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Microbial fuel cells (MFCs) represent simple devices that harness the metabolic activities of microorganisms
to produce electrical energy from diverse sources such as organic waste and sustainable biomass. Because
of their unique advantage to generate sustainable energy, through the employment of biodegradable and
repurposed waste materials, the development of MFCs has garnered considerable interest. Critical elements
are typically the electrodes and separator. This mini-review article presents a critical assessment of
nanofiber technology used as electrodes and separators in MFCs to enhance energy generation. In
particular, the review highlights the application of nanofiber webs in each part of MFCs including anodes,
cathodes, and membranes and their influence on energy generation. The role of nanofiber technology in
this regard is then analysed in detail, focusing on improved electron transfer rate, enhanced biofilm
formation, and enhanced durability and stability. In addition, the challenges and opportunities associated

with integrating nanofibers into MFCs are discussed, along with suggestions for future research in this
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achievable power density, yet further improvements in performance and the exploration of cost-
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1. Introduction

The utilization of biomass, particularly organic waste, is
considered an environmentally friendly and sustainable
approach to energy production, making it a valuable alternative
source of renewable energy.' Microbial fuel cells (MFCs) have
gained increasing attention as promising bio-electrochemical
systems that can convert chemical energy stored in organic
compounds, such as acetate, sugars, nitrate, and ethanol,>? into
electricity through the metabolic activity of microorganisms.*®
MFCs offer numerous advantages over conventional fuel cells,
including negating the need for expensive or exotic catalysts,
such as platinum, and generating electricity from renewable
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promise of nanofiber-based electrodes and separators in future applications of MFCs.

sources of organic matter, including waste streams.® Further-
more, MFCs have the potential to remove pollutants via the
microbial metabolism thereby finding application in waste-
water treatment, bioenergy generation, and biosensors.>”*

By definition, the MFC is a device that converts the energy
from organic compounds into electrical energy through the
metabolic processes of microorganisms.”** The operation of
MFCs is based on the transfer of electrons from the anode
electrode to the cathode. This is achieved by electrochemically
active bacteria, which oxidize organic matter in the anode
compartment, releasing electrons and cations, eqn (1). The
electrons flow through the external circuit to the cathode, where
they combine with an oxidant to produce water (eqn (2)).”****
Meanwhile, the protons migrate through the membrane to the
cathode compartment, where they combine with the electrons
and an oxidant (e.g., O,) to complete the reaction, as per the
given chemical eqn (2)."

C2H402 + 2H20 - 2C02 + 8e” + 8H+ (1)
20, + 8H' + 8¢~ — 4H,O (E° =1.23 V) (2)

In a conventional MFC, two half-cells - an anode and
a cathode, are separated by an ion exchange membrane, as
depicted in Fig. 1. The process of electricity generation in the
MFC is sustained through a continuous consumption of an

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 The schematic and fundamental principles of a conventional
microbial fuel cell (MFC).

oxidising agent, e.g., oxygen, as indicated by eqn (1) and (2). The
cathode compartment can work with either aqueous or atmo-
spheric oxygen.”® Due to its high redox potential, oxygen is
considered to be a suitable electron acceptor for the cathode in
MFCs. The interest in microbial fuel cells has been consistently
increasing over the last two decades."®

Despite these promising features and significant interest,
the performance of MFCs is currently characterized by lower
power density, when compared with chemical fuel cells, whose
rates of reaction are naturally higher than biological processes;
this has however driven the need for innovation to enhance
performance. As with every real system, MFCs produce energy
output that is lower than their theoretical maximum due to
different electrochemical losses. The losses are due to resis-
tance in materials, separator material, and electrolytes, leading
to the lower power production of MFCs compared to their
potential. According to Torres et al.,'” the primary obstacle for
maximizing power output in microbial fuel cells (MFCs) is the
reactor design, which must integrate anodes with a high surface
area, low ohmic resistances, and minimal cathode potential
losses. Developments in electrode and membrane materials are
focused on enhancing MFC performance by seeking novel
materials with improved capabilities.”®>" In recent years,
nanofibers in MFCs have emerged as a possible pathway to
enhancing performance. Carbon nanofibers (CNFs) are widely
utilised as MFC electrodes due to their unique network struc-
ture and exceptional structural stability. The main challenges
for MFC systems are cost reduction and productivity enhance-
ment. Using nanofibers offers a viable option to tackle the main
issues of reducing costs and increasing productivity in micro-
bial fuel cell (MFC) systems.**** Nanofibers can be produced
economically employing efficient methods and resources,
leading to decreased production expenses. The customisable
features enhance the optimisation of electrode and membrane
materials, hence enhancing the performance and lifespan of
MFC systems. Due to their small size, highly porous structure,
tight pore size, and high specific surface area, nanofiber webs
are ideal for integration into MFCs.>** Such properties offer
several advantages in MFCs, including enhanced bacterial
adhesion, mass transfer, and electron transfer efficiency.”**”
Fig. 2 illustrates the superior power generation advantages of
CNFs anode compared to commercial carbon felt. For instance,
incorporating nanofibers into the anode can promote microbial

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 Composite anode of electrospun carbon nanofibers and hybrid
carbon nanotubes facilitates microbial attachment, electron transfer,
and exhibits superior conductivity and biocompatibility compared to
commercial carbon felt (this figure has been reproduced from ref. 26
with permission from Elsevier publisher, copyright 2024).

adhesion and increase surface area, resulting in faster electron
transfer rates and higher power production.”®* Tao et al.*® used
a hierarchically structured textile polypyrrole/poly(vinyl alcohol-
co-polyethylene)  nanofibers/poly(ethylene  terephthalate)
(referred to PPy/NFs/PET) as an anode of MFC. The results
showed the high surface roughness, porous and three-
dimensional interconnecting conductive scaffold improved
the colonization of Escherichia coli and electron transfer to the
anode. The maximum power and current densities were 2420
mW m 2 and 5500 mA m 2, which is approximately 17 times
higher compared to anode prepared without a nanofiber layer
(144 mW m™2). It is clearly shown that the nanofiber effect on
the colonization of bacteria is non-negligible.

