

a The values were obtained from the PubChem database.104 b The experimental binding free energies were computed based on the inhibition
constant ki. The computed error was obtained using the bootstrapping method. The unit is kcal mol−1.

Fig. 5 Correlation coefficients between calculated and experimental
binding free energy of GluK1 systems. The computed value was ob-
tained via FEP simulations.

Fig. 6 SC and HB contacts between essential residues of GluK1 and
inhibitors. The values were computed over an interval of 25–50 ns of
MD simulations.
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AmpC beta-lactamase

The enzyme clinically associates with the antibiotic resistance
of Enterobacteriaceae and other organisms.102 Non-beta-lactam
inhibitors of the AmpC have garnered considerable research
interest.51 Several inhibitors for the AmpC have been
© 2024 The Author(s). Published by the Royal Society of Chemistry
developed.51–53,55,56 Using MD simulations, we gained physical
insights into the binding process of these inhibitors to AmpC.
Analyzing the equilibrium MD trajectories (cf. Table S2 of the
ESI†) of these complexes, it was observed that residues Ser64,
Lys67, Tyr150, Asn152, Lys164, Arg204, Ser212, Asn289, Ala318,
Asn343, Asn346, and Arg349 are important factors affecting the
ligand-binding affinity because they rigidly adopt SC and HB
contacts to inhibitors (cf. Fig. 2 and S2 of the ESI†). The
outcomes are in good agreement with the previous work,103

especially the activity of Lys67 and Tyr150, which are known as
the catalytic residues, and Ser64, which is associated with the
enzyme acyl adduct, would be thus inhibited. Therefore, prob-
able mutations at these points could considerably alter the
ligand-binding free energy to the AmpC.

The nal snapshots of MD simulations were used as the
starting shape of perturbation simulations. The work of the
ligand decoupling process from the AmpC complexes in solu-
tion corresponds to the free energy change DG3 (cf. Fig. S1 of the
ESI†). Further, the behavior of the ligand in the solution was
mimicked. The DG1 value (cf. Fig. S1 of the ESI†) was thus
calculated by estimating the work of the ligand decoupling
process from the solvated ligand system. MD simulations
involving the modied Hamiltonian were performed to obtain
the work. The values of DG3 and DG1 were computed using the
BAR method84 over an interval of 1–3 ns of the alter-l simula-
tions with every 100 ps. The obtained results are shown in Table
1. The calculated values of DGFEP fall in the range from −0.90 ±

0.13 to −28.43 ± 0.48 kcal mol−1. The metric forms a good
agreement with the respective experiments with an of RAmpC =

0.86 ± 0.08 (cf. Fig. 3). It may be argued that FEP is a good
approach to be able to rank the ligand-binding affinity for the
AmpC target. Moreover, the means of electrostatic and vdW free
energy difference of binding are −9.19 ± 3.44 and −2.95 ±

0.44 kcal mol−1, respectively. The outcome suggests that the
AmpC inhibitors mostly are hydrophilic compounds. It is
consistent with XLogP3 values, whose mean is 1.30 ± 0.51 (cf.
Table 1). Furthermore, the average of computed metrics,
hDGFEPi = −12.13 ± 3.45 kcal mol−1, is considerably smaller
than that obtained via experiments, .e.g., hDGEXPi = −5.15 ±

0.59 kcal mol−1. This means that the computed affinities are
overestimated by a large value. The outcomes thus result in the
RSC Adv., 2024, 14, 14875–14885 | 14879
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Table 3 Calculated versus experimental binding affinities between Hsp90 and its inhibitors

