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gaps of ABN3 perovskites: an
account from machine learning and first-principle
DFT studies†

Swarup Ghosh and Joydeep Chowdhury *

The present paper is primarily focused on predicting the band gaps of nitride perovskites from machine

learning (ML) models. The ML models have been framed from the feature descriptors and band gap

values of 1563 inorganic nitride perovskites having formation energies <−0.026 eV and band gaps

ranging from ∼1.0 to 3.1 eV. Four supervised ML models such as multi-layer perceptron (MLP), gradient

boosted decision tree (GBDT), support vector regression (SVR) and random forest regression (RFR) have

been considered to predict the band gaps of the said systems. The accuracy of each model has been

tested from mean absolute error, root-mean-square error and determination coefficient R2 values. The

bivariate plots between the predicted and input band gaps of the compounds for both the training and

test datasets have also been estimated. Additionally, two ABN3-type nitride perovskites CeBN3 (B = Mo,

W) have been selected and their electronic band structures and optoelectronic properties have been

studied from density functional theory (DFT) calculations. The band gap values of the said compounds

have been estimated from DFT calculations at PBE, HSE06, G0W0@PBE, G0W0@HSE06 level of theories.

The present study will be helpful in exploring the ML models in predicting the band gaps of nitride

perovskites which in turn may bear potential applications in photovoltaic cells and optical luminescent

devices.
1. Introduction

Perovskites are ternary compounds with general chemical
formula ABX3 where “A” and “B” are cationic elements and “X”
can be either oxygen or halogens in anionic forms. While “A”
atoms are located in the cuboctahedral cavities of the crystal,
“X” atoms on the other hand form corner sharing BX6 octa-
hedra. These compounds are known to show fascinating phys-
ical and chemical properties and nd extensive applications in
the fabrications of solar, fuel cells, energy conversion and
optoelectronic devices.1–10 Moreover, perovskites containing
heavy fermionic elements, that show Rashba splittings, nd
promising applications in spintronics.11–14

Despite considerable successes of oxide and halide perov-
skites, recently much attention has been focused on the
synthesis and rst-principle calculations of nitride perovskites
having general formula ABN3.15–19 Of late, ABN3 nd potential
applications as topological insulators, photovoltaic cells and are
being successfully used as optical luminescent materials.18,20,21

The primary driving force behind the realization of ABN3 stems
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from their extraordinary electronic, optical and magnetic
properties of nitride compounds. For example, 2D hexagonal
boron nitride is used in 5G wireless technology.22 Vanadium
nitride (VN), niobium nitride (NbN) and tantalum nitride (TaN)
compounds are commonly employed in the fabrications of high
– Tc superconductors, supercapacitors and batteries.23–27

Barring several attributes, syntheses of nitride perovskites
are experimentally challenging as their synthetic protocols
demand oxygen free environment.28 Despite this limitation,
successful preparations of ThTaN3, LaWN3, LaReN3, LaMoN3,
CeMoN3, CeWN3, YMoN3 and YWN3 systems have so far been
reported.28–31 Readers who are interested in their synthesis
procedures are referred to the literature28–31 as depicted under
reference section. Interestingly, these nitride perovskites nd
wide applications as topological insulators, spintronics and
microelectromechanical devices.21,30,32

Considering the enormous applications of nitride perovskites,
in silico approaches alone or in conjunction with experiments
have been successfully applied to predict the structure–function
relationships of these compounds. A combinedminima hopping
method and density functional theory (DFT) calculations have
been performed to predict the crystal structures and band gaps
(Eg) of twenty-one ABN3 perovskites such as LaBN3 (B = Re, W,
Mo, Tc, Os, Cr, Mn, Co), SrBN3 (B= Re,W, Tc), CaBN3 (B= Re,W,
Mo, Tc), BaBN3 (B = Re, W) and YBN3 (B = Re, W, Mo, Tc).19