Integrating nanofibers in MFCs has demonstrated potential
benefits for improving power density, current output, and
durability of these cells. Nanofibers can be used as an anode
material to facilitate electron transfer from bacteria to the
electrode surface, a cathode material to enhance oxygen
reduction, or a membrane material to separate the anode and
cathode compartments. However, more research is needed to
optimize the fabrication and integration of nanofibers in MFCs
and to understand their long-term stability and performance
under different operating conditions.

In the literature, CNFs have been widely studied in MFCs due
to their excellent electrical conductivity and biocompatibility.
One such study,® employed activated electrospun carbon
nanofibers (ACNFs) in an MFC as an alternative cathode catalyst
to platinum (Pt) and conducted a performance comparison with
plain carbon paper. It was found that chemically ACNFs showed
better catalytic activity than that of the physically activated one
with 78% more power generation. Chemically ACNFs with 8 M
KOH generated oxygen reduction reaction (ORR) performance
levels that contributed to 3.17 times more power than that of the
carbon paper, 1.78 and 1.16 times more power generation than
that of the physically activated ACNFs and the chemically acti-
vated ACNFs with 4 M KOH, respectively. Karra et al.** utilized
ACNFs as the anode material to stimulate bacterial biofilm
growth, and improve MFC performance. The analysis of biofilm
adhesion, both qualitatively and quantitatively, indicated that

RSC Adv, 2024, 14, 9122-9136 | 9123
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ACNFs outperformed other commonly used carbon anodes. The
power density of the ACNFs was 1.13 and 3.18 times higher than
that from granular activated carbon and carbon cloth anodes,
respectively. Metal doped carbon nanofibers (MDCNFs) have
also been explored for their use in MFCs due to their high
electrical conductivity and catalytic activity. Bosch-Jimenez
et al.** have successfully prepared CNFs doped with metals such
as Co, Ni or Fe which increased surface areas up to 573 m> g~ .
Adding metals increased mesoporosity and catalytic activity of
cathode material. Manickam et al.** used activated carbon
nanofiber anodes in MFC. The preliminary tests in a single
chamber MFC demonstrated a 10% increase in current densi-
ties to ~2715 A m > compared to the highest maximum ob-
tained so far. The bio-electrochemical performance of activated
carbon nanofiber anodes was compared to commonly-used
anodes like carbon cloth and granular activated carbon, and
this anode architecture is expected to help overcome low power
density issues that have limited the widespread adoption of
MFCs.

Polymer nanofibers have been investigated for their use in
MFCs due to their high surface area and flexibility. Polymeric
polyvinylidene fluoride (PVDF)/Nafion composite membranes
are good candidates as proton exchange membranes in MFCs
due to their porosity, high specific surface area, tight pore size,
chemical resistance, good electrical insulation, good thermal
properties and its biocompatibility**** as shown in Fig. 2. When
combining carbon nanofibers (CNFs) with Nafion 117,
a commonly utilized membrane in Microbial Fuel Cells (MFCs),
can alter membrane roughness, pore size, and porosity,
consequently enhancing the power generated by the MFCs.*®
The reduction in pore size and roughness of these nano-
composite membranes leads to the blockage of oxygen transfer
from the cathode to the anode and impedes the migration of
bacteria and other components from the anode to the cathode.
Consequently, higher power production can be achieved. Chae
et al.*” developed a sulfonated polyether ether ketone (SPEEK)-
based composite proton exchange membrane reinforced with
polyimide nanofibers for use in microbial electrolysis cells. The
addition of the nanofiber layer not only enhances the dimen-
sional stability of the SPEEK membrane but also improves its
affinity for protons, all while reducing costs. Additionally, the
composite membrane demonstrated superior hydrogen effi-
ciency (electron to hydrogen) of 86.4 + 14.7%, compared to 77.2
=+ 10.3% observed with Nafion membranes.

In addition to the potential improvement of MFC perfor-
mance, nanofiber technology can also contribute to the
sustainability of MFCs by utilizing renewable feedstocks in
nanofiber production. Nanofibers can be fabricated from
various materials, such as carbon, metal, polymer, and ceramic,
using different fabrication techniques, including electro-
spinning,***’ melt spinning,** force spinning,* chemical vapour
deposition,** and template synthesis.** The most common
nanofiber production process is electrospinning due to several
benefits compared to conventional techniques for producing
nanofibers, including flexibility in choosing materials, ability in
controlling fiber size and structure, and capacity for large-scale
production. Electrospinning is a method that can produce
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continuous and uniform nanofibers from various polymers and
composite materials, making it a popular choice for applica-
tions in various applications, including fuel cells.

2. Nanofiber technology for microbial
fuel cells

Nanofiber technology has shown promise in the development of
microbial fuel cells (MFCs) due to several advantages over
traditional electrode materials. Nanofibers are ultra-thin fibers
with diameters ranging from 1 to 100 nanometers that can be
made from a variety of materials, including composites, poly-
mers, metals, and ceramics.