No. PDB ID XLogP3a DGcou DGvdW DGFEP DGEXP
b

1 2QG0 (ref. 61) 0.8 −1.80 −9.97 −11.78 � 1.24 −7.85 (ref. 61)
2 2QG2 (ref. 61) 1.6 6.58 −12.20 −5.62 � 0.16 −7.41 (ref. 61)
3 3K97 (ref. 62) 4.2 1.58 −3.30 −3.3 � −1.72 −10.98 (ref. 62)
4 3NMQ63 3.1 −18.04 −15.95 −15.95 � −33.99 −13.31 (ref. 63)
5 3QDD64 1.9 1.10 −16.64 −15.54 � 0.36 −12.04 (ref. 64)
6 3 R4M65 2.1 −0.57 −5.13 −5.70 � 0.64 −8.13 (ref. 65)
7 4CWF66 3.0 4.17 −11.03 −6.86 � 0.77 −6.16 (ref. 66)
8 4CWT66 2.9 7.54 −14.22 −6.68 � 0.40 −9.26 (ref. 66)
9 4NH8 (ref. 67) 3.2 −1.63 −22.18 −23.80 � 0.16 −11.70 (ref. 67)
10 4O07 (ref. 68) 4.1 10.80 −18.85 −8.05 � 1.65 −10.13 (ref. 68)

a The values were obtained from the PubChem database.104 b The experimental binding free energies were computed based on the inhibition
constant ki. The computed error was obtained using the bootstrapping method. The unit is kcal mol−1.

Fig. 7 Correlation coefficients between calculated and experimental
binding free energy of Hsp90 systems. The computed value was ob-
tained via FEP simulations.

Fig. 8 SC and HB contacts between essential residues of SARS-CoV-2
Mpro and inhibitors. The values were computed over an interval of 25–
50 ns of MD simulations.
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large value of RMSE, which is of 11.67 ± 2.65 kcal mol−1.
Although the large value of RMSE was obtained, the approach
can be appropriately use for ranking the inhibitory of a ligand.
14880 | RSC Adv., 2024, 14, 14875–14885
Glutamate receptor, ionotropic kainate 1

The GluK1 is a synaptic receptor that forms L-glutamate-gated
ion channels and can play essential roles in excitatory neuro-
transmission of the nervous system.57–60 The GluK1 inhibition
may deliver a defense against hyperexcitation.57–60 The ligand-
binding domain (LBD) is a clamshell-shaped protein that
makes a exible conformation. LBD connects to the trans-
membrane domain of the GluK1 via a short linker.105 Ten LBD
of the GluK1 + inhibitor systems were relaxed over MD simu-
lations. The binding mechanism of the protein and its ligand is
thus illuminated throughout analyzing the free energy differ-
ence of binding and SC/HB contacts. The all-atom RMSD of
both complexes and ligands in solution systems are described
in Table S2 of the ESI.† The residues involving Lys473, Tyr474,
Pro501, Thr503, Arg508, Ser674, Thr675, Glu723, Ser726, and
Lys747 were found to be able to rigidly adopt SC and HB
contacts with GluK1 (cf. Fig. 4 and S3 of the ESI†). Notably, 10
complexes were obtained from Homo sapiens and Rattus norve-
gicus; however, their sequence is almost identical (cf. the ESI†).

Ten ligands were then annihilated from both complexes and
ligands in solution systems via perturbation simulations. The
BAR method84 was used to assess the free energy change during
ligand annihilation. The binding free energy was obtained and
is described in Table 2. The obtained results show that DGFEP

varies in the range from −49.54 ± 4.39 to −3.04 ±

0.32 kcal mol−1. Moreover, the calculated binding free energies
procedure a correlation coefficient with the respective experi-
ments by an of RGluK1 = 0.76 ± 0.13 (Fig. 5). The computed
errors are RMSEGluK1 = 14.56 ± 4.25 kcal mol−1. Similar to the
AmpC systems, the FEP approach is an appropriate protocol to
rank the ligand-binding affinity, but the absolute values over-
estimate the experimental data. The overestimation may be
caused by the inaccuracy interaction simulation of the force
eld as mentioned above.100,101 Furthermore, the means of
electrostatic, hDGcoui, and vdW, hDGvdWi, free energy difference
of binding are −16.23 ± 4.08 and −2.54 ± 0.48 kcal mol−1,
respectively. The dominance of DGcou over DGvdW is in good
agreement with the circumstance that GluK1 inhibitors are
highly hydrophilic substances, hXLogP3i = −3.29 ± 0.55.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra00692e