Those systems were observed to be thermodynamically stable
RSC Adv., 2024, 14, 6385–6397 | 6385
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and proposed to have excellent chances of being experimentally
accessible.19 Recently, the rst-principle DFT calculations have
been carried out to calculate the magnetic moments and ther-
modynamic stabilities of some rare-earth nitride perovskites
ABN3 (A= La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb,
Lu and B = Re, W) and suggested their numerous technological
applications in the domain of nitride materials.16 In this regard
DFT is now recognized to be an elegant approach to estimate the
electronic and optoelectronic properties of the materials under
study. Both the electronic as well the optoelectronic properties
are primarily guided by the band gaps of the materials. While
DFT calculations with local density approximation (LDA) and
generalized gradient approximation (GGA) underestimate Eg
values,33–36 the unscreened hybrid and Perdew–Burke–Ernzerhof–
Hartree–Fock exchange (PBE0) functionals overestimate band
gap energies of the compounds relative to their experimental
counterparts.37–39 In this regard DFT calculations, as accom-
plished from single-shot GW (G0W0) approximation using hybrid
exchange-correlation (XC) functionals such as Heyd–Scuseria–
Ernzerhof (HSE), Becke-3-parameter-Lee-Yang-Parr (B3LYP) and
B3PW91 are known to predict the Eg values of the compounds
close to the experimental results.14,33,40–48 The major pitfalls of
such calculations are that they are computationally demanding
and need high end servers to run them. In this context, the
machine learning (ML) is now considered as an effective alter-
native route to avoid the inherent computational costs linked
with DFT calculations and helps in establishing a simple model
between the characteristics features of materials and the target
variable (here Eg).49–60 Although ML approach is successfully
implemented recently to predict the band gaps of oxide, halide
perovskites and double perovskite compounds,61–66 no such
report is found in predicting the band gaps of nitride perovskites.

Considering the above issues in mind, the present paper is
aimed to predict the band gaps of ABN3 perovskites from ML
models. The DFT studies have been performed to estimate the
electronic band structures, Eg values and optoelectronic prop-
erties of two new nitride perovskites CeBN3 (B = Mo, W). The
manuscript has been organized in the following manner. In
Section 2, the computational methodology, which includes ML
methods and rst-principle DFT calculations, has been dis-
cussed. Cleaning and preprocessing of data for ABN3 perov-
skites have been shared in Section 3.1. In section 3.2, the
training and validation of ML models have been deliberated.
Section 3.3 is devoted to understand the structural properties
and stabilities of two newly discovered nitride perovskite
compounds CeBN3 (B = Mo, W). Section 3.4 is framed with the
calculations of electronic band structures and band gaps of
CeBN3 compounds using different level of theories in DFT
calculations. The corresponding optoelectronic properties have
also been highlighted in the Section 3.5. Overall conclusions of
this work have been discussed under Section 4.

2. Computational methodology
2.1. Machine learning models

To predict the band gaps of nitride perovskite compounds, the
ML models such as support vector regression (SVR), gradient
6386 | RSC Adv., 2024, 14, 6385–6397
boosted decision tree (GBDT), random forest regression (RFR)
and multi-layer perceptron (MLP) algorithms have been
considered. The input data consist of material descriptors of
nitride perovskites and their corresponding target variables Eg.
The algorithms have been realized using the Scikit-learn so-
ware package within the Python 3.9 framework.67 The parame-
ters of the algorithms have been optimized and the model
performances have been estimated using the grid search of the
average root-mean-square error (RMSE) of each model valida-
tion set. The Eg values have been predicted from SVR model
using the following mathematical relation:53

fSVRðyÞ ¼
XN
i¼1

�
ai � a*i

�
Kðyi; yÞ þ b (1)

where ai and a*i are non-negative multipliers for each observation
yi. K is the kernel or radial basis function which is used to calculate
the difference between training (yi) and predicted (y) values of
band gaps. “b” can be estimated from the Lagrange function.

The Eg values, so predicted from the GBDT algorithm, are
represented using the following expression:53

fGBDTðyÞ ¼ f0ðyÞ þ
XM
m¼1

XJ
j¼1

Qm;jI
�
y˛Rm;j

�
(2)

where f0(y) is the initial single decision tree.M, J andQm;j are the
number of regression trees, number of leaf nodes of the trees
and the best tting value respectively for each set of leaf nodes
Rm,j.