Fig. 3 shows the polymeric nanofibers which have fiber
diameters between 67-185 nm (diameter measured using
Image] program). Their high surface area-to-volume ratio, small
diameter, and porosity render these suitable as electrode
materials in MFCs. The high surface area of nanofibers allows
for a larger number of microorganisms to attach to the elec-
trode, resulting in improved performance.** The small fiber
diameter of nanofibers enhances the accessibility of microor-
ganisms to the electrode surface, improving their metabolic
activity and resulting in increased energy generation. The high
porosity of nanofibers facilitates the diffusion of nutrients and
oxygen to the microorganisms, which is essential for their
growth and metabolism.** Additionally, certain types of nano-
fiber materials, such as carbon nanotubes and graphene, have
high electrical conductivity, facilitating the transfer of electrons
between the microorganisms and the electrode and resulting in
improved energy generation.** Ho-Young et al® included
conductive nanocomposite into anode of MFCs. Compared to
commercial graphite felt, the nanocomposite anode showed
a 1.8-fold increase in power density. The role of carbon nano-
fibers on MFCs is not only because of their conductivity, but
also their adoption properties. The conductive carbon nano-
fibers can improve bacterial attachment and extracellular elec-
tron transfer simultaneously. For instance, Zhang et al*®
fabricated a bacteria/Multi-Walled Carbon Nanotube (MWCNT)
hybrid biofilm by inserting the MWCNTSs into the anode bio-
film. The bacteria/MWCNTs biofilm was formed via an
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Fig. 3 Polymeric polyamide 6 nanofibers with an average fiber
diameter 114 + 22 nm.
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adsorption-filtration method. The start-up time was shortened
by 53.8% while the current density, power density, and
coulombic efficiency increased by 46.2%, 58.8% and 84.6%,
respectively compared to naturally grown biofilm. Apparently,
carbon-based nanofibers, including carbon nanotubes and
graphene, are attractive due to their high electrical conductivity
and adsorption properties. Other commonly used nanofiber
materials in MFCs include metal oxides, such as titanium
dioxide, and conductive polymers, such as polyaniline.

3. Applications of nanofiber
technology in microbial fuel cells

Nanofiber technology can have different applications in MFCs,
including the development of nanofiber-based anodes, cath-
odes, and separator membranes. Low charge transfer efficiency
of electrodes and costly catalysts are limiting the development
of MFC technology. Due to the unique properties of nanofibers
explained in the previous section, these materials are promising
alternative to conventional materials, which significantly

Table 1 Ideal MFC components
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impact the efficiency and performance of MFCs. In the
following section, the application of nanofiber webs in various
components of MFC is summarised.

3.1. Nanofiber-based anodes

The anode part of MFCs mostly influences the microorganism
attachment, biofilm formation, substrate oxidation, and elec-
tron transfer rate. For this reason, the anode half-cell has been
the focus of research. A desirable anode should exhibit; high
surface area and porosity to enhance bacterial attachment,
capacity to enhance biofilm formation via a strong intercon-
nection between microorganisms and the material, and good
electrical conductivity.***** The ideal anode selection is
summarized in Table 1. The material should have a networked
structure to ensure stable attachment of the biofilm. Qualitative
and quantitative biofilm adhesion analysis exhibited that acti-
vated carbon nanofibers showed better performance compared
to granular activated carbon and carbon cloth anode.** The
combination of high porosity and short distances between the
free surface and the bulk allows for improved nutrient access to

Ideal properties Effect on MFC performance References
Anode electrode
Conductivity Reduce resistance, improve electron transfer, lower losses 66 and 67
Improve electrochemical performance over plain carbon paper
Surface area Enhance bacterial attachment 68 and 69
More biocatalysts from organic compounds oxidation (e.g., graphite felt yields
higher output power than a graphite rod because of its increased surface area)
Porosity and pore structure Maintain anoxic conditions for electricity generation in the anode 68 and 70
Large bio-accessible surface area
Thickness Minimise resistance to electron transport from the biofilm to the anode 71
Stability and durability pH shift tolerant conditions 72
Biocompatibility Facilitate bacteria-electrode interaction and higher biomass 73-75
Electro catalytic activity Enhancement on in situ oxidation of the microbial metabolites 76
Low cost Feasibility of scale-up and commercial application 77
Mechanical strength Better mechanical strength under a range of conditions by using carbonaceous and 68
metallic materials (e.g., carbon paper, carbon rods, graphite felt, reticulated
vitreous carbon, nickel sheets, stainless steel mesh, and copper sheets)
Cathode electrode
Conductivity Polarization loss reduction 78
Oxygen reduction reaction enhancement
Stability and durability PH shift tolerant 72
Low cost Feasibility of scale-up and commercial application 77
Catalytic activity Oxygen reduction reaction enhancement 74 and 79
Lower cathodic activation energy and increase the rate of reaction
Biocompatibility Improve the biocathode biocompatibility 78
Active sites Enhancement in number of active sites (e.g. pyridinic and pyrrolic nitrogen) to 74
facilitate a more efficient transfer of electrons during the oxygen reduction reaction
Separator membrane
Stability To be resilient and stable in acidic and alkaline conditions 80
Conduction To conduct the protons to cathode, not electrons to fulfil the eqn (1) and (2) for 81
energy generation
Impermeability to gases To allow H' to pass from the anode to the cathode side and be impermeable to 82
gases like H,, O,, and N,
Low cost Feasibility of scale-up and commercial application 80 and 83
Hydrophilicity To facilitate cationic transport and should also inhibit oxygen diffusion 84