Table 4 Calculated versus experimental binding affinities between SARS-CoV-2 Mpro and its inhibitors

No. PDB ID XLogP3a DGcou DGvdW DGFEP DGEXP
c

1 6M2N69d 1.7 −4.36 −7.61 −11.97 � 0.17 −8.27 (ref. 69)
2 6WTT70e 1.7b −5.20 −8.21 −13.41 � 1.76 −9.23 (ref. 111)
3 6XBG71e 1.6b −10.08 −12.46 −22.54 � 3.52 −10.08 (ref. 71)
4 6XMK72e 2.3b −8.16 −6.18 −14.34 � 0.38 −8.71 (ref. 72)
5 7B3E73e 1.2 −11.32 −4.71 −16.03 � 2.07 −9.14 (ref. 118)
6 7L8I74d 3.2 2.47 −10.32 −7.85 � 3.23 −5.72 (ref. 119)
7 7LDL75e 1.9 −11.02 −10.03 −21.05 � 3.08 −9.91 (ref. 75)
8 7NG3 (ref. 76)e 4.6 −3.63 −9.58 −13.21 � 1.96 −7.42 (ref. 70)
9 7LCR75e 1.7b −3.68 −10.18 −13.86 � 0.34 −9.43 (ref. 72)
10 8 A4T78e 2.0 6.09 −11.78 −5.69 � 1.83 −9.50 (ref. 78)

a The values were obtained from the PubChem database.104 b The value was calculated via the XLogP3 server.120 c The experimental binding free
energies were computed based on the inhibition constant IC50.

d The non-covalent binding ligands. e The covalent binding ligands. The
computed error was obtained using the bootstrapping method. The unit is kcal mol−1.

Fig. 9 Correlation coefficients between calculated and experimental
binding free energy of SARS-CoV-2 Mpro systems. The computed
value was obtained via FEP simulations.
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Heat shock protein 90

Hsp90 is a highly conservedmolecular chaperone protein found
in all eukaryotic cells.106 Hsp90 acts as a chaperone for a large
number of client proteins, participating in various cellular
processes, such as signal transduction, cell cycle regulation,
DNA repair, and apoptosis. It is crucial for the folding, matu-
ration, and degradation of proteins. In addition to its normal
functions, Hsp90 has been implicated in several disease
processes, including cancer, neurodegenerative diseases, and
infectious diseases, making it an attractive target for thera-
peutic intervention.107,108 Over the stable snapshots produced by
MD simulations, essential residues considerably contribute to
the ligand-binding affinity that can be estimated via contact
analyses. Among these, the residues Asn51, Asp93, Gly135,
Phe138, Tyr139, and Thr184 form SC and HB contacts to
inhibitors more than 50% and 5% of considered snapshots (cf.
Fig. 6), respectively. This is in good agreement with previous
studies.62,109

The ligand-binding free energy between Hsp90 and ligands
was determined via FEP simulations34 and is shown in Table 3.
The calculated binding free energy, DGFEP, which adopts in the
range from −36.20 ± 1.09 to −5.62 ± 0.16 kcal mol−1, forms
© 2024 The Author(s). Published by the Royal Society of Chemistry
a good correlation to the corresponding experiments, RHsp90 =

0.76 ± 0.15 (Fig. 7). The computed error is of RMSEHsp90 = 8.52
± 3.08 kcal mol−1. The obtained binding affinity over-
emphasizes the respective experiments, but the approach can
be used for ranking ligand-binding affinity. The observation is
consistent with previous mention. Moreover, the vdW interac-
tion free energy, hDGvdWi = −13.21 ± 1.57 kcal mol−1, domi-
nates over the electronic ones, hDGcoui= 0.35± 2.65 kcal mol−1.
The dominant of DGvdW is in good agreement with the fact that
Hsp90 inhibitors are hydrophobic compounds, hXLogP3i= 2.56
± 0.33. It may be argued that the binding mechanism of ligands
to Hsp90 is considerably different from those of the AmpC and
GluK1 systems.