Using RFR model the predicted Eg can be represented as:53

fRFRðyÞ ¼
XT
t¼1

XN
n¼1

CnIðy˛DnÞ=t (3)

where t runs from 1 to T and T represents the number of formed
classication or regression trees. Cn signies the mean value of
dataset Dn for randomly selecting N training samples from the
said dataset.

The Eg values, so predicted from neural network based MLP
framework, can be expressed using the following mathematical
function:53

fMLPðyÞ ¼
XN
j¼1

W0
ijq
�
Wl

ijyj þ b1
�þ b0 (4)

where W0
ij and Wl

ij are the weights of ith neurons in the output
and lth layers respectively. b0 and b1 represent the respective
output layer and hidden biases respectively.

The characteristics of each model have been estimated from
the Pearson correlation coefficient (p) which is expressed as:68

p ¼
PN
i¼1

ðxi � xÞðyi � yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1

ðxi � xÞ2
s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1

ðyi � yÞ2
s (5)

where xi and yi are the comparative features of x and y respec-
tively, �x and �y are their respective average values.N represent total
number of samples in the training set. The accuracy of each ML
model has been determined from RMSE, mean absolute error
© 2024 The Author(s). Published by the Royal Society of Chemistry
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(MAE) and evaluation coefficient (R2) values. RMSE, MAE and R2

have been calculated using the following relations:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

ðyi � yÞ2
vuut (6)

MAE ¼ 1

N

XN
i¼1

jyi � yj (7)

R2 ¼ 1�
PN
i¼1

ðyi � yÞ2

PN
i¼1

ðyi � yÞ2
(8)

respectively. Where yi and y are the respective input and pre-
dicted values of the dataset.
2.2. First-principle DFT calculations

The rst-principle calculations have been carried out under the
DFT framework within Quantum ESPRESSO (QE) soware.69–71 The
crystal structures of CeBN3 (B = Mo, W) compounds have been
primarily optimized using “variable-cell relaxation” method fol-
lowed by Broyden–Fletcher–Goldfarb–Shanno scheme.72–75 The
Born Oppenheimer molecular dynamics (BOMD) simulations have
then been performed at T = 300 K on the supercell structures (2×
2× 2) of the compounds, so obtained from the optimized unitcell
geometries of the said systems. BOMD simulations have been
accomplished from the NPT ensemble whose temperature is
controlled by the Nose–Hoover thermostat. The projector
augmented wave (PAW) pseudopotentials76 have been included to
consider the electron–ion interactions and the exchange-
correlation (XC) term of the pseudopotential has been imple-
mented from Perdew–Burke–Ernzerhof (PBE) XC functional77

which is known as a parameterization form of GGA. The valence
electrons of Ce, B (B =Mo, W) and N atoms have been considered
as plane wave with kinetic energy cut-off of 80 Ry. Each crystal
structure is allowed to optimize until theHellmann–Feynman force
attains a value <10−3 Ry Bohr−1 for total electronic energy differ-
ence <10−8 Ry at P = 0 GPa. A gamma-centered k-point mesh of 10
× 10 × 10 grid under Monkhorst–Pack scheme has been set for
geometry optimization and self-consistent-eld (SCF) calculations.

The electronic band structures of CeBN3 crystal systems have
been estimated from different level of theories such as PBE,
HSE06, G0W0@PBE and G0W0@HSE06 in the DFT calculations.
The optoelectronic properties of the said compounds have been
calculated from SCF method as employed in QE soware.78 The
optical broadening of 0.15 eV has been considered for esti-
mating the optoelectronic parameters which include complex
dielectric function [3(u)], absorption coefficient [a(u)] and
optical conductivity [s(u)].
3. Results and discussions
3.1. Data cleaning and pre-processing for machine learning