© 2024 The Author(s). Published by the Royal Society of Chemistry
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the deep inner layers, optimizing the utilization of the available
surface area. However, to enhance the properties of nanofibers
in MFCs, the addition of various materials such as reduced
graphene oxide (rGO), carbon nanotubes (CNTs), metals, and
metal-organic frameworks is necessary. This addition provides
improved conductivity, thermal stability, mechanical strength,
and corrosion resistance to the nanofibers. For instance, using
electrospinning and calcination techniques, nitrogen-doped
carbon nanofibers anchored with iron nanoparticles (Fe/N-
X@CNFs) have been developed as anode electrocatalysts with
good electrocatalytic activity and biocompatibility.>® In another
study,”* Mo-doped carbon nanofibers were prepared by using
electrostatic spinning, followed by stabilization and carbon-
ization. The Mo-doped carbon nanofibers anode delivered
a maximum power density of 1287.38 mW m > while pristine
carbon nanofiber delivered 649.69 mW m™ > Conductive
nanofiber with a higher surface area could improve the
conductivity of the anode for microorganism adherence on
anodic electrodes.*> By using activated carbon nanofiber with
carbon nanotubes in anode, the power density of the could
increase by 180% compared to that of the commercial graphite
felt,"” and 40% higher maximum power density compared to
unmodified carbon cloth.®® The aligned carbon nanofiber-
bacteria (ACNF-bacteria) hybrid exhibits a rich porous struc-
ture and a large specific surface area, resulting in significantly
enhanced electrocatalytic performance compared to pristine
carbon cloth (CC) anodes.?> The ACNF-bacteria hybrid has
a maximum power density of 704 mW m™ >, surpassing the
performance of ACNF, CNF, and CC anodes by 1.7, 2.1, and 2
times, respectively. Jiang et al.** employed a manganese cobalt
metal-organic framework (MOFs) derived carbon nanofiber
(CNF) anode electrode to improve electricity generation as well
as pollutant removal. The modified CNF provides the anode's
conductivity and increases the surface area and porous struc-
ture, allowing for more attachment sites for electroactive
bacteria. This enhancement improved the electrocatalytic
activity of bioanode and catalytic reduction capability of
anaerobic microorganisms for Sb(v), leading to increased
performance in microbial fuel cells. Wu et al®' employed
molybdenum (Mo) metal-doped carbon nanofiber (CNF) anode
electrodes. The Mo-CNF anodes were produced through elec-
trospinning and high-temperature carbonization processes.
These Mo-CNF II anodes demonstrated an accelerated electron
transfer rate and achieved a maximum power density of 1287.38
mW m™ 2, which was twice that of the pristine CNF anode. The
enhancement is due to the improved microbial colonisation,
electrocatalytic activity, and larger reaction surface areas
enabled by the Mo-CNF structure. These characteristics not
only enable direct electron transfer but also promote flavin-like
mediated indirect electron transfer mechanisms.

In another work,* electrospun metal-doped CNF were
employed as anode electrodes. The CNF served as carriers for
metals, enhancing the surface area and creating a highly porous
structure. Among the three different metals (Fe, Ni, Cu), the
iron-doped CNF showed the maximum output power (641.96
mW m~?), providing a 7.62-fold increase compared to pristine
CNF (Fig. 4). Differences in power output across various metals
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Fig. 4 Electrospun metal-doped carbon nanofibers at the bio—-abiotic
interface enable rapid bioelectrocatalysis (this figure has been repro-
duced from ref. 55 with permission from Elsevier publisher, copyright
2024).

are due to variances in active sites on the carbon nanofiber
surface, as well as differences in surface morphology, structure,
and electronegativity. These differences influence the direct
contact between the anode interface and extracellular proteins
of electricity-producing microorganisms, affecting the degree to
which the diffusion limit is surpassed. Therefore, significant
differences have been observed in the improvement of bio-
electrocatalytic performance with different metal anode mate-
rials. Furthermore, combining iron cobalt bimetallic metal-
organic frameworks (FeCo-MOFs) with CNFs can enhance the
power density up to 5300 mW m > since the synergistic effect
between different metals in bimetallic MOFs improves the
catalytic performance of MFC.>**” The incorporation of bime-
tallic MOFs enhances both the strength and flexibility of CNFs.
This combination enhances the electrocatalytic efficiency of
bimetallic MOFs and avoids the agglomeration of nano-
particles. Barakat et al.*® conducted a comparative analysis of
various anode materials, including cobalt (Co)-doped carbon
nanofibers (CNFs), single and double layer active Co-free CNF
mats, carbon cloth, and carbon paper. The findings indicated

2 23
Il Single Layer gs
Il Double Layer o
x
[l Co-doped =N
Bl Carbon paper =
I Carbon cloth 8 I
>

C.D
(mA/mZ)

0.C.V
(mV)

Fig. 5 Power density, open circuit potential, and current density after
24 h batching of MFCs using different anodes (this figure has been
reproduced from ref. 58 with permission from MDPI publisher,
copyright 2024).
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that the inclusion of additional Co significantly increased the
power density, reaching a maximum of 21 mW m™?, as illus-
trated in Fig. 5. Adding cobalt (Co) to carbon nanofibers (CNFs)
helps reduce the negative impact of the metal on microorgan-
isms and lowers the chance of metal dissolution, while simul-
taneously utilising the advantageous features of cobalt.

It can be concluded that employing conductive nanofibers as
anodes can alter the surface morphology and porosity of the
anode material, thereby impacting the performance of MFC
units. The incorporation of metals onto the nanofiber layer has
shown significant potential to enhance power generation
performance several-fold. This improvement is attributed to
better attachment of electroactive bacteria, enhanced electro-
catalytic activity, and catalytic reduction processes facilitated by
the modified nanofiber structure.