SARS-CoV-2 main protease

SARS-CoV-2 Mpro is an enzyme that plays a crucial role in the
replication of SARS-CoV-2, which causes COVID-19.110,111 The
main protease is responsible for cleaving large viral poly-
proteins into functional proteins that are essential for the virus
to replicate and infect host cells.112 This makes the main
protease an attractive target for drug development as inhibiting
its activity could potentially stop the virus from replicating.113

Analyzing the HB and SC contacts between SARS-CoV-2 Mpro
and its inhibitors, the residues Thr26, Phe140, Asn142, Gly143,
Ser144, Cys145, His163, His164, Met165, Glu166, Arg188, and
Gln189 adopts more than 5% and 12% of HB and SC contacts
over equilibrium snapshots, respectively (cf. Fig. 8). It is in good
agreement with the work on the SARS-CoV-2 Mpro monomer.87

Table 4 shows the FEP binding free energy compared to the
respective experiment and the value of the ligand XLogP3. The
obtained value of DGFEP falls in the range from−22.54 ± 3.52 to
−5.69 ± 1.83 kcal mol−1. The calculated results form an
appropriate correlation coefficient with the corresponding
experiment by a value of RMpro = 0.56 ± 0.26 (Fig. 9). The
inaccurate part may be caused by the fact that the conventional
MD simulations do not mimic the covalent binding of ligands
to the residue Cys145 of SARS-CoV-2 Mpro.114–116 Moreover, in
consistency with previous works, the SARS-CoV-2 Mpro inhibi-
tors form an average of XLogP3 = 2.19 ± 0.30. It may be argued
that the inhibitors will adopt a stronger vdW interaction free
RSC Adv., 2024, 14, 14875–14885 | 14881
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energy to the protease than electrostatic ones. Indeed, the mean
of vdW interaction free energy, hDGvdWi, is −9.11 ±

0.73 kcal mol−1, which is considerably larger than the mean of
electrostatic interaction free energy, hDGcoui, is of −4.89 ±

1.72 kcal mol−1. This is in good agreement with the previous
study.117

Overall, the calculated results are overestimation. The over-
estimation of perturbation simulations is discussed above as it
is probably caused by the uncorrected interaction between
ligands and surrounding molecules.100,101 Moreover, the net
charge of complex and free inhibitor in solution are not equal to
zero, the effects can be large and lead to increase RMSE. A
correlation is thus required to be used to x the overestimation
due to the change of systemic net charge.121 Furthermore, four
complexes including 1XGJ, 3FV1, 3K97, and 6M2N were
randomly selected for FEP calculations (cf. Tables S6 and S7 and
Fig. S6 of the ESI†) without consideration of the protonation
states of ligands, which may be a hypothesis that it is equivalent
to use coupled ions to neutralize the ligand charge. In this case,
the average of binding free energy is of −12.02 ±

3.21 kcal mol−1 in comparison with−24.36± 1.62 kcal mol−1 of
considering protonated ligands. It should be noted that the
mean of DGEXP is of −10.06 ± 0.96 kcal mol−1. The RMSE of
systems with neutralized ligands, RMSE = 5.05 ±

2.47 kcal mol−1, is signicantly smaller than the system with
protonated ligands, RMSE = 20.88 ± 7.41 kcal mol−1. The
calculated value of DGFEP, when neutralized ligands were
considered, formed a correlation coefficient R = 0.94 compared
with the respective experiments. The correlation coefficient,
when protonated ligands were investigated, only is of R = 0.56.
Absolutely, when neutralized ligands were considered, the
correlation coefficient was signicantly increased and the RMSE
value was rigidly decreased. Further investigation to be able to
clarify the issues would be carried out in the future.