The raw data of inorganic ABN3-type perovskite compounds
have been obtained from the available literature.15–19,21,28–31,79,80
© 2024 The Author(s). Published by the Royal Society of Chemistry
By selecting all possible combinations of cations as “A” and “B”,
a set of 5566 inorganic ABN3-type perovskites have been initially
selected for model evaluation. Lead (Pb) containing perovskites
in all combinations, due their inherent toxic characters, are not
considered in the above mentioned dataset. In the next step, the
samples have been primarily identied according to their
respective formation energies (Ef). Using support vector classi-
cation (SVC), the samples are then categorized by eliminating
those candidates which show Ef > thermal excitation energy (ETh
∼ −0.026 eV) at room temperature (T = 300 K).57 To implement
SVC, initially 5566 samples have been randomly divided into
4866 (∼87%) and 700 (∼13%) samples as training and test set,
respectively. Fig. 1(a) shows the Ef as a function of sample
number of the test dataset as obtained from SVC algorithm.
From Fig. 1(a), it is observed that the samples are segregated
into Ef < ETh and Ef > ETh classes. The merit of this SVC algo-
rithm is then tested from confusion matrix and receiver oper-
ating characteristics (ROC) curve.55 The results are shown in
Fig. 1(b) and (c) respectively. From Fig. 1(b), the correctly
identied compounds with Ef < ETh and Ef > ETh classes are
observed to be 482 [true positive (TP)] and 181 [true negative
(TP)], respectively. However, the number of incorrectly identi-
ed samples under Ef < ETh and Ef > ETh classes are found to be
18 [false positive (FP)] and 19 [false negative (FN)], respectively.
Out of 700 test dataset, it is found that only 5% samples (37 out
of 700) have been misclassied, which in turn suggests the
reliability of the SVC model to segregate the samples into their
respective classes. The F1 score of the model, as attained from
confusion matrix, is mathematically expressed as:

F1 score ¼ 2� recall� precision

recallþ precision
(9)

where precision ¼ TP

TPþ FP
(10)

and recall ¼ TP

TPþ FN
(11)

The F1 score is calculated to be 96.2% which also suggests
the better performance of the said model. The ROC curve, as
depicted in Fig. 1(c), represents the relation between the TP rate
(sensitivity) and FP rate (1 – specicity). From Fig. 1(c), the area
under curve (AUC) is estimated to be 0.98. The AUC closer to 1
further signies the excellent segregation between the Ef < ETh
and Ef > ETh classes.

Here we primarily focused on ABN3 compounds which bear
potential applications as photovoltaic and optical luminescent
materials, the selection space has thus been further narrowed
down to 1563 samples which exhibit Eg values spanning in the
range from 1.0 to 3.1 eV. The Eg of the compounds in general are
linked with the proposed 145 feature descriptors which include
electronegativity, atomic weight, covalent radius, d valence
electrons etc.57,81 Out of 145 feature descriptors, 117 feature
attributes of ABN3 perovskites have been initially framed for the
target variable Eg. The list of 117 features such as Mendeleev
number, electronegativity, covalent radius, d valence electrons
RSC Adv., 2024, 14, 6385–6397 | 6387
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Fig. 1 (a) Formation energy as a function of sample number for 700 test sets as estimated from SVC model. [The horizontal dashed line
represents formation energy (Ef)= −0.026 eV]. (b) Confusionmatrix representing the correlation between predicted and actual values in form of
true positive (TP), false negative (FN), false positive (FP) and true negative (TN) values for the tested samples. [Ef < ETh and Ef > ETh symbolize the
formation energies below and above ETh (=−0.026 eV), respectively]. (c) The ROC curve illustrating the TP and FP rates of the test datasets.
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etc. are shown in Table S1 (ESI).† With these 117 features, the
Pearson correlation heatmap is constructed and the result is
shown in Fig. 2(a). The features having absolute correlation
values <0.89 and withmultiple collinearities between them have
been eliminated. The nal top 10 feature descriptors which
include electronegativity, d valence electrons, formation energy,
p valence electrons, Mendeleev number, specic volume of
ground state, mean covalent radius, space group number,
melting temperature and atomic weight, have been selected
using the de-correlation method for further model evaluation.
The heatmap portraying the evaluated top 10 feature descrip-
tors and their order of importance are shown in Fig. 2(b) and (c),
respectively. From Fig. 2(c), it is clearly seen that the electro-
negativity, d valence electrons and mean covalent radius show
predominant contributions in predicting Eg values of the ABN3