3.2. Nanofiber-based cathodes

Currently, carbon cloth, carbon paper, and graphite are the
most commonly used cathode materials. It is expected that
a good cathode material should capture protons easily and have
a high redox potential. The power density and the electrical
performance of the cathode can be improved by modifying it
with a highly active catalyst.*® It is possible to use carbon® or
metal-based catalysts such as platinum (Pt)** or biocatalysts by
attachment of microorganisms on the cathode.®®* The main
limitation of noble metal-electrode cathodes for scaled-up
applications is their high cost.*® The drawback of the bio-
catalyst is accumulation of metabolites which limits ions
transferred through cell membranes.®® An ideal oxygen reduc-
tion reaction catalyst should be extremely active, durable, long-
lasting, scalable, and, most significantly, inexpensive. To
maximize the technoeconomic potential of microbial fuel cells,
it is critical to choose a cost-effective cathode material.

Nanofiber-based cathodes have been developed as a viable
option to improve MFCs' performance. Nanofibers' high surface
area, porosity, and electrical conductivity make them suitable
for replacing traditional electrode materials such as graphite
and platinum. Carbon-based nanofibers, such as graphene and
carbon nanotubes, are particularly attractive due to their high
electrical conductivity and potential for enhanced electron
transfer.

Xu et al.'® used nitrogen-doped reduced graphene oxide-
carbon nanofiber hybrid membranes as cathode material which
showed superior MFC performance with maximum power
density reached 826 mW m™> and oxygen reduction reaction
activity compared to the pristine nitrogen-doped carbon nano-
fibers and commercial activated carbon (Fig. 6). Ghasemi et al.**
studied activated electrospun carbon nanofibers as a cathode
electrode and compared performance to plain carbon paper. To
increase surface area and catalytic activity of the cathode,
chemical and physical activation was done by KOH reagents
and CO2 gas, respectively. Chemically activated carbon elec-
trodes have a better catalytic activity than physically activated
ones with 78% more power generation. On the other hand, the
cost of chemically activated carbon nanofibers was 2.65 times
greater than that of the traditionally used platinum cathode.

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Nitrogen-doped reduced graphene oxide@carbon nanofiber
(N-rGO@CNF) hybrid membranes, with varying amounts of rGO
embedded into CNF, serving as high-performance integrated air
cathodes in microbial fuel cells (this figure has been reproduced from
ref. 100 with permission from Elsevier publisher, copyright 2024).

Eom et al.** used polyacrylonitrile (PAN)-based carbon nano-
fibers in both anode and cathode electrode. Palladium (Pd) was
used at various ratios to enhance the catalytic activity of MFC
together with carbon nanofibers in the cathode electrodes.
Results indicated that the performance of MFC increased as the
content of Pd increased. Pd incorporated nanofiber showed
current density and power density 17.2 times and 283 times
higher than pristine carbon nanofiber. A novel cathode, elec-
trospun zeolitic imidazolate framework-67/polyacrylonitrile
carbon nanofiber (ZIF-67/CNFs), has been developed to
improve the oxygen reduction reaction (ORR) performance,
pollutant removal, and bioelectricity output of microbial fuel
cells (MFCs)."** This innovative cathode achieved the highest
output voltage (607 & 9 mV) and maximum power density (1191
mW m?). The porous structure of the nanofiber composite
electrode effectively decreased the internal resistance of the
MFC cathode. Nandy et al.*® conducted a comparative study on
the performance of soil microbial fuel cell (SMFC) technology
utilizing different cathode materials: Fe-doped carbon nano-
fiber (CNF), Pt-doped carbon cloth (PtC), carbon cloth, and
graphite felt (GF). The study showed that Fe-doped CNF and PtC
had steady performance, reaching peak power densities of 25.5
mW m~> and 30.4 mW m™?, respectively, in relation to the
cathode's geometric area. The graphite felt (GF) showed supe-
rior electrochemical performance, with a peak power density of
87.3 mW m™ 2 The increased performance of GF was due to its
larger surface area, which improved biofilm adhesion and
resulted in higher oxygen reduction reaction (ORR) activity.
Gong et al."® synthesized carbon nanofiber membranes (CNMs)
incorporated with palladium nanoparticles (Pd-CNMs) using
polyimide as the primary material. Palladium nanoparticles are
evenly spread and highly active on the surface of carbon
nanofibers in the Pd-CNMs structure. The Pd-CNMs exhibit
outstanding electrocatalytic performance for the oxygen reduc-
tion process (ORR) in alkaline electrolytes due to their large
specific surface area. Comparing the electrocatalytic power of
Pd-CNMs to commercial Pd/C, the half-wave potential fell by
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approximately 0.03 V and 0.042 V, respectively after 4000 CV.
Commercial Pd/C showed greater electrocatalytic activity but
lower ORR performance than Pd-CNMs.