Conclusion

Herein, we have demonstrated that FEP calculation is a good
approach to characterize the binding free energy of ligands to
AmpC, GluK1, Hsp90, and SARS-CoV-2 Mpro.

The computed affinity via FEP simulations overestimates the
corresponding experimental values. In particular, the electro-
static interaction free energy rules the ligand-binding to AmpC
and GluK1. However, the van der Waals (vdW) interaction free
energy plays an important role in the ligand-binding processes
of HSP90 and SARS-CoV-2 Mpro. The outcomes associate with
the hydrophilic or hydrophobic properties of the ligands.
Moreover, the important residues controlling the binding
process of ligands to four receptors were claried via SC and HB
analyses. The possible mutation at these points may alter the
ligand-binding free energy, causing drug resistance. Further-
more, the accuracy of the FEP approach based on conventional
MD simulations may be reduced when covalent binding ligands
are considered. In addition, the net charge of complex and free
inhibitor in solution are not equal to zero, the effects can be
large and lead to increase RMSE. A correlation is thus required
to be used to x the overestimation due to the change of
14882 | RSC Adv., 2024, 14, 14875–14885
systemic net charge.121 A benchmark without consideration of
the protonation states of ligands, which may be a hypothesis
that it is equivalent to use coupled ions to neutralize the ligand
charge, would be performed in the future as well as compared
with the other methods such as MM-PBSA or LIE approaches.

Conflicts of interest

There are no concts to declare.

Acknowledgements

This work was supported by Vietnam National Foundation for
Science & Technology Development (NAFOSTED) grant #02/
2020/ĐX (to DTQ).

References

1 U. Ryde and P. Soderhjelm, Chem. Rev., 2016, 116, 5520–
5566.

2 H. Kang, J. Yoo, B.-K. Sohn, S.-W. Lee, H. S. Lee, W. Ma,
J.-M. Kee, A. Aksimentiev and H. Kim, Nucleic Acids Res.,
2018, 46, 9401–9413.

3 F. Cozzolino, I. Iacobucci, V. Monaco and M. Monti, J.
Proteome Res., 2021, 20, 3018–3030.

4 S. T. Ngo, Comput. Biol. Chem., 2022, 97, 107636.
5 T. H. Nguyen, P.-T. Tran, N. Q. A. Pham, V.-H. Hoang,
D. M. Hiep and S. T. Ngo, ACS Omega, 2022, 7, 20673–20682.

6 N. M. Tam, T. H. Nguyen, M. Q. Pham, N. D. Hong,
N. T. Tung, V. V. Vu, D. T. Quang and S. T. Ngo, J. Mol.
Graphics Modell., 2023, 124, 108535.

7 G. R. Marshall, Annu. Rev. Pharmacol. Toxicol., 1987, 27,
193–213.

8 T. H. Nguyen, N. M. Tam, M. V. Tuan, P. Zhan, V. V. Vu,
D. T. Quang and S. T. Ngo, Chem. Phys., 2023, 564, 111709.

9 Y. Sixto-Lopez, M. Bello and J. Correa-Basurto, J. Biomol.
Struct. Dyn., 2019, 37, 584–610.

10 P. Sledz and A. Caisch, Curr. Opin. Struct. Biol., 2018, 48,
93–102.

11 N. Homeyer, F. Stoll, A. Hillisch and H. Gohlke, J. Chem.
Theory Comput., 2014, 10, 3331–3344.

12 G. Sliwoski, S. Kothiwale, J. Meiler and E. W. Lowe,
Pharmacol. Rev., 2014, 66, 334–395.

13 W. Yu and A. D. MacKerell, in Antibiotics: Methods and
Protocols, ed. P. Sass, Springer New York, New York, NY,
2017, pp. 85–106.