compounds.
The correlations between Eg and electronegativity, mean

covalent radius and d valence electrons can be rationalized.
Electronegativity is a measure of ability to attract electrons of
two bonded atoms towards their valence electrons. This ability
results the delocalized distribution of valence electrons, which
in turn inuences the nature of the bonding as well as the Eg
values of the compounds.82–84 The mean covalent radii of the
constituent atoms are intrinsically linked with the electroneg-
ativity of the system. Systems with constituent atoms having
larger mean covalent radii thus result in decrease in electro-
negativity of the compounds in general.85 Hence, the mean
6388 | RSC Adv., 2024, 14, 6385–6397
covalent radius is considered as an important feature
descriptor in modulating the Eg values of the systems. The
d valence electrons play major roles in the formation of energy
bands in the electronic band structure and has direct impact
on the Eg of the materials. Larger number of d valence electrons
can realign the Fermi energy level (EF) through p-d and s-
d hybridizations, which in turn may alter the Eg values of the
compounds.57

3.2. Machine learning model training and validation

To precisely predict the band gaps of ABN3-ype perovskite
compounds, four ML models such as SVR, MLP, GBDT and RFR
have been considered. The accuracy of each model has been
tested by selecting their respective hyperparameters. The list of
hyperparameters of each model are shown in Table 1. From the
dataset of 1563 ABN3 perovskites and their top 10 feature
descriptors (vide supra), 1363 (∼87%) samples have been
randomly selected for training and the rest 200 (∼13%) samples
have been set for testing of each model. The random selection
has been considered two times for each model to conrm the
statistical validity of the results. The performance of ML model
has been estimated by calculating the RMSE, MAE and R2

values. The RMSE, MAE and R2 values of each model for the test
dataset, so attained from the 10-dimensional feature space, are
illustrated in Table 1.

From Table 1, it is observed that while RFR predicts the Eg
values of the compound with 3% MAE; SVR, GBDT and MLP
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 (a and b) Heatmap representing the initial 117 and final top 10 features respectively of ABN3 perovskites [yellow and dark blue colors in the
heatmap represent the respective strong and weak correlations among the features]. (c) The relative importance of top 10 features of the
compounds. [Feature indices (in the order of importance): 1-electronegativity, 2-d valence electrons, 3-formation energy, 4-p valence electrons,
5-Mendeleev number, 6-specific volume of ground state, 7-atomic weight, 8-mean covalent radius, 9-melting temperature and 10-space group
number].
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predict the same Eg within MAEs of 8%, 10% and 16% respec-
tively. From Table 1, the RFR algorithm shows lowest RMSE
(=0.11 eV) and highest R2 (=0.94) values in contrast to other
models. R2 (RMSE) values of GBDT, SVR and MLP models are
estimated to be 0.90 (0.15 eV), 0.91 (0.13 eV) and 0.74 (0.22 eV)
respectively. These results collectively suggest the reliability of
the RFR model in predicting the band gaps of ABN3-type
perovskite compounds. The bivariate plots from the RFR model
showing both the predicted, input band gap values for the
training and testing datasets are illustrated in Fig. 3(a). From
Fig. 3(a), strong linear correlation [with R2 = 0.98 (training set)
and 0.94 (test set)] between the predicted and input Eg values
have been observed in both the training and test datasets. This
result further justies the accuracy of RFR model in predicting
the band gaps of ABN3 perovskites. The corresponding bivariate
plots between the predicted and input values of Eg, as
Table 1 Statistics of different ML models and their corresponding hyper

Models Hyperparameters

MLP Solver = adam, alpha = 1 × 10−8, tol = 1 × 10−6, max_iter =
GBDT n_estimators = 2000, max_depth = 30, min_samples_split =
SVR C = 50, gamma = 10, epsilon = 0.05, kernel = ‘rbf'
RFR max_depth = 30, min_samples_split= 2, n_estimators= 200