On the other hand, Santoro et al.'® proposed using nitric
acid (HNO3) activated CNFs cathodes (ACNF) as a substitute for
platinum (Pt)-based cathodes in single chamber microbial fuel
cells. The nitrogen functional groups attached to the nanofiber
surfaces likely enhanced the properties of the ACNF. The find-
ings demonstrated that CNFs activated by HNO3 exhibited
greater stability in voltage output and power production over
extended periods compared to a Pt-based cathode, which
experienced deterioration and detachment of the catalyst with
time. While Cong et al.*® found that nitrogen-doped carbon is
not electrochemically stable under prolonged potential scan-
ning, employing hot-pressing of ACNF led to gradual degrada-
tion over time. Furthermore, it was suggested that the ACNF
cathode serves as a dependable and cost-effective alternative to
Pt-based cathodes. Similarly, Yang et al.*°® synthesized nitrogen-
doped porous carbon nanofibers (CNFs) as a substitute for
platinum-based catalysts in fuel cells. Depending on the
carbonization temperature, variations in nitrogen content and
the degree of graphitic phase were observed. The optimal
carbonization temperature for achieving a desirable graphitic
phase and a nitrogen content of 3.5% (atomic percentage) in the
carbon fibers was determined to be 1000 °C. Among the
samples with varying pore volumes (0.09, 0.52, and 0.94 cm®
g~ 1), the medium porous sample (C-PEOPAN-11-1000) exhibited
the highest performance in the oxygen reduction reaction
(ORR), with a total pore volume of 0.79 cm?® g~ *. The measured
H,O0, yields for C-PEOPAN-11-1000 and commercial Pt/C cata-
lyst were approximately 8% and 2%, respectively, at a potential
of 0.5 V. Furthermore, C-PEOPAN-11-1000 demonstrated supe-
rior tolerance to methanol crossover and excellent stability in
KOH solution compared to Pt/C catalyst. The remarkable elec-
trocatalytic activity, with an onset potential of approximately
0.09 V for the C-PEOPAN-11-1000 sample (compared to 0.07 V
for commercial Pt/C catalyst), was attributed to the balance
between nitrogen content, electrical conductivity, and active
site density on the surface. Their analysis showed that all
nitrogen atoms primarily existed in active pyridinic and
quaternary-N bonding configurations across all carbon fibers.
Similarly, nitrogen-doped carbon-based nanofibers (N-CNFs)
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were synthesized as a catalyst layer at the cathode in Single
Chamber Microbial Fuel Cells (SCMFCs) with an air-cathode,
using a carbonization temperature of 900 °C.**” The presence
of nitrogen defects, combined with their high surface area,
makes them a promising catalyst layer for the oxygen reduction
reaction (ORR). The results obtained confirmed that SCMFCs
equipped with N-CNFs achieved a higher maximum power
density (1.15 W g~ ') compared to those with a reference Pt/C
layer (0.571 W g 1). This highlights the significant potential of
N-CNFs to replace noble metal-based catalysts. The Pt metal
group-free oxygen reduction reaction (ORR) catalysts based on
Fe, Co, Ni, and Mn demonstrated superior electrochemical
performance and power generation compared to activated
carbon, with the following order of effectiveness: Fe > Co > Ni >
Mn as shown in Fig. 7.'°® This suggests a promising avenue for
synthesizing Pt metal group-free catalysts for microbial fuel cell
(MFC) applications.

Besides carbon, polymeric nanofibers started to be used in
MFCs. Silver (Ag) anchored PVDF nanofiber membrane was
prepared for efficient oxygen reduction reaction in MFC's
cathode.'” Neither supporting carbon cloth, nor coating cata-
lyst material has been used to fabricate MFC cathode. The Ag
showed catalyst role. Compared to commercial Pt/carbon (C)
(20% Pt) cathode, the PVDF@AgZ nanofiber cathode showed
higher power density, chemical oxygen demand (COD) removal
rate, and coulombic efficiency as 72%, 57.44%, and 25.7%,
respectively. This work showed, without carbon cloth or paper
and catalyst coating, it is possible to get high MFC performance
by using modified nanofibers.

It is very common to use nanofibers together with a catalyst.
Graphene/nickel (Ni) nanofiber hybrid was prepared for
cathode catalyst by the decoration of Ni nanofibers on the gra-
phene flakes.'*® Compared to pure Ni or graphene catalysts,
graphene/Ni nanofiber showed almost 2-fold higher power
density. Ahmed et al.'** prepared polyaniline (PANI) nanofiber/
carbon black composite as an oxygen reduction catalyst in MFC.
The power density of pristine PANI nanofiber increased 2.6-fold
by adding carbon black and 1.2-fold lower than commercial Pt
catalyst. However, the lower cost of PANI/C would suggest an
alternative to Pt catalyst for the bulk application. Other
researchers used non-precious metal (Co, Ni or Fe) doped
carbon nanofiber air-cathode for MFC.** Using metals not only
improved the catalytic activity but also increased the surface
area of the electrode up to 573 m* g~ . In terms of the catalytic
potential of electrodes, the ascending sort was Fe; > Co > Ni >
pristine carbon nanofibers. On the other hand, for the long-
term stability (6000 h) and high performance of the low-cost,
Co-dopped carbon nanofibers showed the best performance
with a current density of 27.4 A m >, power output up to 14.4 W

m 2 with COD removal of 70-85%.

3.3. Nanofiber-based membranes

MFCs equipped with high-resistance membranes tend to have
poor performance due to limited proton diffusion between the
anode and cathode, resulting in low current and power densi-
ties.'” Besides the influence on performance, the membrane

© 2024 The Author(s). Published by the Royal Society of Chemistry
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type is a significant factor in the development of MFCs,
accounting for approximately 60% of the total cost. Currently,
Nafion membranes possess the ideal qualities needed for
MFCs.?*'** Nevertheless, despite being the top choice for MFC
membranes, their high cost hinders their widespread adoption
as MFCs are scaled-up. Therefore, novel membrane designs
focus on low cost and maintaining low internal resistance to
facilitate efficient proton transfer with enhanced characteris-
tics. When selecting a membrane for MFC applications, several
criteria must be fulfilled. These include exceptional mechanical
and chemical stability, absence of electronic conduction, low
permeability to gases like H,, O,, and N,, high ionic conduc-
tivity, ease of acquisition, superior species selectivity, minimal
oxygen and fuel crossover, and affordability with low electrical
resistance.*® Besides providing low internal resistance, the
separator used on the anolyte side of the cathode should have
a high hydrophilicity to facilitate cationic transport and should
also inhibit oxygen diffusion.®

Functionalized nanofibers can be used to selectively trans-
port specific ions or molecules, such as proton-selective
membranes that enhance proton transfer in MFCs. Either
including metals/inorganics or proton-conducting groups (e.g.,
—-COOH, -SO;3H, and -PO3H,), the nanofibers can be suitable to
use as proton exchange membranes.