14 S. T. Ngo, J. Comput. Chem., 2021, 42, 117–123.
15 G. Subramanian, B. Ramsundar, V. Pande and R. A. Denny,

J. Chem. Inf. Model., 2016, 56, 1936–1949.
16 S. Park and K. Schulten, J. Chem. Phys., 2004, 120, 5946–

5961.
17 J. G. Kirkwood, J. Chem. Phys., 1935, 3, 300–313.
18 G. Leonis, T. Steinbrecher and M. G. Papadopoulos, J.

Chem. Inf. Model., 2013, 53, 2141–2153.
19 C. Jarzynski, Phys. Rev. Lett., 1997, 78, 2690–2693.
20 C. Jarzynski, Phys. Rev. E, 1997, 56, 5018–5035.
21 F. M. Ytreberg, J. Chem. Phys., 2009, 130, 164906.
© 2024 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d4ra00692e


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
M

ay
 2

02
4.

 D
ow

nl
oa

de
d 

on
 7

/3
1/

20
25

 6
:2

2:
32

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
22 J. D. Holliday, S. S. Ranade and P. Willett, Quant. Struct.-Act.
Relat., 1995, 14, 501–506.

23 G. M. Morris, R. Huey, W. Lindstrom, M. F. Sanner,
R. K. Belew, D. S. Goodsell and A. J. Olson, J. Comput.
Chem., 2009, 30, 2785–2791.

24 S. Forli, R. Huey, M. E. Pique, M. F. Sanner, D. S. Goodsell
and A. J. Olson, Nat. Protoc., 2016, 11, 905.

25 E. Vrontaki, G. Melagraki, T. Mavromoustakos and
A. Afantitis, J. Enzyme Inhib. Med. Chem., 2016, 31, 38–52.

26 T. H. Nguyen, H.-X. Zhou and D. D. L. Minh, J. Comput.
Chem., 2018, 39, 621–636.

27 Y. Meng and B. Roux, J. Chem. Theory Comput., 2015, 11,
3523–3529.

28 A. Pecina, R. Meier, J. Fanfrĺık, M. Lepš́ık, J. Řezáč, P. Hobza
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35 É. C. M. Nascimento, M. Oliva, K. Świderek, J. B. L. Martins

and J. Andrés, J. Chem. Inf. Model., 2017, 57, 958–976.
36 S. T. Ngo, N. Hung Minh, H. Le Thi Thuy, Q. Pham Minh,

T. Vi Khanh, T. Nguyen Thanh and V. Van, RSC Adv.,
2020, 10, 40284–40290.

37 Z. Li, X. Li, Y.-Y. Huang, Y. Wu, R. Liu, L. Zhou, Y. Lin,
D. Wu, L. Zhang, H. Liu, X. Xu, K. Yu, Y. Zhang, J. Cui,
C.-G. Zhan, X. Wang and H.-B. Luo, Proc. Natl. Acad. Sci.
U.S.A., 2020, 117, 27381–27387.

38 T. N. H. Pham, T. H. Nguyen, N. M. Tam, T. Y. Vu,
N. T. Pham, N. T. Huy, B. K. Mai, N. T. Tung,
M. Q. Pham, V. V. Vu and S. T. Ngo, J. Comput. Chem.,
2021, 43, 160–169.

39 N. T. Nguyen, T. H. Nguyen, T. N. H. Pham, N. T. Huy,
M. V. Bay, M. Q. Pham, P. C. Nam, V. V. Vu and S. T. Ngo,
J. Chem. Inf. Model., 2020, 60, 204–211.

40 L. Wang, Y. Wu, Y. Deng, B. Kim, L. Pierce, G. Krilov,
D. Lupyan, S. Robinson, M. K. Dahlgren, J. Greenwood,
D. L. Romero, C. Masse, J. L. Knight, T. Steinbrecher,
T. Beuming, W. Damm, E. Harder, W. Sherman,
M. Brewer, R. Wester, M. Murcko, L. Frye, R. Farid, T. Lin,
D. L. Mobley, W. L. Jorgensen, B. J. Berne, R. A. Friesner
and R. Abel, J. Am. Chem. Soc., 2015, 137, 2695–2703.