= 0

© 2024 The Author(s). Published by the Royal Society of Chemistry
accomplished from SVR, GBDT and MLP ML models, are also
shown in Fig. 3(b–d) respectively. From Fig. 3(b–d), moderate to
weak linear correlations between the predicted and input Eg
values have been observed as the model goes from SVR, GBDT
to MLP algorithms. The above results as a whole suggest the
superiority of the RFR algorithm as an effective ML model is
predicting the band gaps of ABN3 compounds in contrast to
SVR, GBDT and MLP algorithms.

Besides, two newly synthesized nitride perovskites CeMoN3

and CeWN3, as reported elsewhere28 and whose band gaps are
yet to be explored, have been selected for rst-principle DFT
calculations. Their electronic band structures, Eg values and
optoelectronic properties have been studied from DFT calcula-
tions. The Eg values of the said systems have been predicted
from both the DFT as well as RFR ML model to verify the
parameters for predicting bandgaps of ABN3 perovskites

MAE RMSE R2

5000, random_state = 0 0.16 0.22 0.74
2 0.10 0.15 0.90

0.08 0.13 0.91
0, min_samples_leaf= 1, random_state 0.03 0.11 0.94
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Fig. 3 Fitted bivariate plots showing the variations of predicted and input band gaps of ABN3 perovskites for both the training and test datasets as
obtained from (a) RFR (b) SVR (c) GBDT and (d) MLP models.

6390 | RSC Adv., 2024, 14, 6385–6397 © 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Optimized crystal structures of (a) CeMoN3 and (b) CeWN3 compounds as obtained from DFT calculations. Free energy as a function of
time for (c) CeMoN3 and (d) CeWN3 systems as attained from BOMD simulations. [insets of (c and d) show the respective supercell geometries of
CeMoN3 and CeWN3 so obtained from the BOMD simulation run at 15 ps which is marked with vertical arrows].
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accuracy of ML model in predicting Eg values of ABN3

compounds.
3.3. Crystal structures and stabilities of the CeBN3 (B = Mo,
W) compounds

At room temperature (T= 300 K) and under ambient pressure (P
= 0 GPa), CeBN3 (B = Mo, W) crystalize to primitive ortho-
rhombic phase and belong to Pmc21 space group symmetry with
space group no. 26. The optimized unitcell geometries of the
compounds, as obtained from rst-principle DFT calculations
with GGA-PBE level of theory, are shown in the upper panel of
Fig. 4. The lattice parameters of the CeMoN3 (CeWN3) crystal
system have been estimated to be a = 5.789 Å (5.686 Å), b =

5.854 Å (5.667 Å) and c = 7.776 Å (8.027 Å) which are in close
agreement with the experimentally determined X-ray diffraction
data as reported elsewhere.28 From Fig. 4(a and b), it is observed
that B (=Mo, N) and N atoms form several distorted octahedral
environments within the crystal structure and B atom, which is
located at the center of each BN6 octahedron, is found to be
© 2024 The Author(s). Published by the Royal Society of Chemistry
shied towards the apical N atom. The distorted octahedron,
aka pyramidal coordination and large c/a ratio of CeBN3 may
result large spontaneous ferroelectric polarization in the
systems under study.86,87 The ferroelectric polarization values of
CeMoN3 and CeWN3 compounds are estimated to be ∼47.24
and 49.68 mC cm−2 respectively along the direction of crystal-
lographic c-axis. To comprehend the thermal stabilities of the
compounds at T = 300 K, the BOMD simulations have been
performed over a time span of 20 ps under time step of 1 fs.
Temporal variations of free energies of CeBN3 systems at T =

300 K are shown in the lower panel of Fig. 4. The free energies
(F) of the compounds have been estimated using the following
relation:88

FðT ; nÞ ¼ EðnÞ þ FelðT ; nÞ þ FphðT ; nÞ (12)

where Emeasures the total ground state energy of the supercell,
n signies the supercell volume at temperature T, FelðT ; nÞ and
FphðT ; nÞ are the free energies of the electrons and phonons
respectively. FelðT ; nÞ can be estimated using the following
mathematical relation:89,90
RSC Adv., 2024, 14, 6385–6397 | 6391
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Fig. 5 E–k diagrams of CeMoN3 (left panel) and CeWN3 (right panel) compounds along G / Y / S / X / G / R / U / T / Z high-
symmetry direction as obtained from PBE and G0W0@HSE06 level of theories. [Horizontal dashed line and inclined arrow represent Fermi energy
level and band gap respectively].