Limited research has been conducted regarding the utiliza-
tion of nanofiber membranes in the separator component of
MFCs. More research is being conducted on the application of
nanofiber membranes in lithium cells, direct methanol fuel
cells (DMFCs), biomedical materials, sensors, and electronic
devices.**** Due to pore size, nanofibers act as microfiltration
membranes. It was found that using a microfiltration
membrane reduces the internal resistance of MCFs compared
to Nafion proton exchange membranes (PEM)."** Dong et al.'*®
compared the proton conductivity of pristine Nafion film
membrane and high-purity Nafion nanofiber (99.9 wt%) via
electrospinning with the use of 0.1 wt% poly(ethylene oxide). It
was found that proton conductivity increased with decreasing
fiber diameter. Compared to pristine Nafion film, Nafion
nanofibers showed 15-fold higher proton conductivity. Based
on the previous finding it can be expected that nanofiber
membranes can help reduce internal resistance with a lower
cost. Shahgaldi et al®* prepared PVDF/Nafion composite
membranes as proton exchange membranes. The results indi-
cate that maximum power density was attained with 0.4 g
concentration of Nafion in composite, which was even higher
than that of pristine Nafion. By this method, it is possible to
reduce the price of separator membrane cost. Similarly, elec-
trospun activated carbon nanofiber/Nafion membranes were
fabricated and their power production was compared to Nafion
112 and Nafion 117 membranes.?*® Results indicated that, the
nanofiber membrane produced the highest power density of
57.64 mW m ” while it was 13.99 mW m "> and 38.30 mW m >
for Nafion 112 and Nafion 117, respectively. The carbon elec-
trospun structure changed the roughness, lowered pore size
and increased porosity of membranes which resulted in higher
generation of power in MFC. Li et al.*® functionalized the PVDF
nanofiber with Nafion, as shown in Fig. 8. The addition of

© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Synthetic route of Nafion-functionalized PVDF nanofibers
(PVDFNF-Nafion) and preparation of Nafion composite membrane
(Nafion-CM1): ozone treatment introduces peroxide groups in Nafion
chains, facilitating the formation of highly reactive radicals. These
radicals react with C=C unsaturated groups. Surface functionalization
of PVDF nanofibers involves a two-step process: radical polymeriza-
tion of GMA followed by addition reaction with MBA. Maleimide groups
anchored on the PVDF nanofibers serve as active sites for reaction with
radical-containing Nafion chains, resulting in Nafion-functionalized
PVDF nanofibers (PVDFNF-Nafion). GMA: glycidylmethacrylate, MBA:
maleimidobenzoic acid (this figure has been reproduced from ref. 35
with permission from Royal Society of Chemistry publisher, copyright
2024).

Nafion chains to PVDF-based nanofibers improved their
compatibility with the Nafion matrix and created a PVDFNF-
Nafion reinforced Nafion composite membrane (Nafion-CM1).
Functionalizing the nanofiber surfaces created proton-
conducting channels and enhanced the proton conductivity of
Nafion-CM1. Nafion-CM1 demonstrated a maximum power
density of 700 mW cm? in single cell testing with H,/O,,
exceeding the 500 mW cm?® of the commercial Nafion 212
membrane. In another work, PVDF nanofiber was coated with
perfluorinated sulfuric acid ionomer (PVDF-PFSA) to be used in
MFCs as a replacement for the Nafion 117 membrane and their
power densities were compared.'” The nanofiber-based proton
exchange membrane showed superior properties compared to
Nafion 117, such as; lower dimensional change, lower water
uptake, with a max power density of 548 mW m 2. Liu et al.*®
engineered proton-conductive membranes by reinforcing PVDF
nanofibers with aromatic ionomers. The resulting composite
nanofiber membrane (SPP-TFP-4.0-PVDF) exhibited a highly
porous and isotropic structure enhanced by partially fluori-
nated aromatic ionomers. With excellent chemical stability and
consistent rupture energy levels at both high and low relative
humidity (RH) levels and higher proton conductivity compared
to commercial Nafion membrane, the SPP-TFP-4.0-PVDF
membrane presents itself as a promising alternative proton-
conductive membrane. Similarly, PVDF nanofibers were used
as a proton exchange membrane after being functionalized with
polydopamine/polyethyleneimine (PDA/PEI) and filled with
sulfonated poly (ether ether ketone) (SPEEK) (SPEEK-PDA/
PEI@PVDF)."*® Undoubtedly, the membrane exhibited excep-
tional mechanical properties, particularly in wet conditions.
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Additionally, the SPEEK-PDA/PEI@PVDF composite membrane
demonstrated excellent long-term stability and durability. The
proton conductivity was measured at 48 mS cm™ " at 80 °C, and
the highest power density was recorded at 58.9 mW c¢cm 2. The
greatest power density attained was 58.9 mW cm > using 2 M
methanol as fuel, in comparison to the pristine SPEEK
membrane (47 mW c¢cm™?) and Nafion115 (48.4 mW cm™2). The
durability test showed the excellent stability of the composite
membrane, showing just a 2.6% loss in open circuit voltage
after working at 80 °C for 100 hours.