41 W. Jiang and B. Roux, J. Chem. Theory Comput., 2010, 6,
2559–2565.

42 Y. Meng, D. Sabri Dashti and A. E. Roitberg, J. Chem. Theory
Comput., 2011, 7, 2721–2727.
© 2024 The Author(s). Published by the Royal Society of Chemistry
43 W. Jiang, J. Thirman, S. Jo and B. Roux, J. Phys. Chem. B,
2018, 122, 9435–9442.

44 Y. Khalak, G. Tresadern, M. Aldeghi, H. M. Baumann,
D. L. Mobley, B. L. de Groot and V. Gapsys, Chem. Sci.,
2021, 12, 13958–13971.

45 L. Liang, H. Liu, G. Xing, C. Deng, Y. Hua, R. Gu, T. Lu,
Y. Chen and Y. Zhang, Phys. Chem. Chem. Phys., 2022, 24,
9904–9920.

46 Z. Li, Y. Huang, Y. Wu, J. Chen, D. Wu, C.-G. Zhan and
H.-B. Luo, J. Med. Chem., 2019, 62, 2099–2111.

47 S. Azimi, S. Khuttan, J. Z. Wu, R. K. Pal and E. Gallicchio, J.
Chem. Inf. Model., 2022, 62, 309–323.

48 A. J. Clark, C. Negron, K. Hauser, M. Sun, L. Wang, R. Abel
and R. A. Friesner, J. Mol. Biol., 2019, 431, 1481–1493.

49 A. J. Clark, T. Gindin, B. Zhang, L. Wang, R. Abel,
C. S. Murret, F. Xu, A. Bao, N. J. Lu, T. Zhou, P. D. Kwong,
L. Shapiro, B. Honig and R. A. Friesner, J. Mol. Biol., 2017,
429, 930–947.

50 B. J. Williams-Noonan, E. Yuriev and D. K. Chalmers, J.
Med. Chem., 2018, 61, 638–649.

51 D. Tondi, F. Morandi, R. Bonnet, M. P. Costi and
B. K. Shoichet, J. Am. Chem. Soc., 2005, 127, 4632–4639.

52 K. Babaoglu and B. K. Shoichet, Nat. Chem. Biol., 2006, 2,
720–723.

53 K. Babaoglu, A. Simeonov, J. J. Irwin, M. E. Nelson, B. Feng,
C. J. Thomas, L. Cancian, M. P. Costi, D. A. Maltby,
A. Jadhav, J. Inglese, C. P. Austin and B. K. Shoichet, J.
Med. Chem., 2008, 51, 2502–2511.

54 D. G. Teotico, K. Babaoglu, G. J. Rocklin, R. S. Ferreira,
A. M. Giannetti and B. K. Shoichet, Proc. Natl. Acad. Sci.
U.S.A., 2009, 106, 7455–7460.

55 S. Barelier, O. Eidam, I. Fish, J. Hollander, F. Figaroa,
R. Nachane, J. J. Irwin, B. K. Shoichet and G. Siegal, ACS
Chem. Biol., 2014, 9, 1528–1535.

56 S. Barelier, J. A. Cummings, A. M. Rauwerdink,
D. S. Hitchcock, J. D. Farelli, S. C. Almo, F. M. Raushel,
K. N. Allen and B. K. Shoichet, J. Am. Chem. Soc., 2014,
136, 7374–7382.

57 H. Hald, P. Naur, D. S. Pickering, D. Sprogøe, U. Madsen,
D. B. Timmermann, P. K. Ahring, T. Liljefors,
A. Schousboe, J. Egebjerg, M. Gajhede and J. S. Kastrup, J.
Biol. Chem., 2007, 282, 25726–25736.

58 M. Unno, M. Shinohara, K. Takayama, H. Tanaka,
K. Teruya, K. Doh-ura, R. Sakai, M. Sasaki and M. Ikeda-
Saito, J. Mol. Biol., 2011, 413, 667–683.
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