Based on the previous studies, it can be concluded that, the
proton exchange membranes based on nanofibers demonstrate
exceptional MFC performance attributes surpassing those of the
Nafion membrane, suggesting their potential as a viable substi-
tute for Nafion membranes in MFC reactors. Future studies are
required to optimize the properties of nanofibers and their
potential applications in MFCs and other energy-related fields.

4. Challenges and future directions

The implementation of nanofibers into MFC components offers
promise for the enhancement of performance. However, there
are several limitations that must be addressed for extensive
application at larger scale. Table 2 shows the main challenges
and possible solutions to overcome the limitations of nanofiber
technology to use in energy applications.

The improvement in bulk production of nanofibers accel-
erate their application area in the market. Especially after
COVID19, nanofibers have been widely used in face masks.*****
Future research should focus on optimizing the properties of
nanofibers and exploring their potential applications in MFCs
and other energy-related fields. The challenges mentioned in
Table 2 are not insurmountable but require great research and
effort. For instance, for cost-effectiveness production, the
equipment, polymers, solvents, additives need to be selected
carefully. Otherwise, the fabrication of nanofibers with high-
quality raw materials can be costly. The scalability of nano-
fiber production for large-scale MFC applications needs to be
addressed to make this technology economically viable.

The other limitations, such as un-spinnability, defect-free
surface or low conductivity can be solved by using polymer
mixture, solvent mixture, polymer type, additives, changing
process and system parameters. The defect-free surface is
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important in MFC. For instance, large defects or low conduc-
tivity can cause electron loss, high internal-resistance, low
proton conductivity or low impermeability to gases.

The biocompatibility of nanofiber-based materials is another
challenge that needs to be addressed. Some nanofibers might
negatively affect microbial development and activity, which
would prevent their usage in MFCs. To ensure that nanofibers
can be used safely in MFCs, a detailed investigation into their
toxicity is required.

Regarding their long-term efficacy, the stability and dura-
bility of nanofiber-based electrodes and membranes in MFCs
also pose challenges. The polymer selection must be done
carefully. For instance, polyacrylonitrile (PAN) is one of the
most commonly used polymers for the production of nano-
fibers. However, the sensitivity of this polymer to alkaline
restrict its application. It is found that the nitrile groups of PAN
hydrolysis and swells under alkaline condition and pores
getting smaller.””* It is necessary to evaluate the mechanical
stability and long-term durability of these components to
ensure their efficacy over extended periods.

Recent research has demonstrated that the incorporation of
nanofibers into MFCs holds great potential for enhancing the
performance of MFCs in the future years.®***>*>* These studies
have highlighted the remarkable capability of nanofibers to
significantly enhance power generation, potentially by several
orders of magnitude. In this respect, future research should
focus on optimizing the properties of nanofibers according
to MFCs application. The advancement of nanofiber materials
and their composites through the exploration of novel
synthesis methods holds the potential to significantly
enhance their performance characteristics and expand the
scope of their applications. In order to improve the overall
power generation of MFC systems, it is also critical to give
priority to the exploration and development of MFC stacks. This
factor becomes essential in order to meet the power require-
ments required for the future implementation of large-scale
MFC operations.

In summary, the incorporation of nanofiber technology into
MFCs exhibits considerable potential for improving their perfor-
mance and extending their applicability.”®**'*> Nevertheless,
certain obstacles relating to cost-effectiveness, biocompatibility,
and long-term stability must be addressed. The focus of future

Table 2 Limitations and solutions of nanofiber technology to use in energy application

Limitations Solution Reference
Cost The increase of industrial scale production devices reduces the price of nanofiber webs 85-87
Un-spinnability Using polymer mixture or using additives can help to fabricate nanofiber web 88 and 89
Defect-free surface Optimizing both system and process parameters is essential to prevent uneven web 90-92
surface, which can lead to energy generation failure
Low conductivity The conductivity can be improved by using conductive polymers, carbon nanofibers, 32 and
or additives 93-95
Biocompatibility Focusing on biocompatible polymers and using non-toxic chemicals can be the 96-98
solution
Stability Using chemical resistance nanofiber webs such as PVDF or PSU are beneficial to 39 and 99

enhance stability and durability under acidic and alkaline conditions
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research should be on improving nanofiber characteristics and
investigating potential uses for them in MFCs and other areas
related to energy production.

5. Conclusions

This article described the significance of nanofiber technology in
revolutionizing MFCs as a sustainable energy source. The proper
and efficient selection of the material from which MFCs are
constructed is a crucial element in the effort to produce high-
performance MFCs. Nanofiber technology has been shown to
enhance the performance of MFCs through improved electron
transfer rate, enhanced biofilm formation and microbial activity,
and increased durability and stability. Nanofiber-based anodes,
cathodes, and membranes have been investigated in MFCs, with
promising results. However, the incorporation of nanofiber
technology into MFCs poses various challenges encompassing
cost-effectiveness, biocompatibility, and long-term stability.
Future research should focus on the optimizing the properties of
nanofiber and the exploration of their potential applications not
only in MFCs but also in other energy-related domains. Utilizing
MFCs as a viable source of sustainable energy presents an
opportunity to reduce reliance on non-renewable resources and
address the impacts of climate change. Additionally, the poten-
tial of nanofiber technology to improve MFC performance and
expand their applications holds great promise in advancing
a future driven by sustainable energy solutions.
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