Table 2 Band gaps of CeBN3 (B = Mo, W) compounds as obtained
from DFT calculations at different level of theories

Level of theories

Band gaps (eV)

CeMoN3 CeWN3

PBE 0.94 1.00
HSE06 1.57 1.80
G0W0@PBE 1.46 1.71
G0W0@HSE06 1.60 1.81
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FelðT ; nÞ ¼ kBT

ð
dyNelðyÞ½nlnnþ ð1� nÞlnð1� nÞ� (13)

where Nel(n) is the electronic density of states and n is the Fermi
occupation number. FphðT; nÞ has been calculated under the
thermodynamic integration approach90,91 and is expressed as:

FphðT ; nÞ ¼
ð1
0

dy

*
FelðfRIgÞ � Fel

��
RI

0
���X

i;j

m

2
uiujDijðT ; nÞ

+
y

(14)

where “Fel({RI}) − Fel({RI
0})” corresponds to the difference in

electronic free energies at a certain point of ionic coordinates
{RI}. ui = {Ri} − {Ri

0}, m is the atomic mass and D represents the
dynamical matrix of the system. “h..in” represents the ther-
modynamic average and has been estimated using the BOMD
simulations. From Fig. 4(c and d) it is found that both the
crystal structures attain their respective stabilizing free energy
values aer a time lapse of ∼5 ps. The rened geometries of the
compounds, so obtained from the BOMD simulation run at 15
ps, are shown in the inset of Fig. 4(c and d).

3.4. Estimations of Eg values for CeBN3 (B = Mo, W)
compounds

The E–k diagrams of CeBN3 systems for B=Mo, W along G/ Y
/ S / X / G / R / U / T / Z high-symmetry direction
6392 | RSC Adv., 2024, 14, 6385–6397
have been estimated from DFT calculations at PBE, HSE06,
G0W0@PBE and G0W0@HSE06 level of theories. The results are
shown in Fig. 5 and S1 (ESI).† The estimated Eg values of the
compounds from the corresponding E–k diagrams are shown in
Table 2. Interestingly the E–k diagrams for both CeMoN3 and
CeWN3 compounds show the existence of indirect band gaps
ranging from 0.94–1.60 and 1.00–1.81 eV, respectively. Presence
of indirect band gaps with gap openings in the range 0.94–
1.81 eV may render their applications in photovoltaics.92–96 In
this connection it may be relevant tomention that while the PBE
functional is known to underestimate the Eg values of the
systems in general,14,33–36,40,41,43 the HSE06 functional on the
other hand can predict the Eg values of the compounds in close
agreement with the experimental observations.14,33,40,45,97 The
© 2024 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Left panel: (A) Real and (a) imaginary parts of dielectric function versus incident EM wave energy for CeMoN3 compound. Right panel: (B)
Real and (b) imaginary parts of 3(u) as a function of EM wave energy for CeWN3 compound.
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HSE06 XC energy functional (EHSE06
XC ) is mathematically

expressed as:98

EHSE06
XC = 1/4EHF, SR

X (u) + 3/4EPBE, SR
X (u)

+ EPBE, LR
X (u) + EPBE

C (15)

where “X”, “C”, “SR” and “LR” symbolize the exchange, corre-
lation, short range and long range terms respectively in the
energy functional. “u (=0.2)” governs the extent of short range
interactions. The difference of Eg values between HSE06 and
PBE functionals can be rationalized from the fact that the
HSE06 functional, which consists of screened Coulomb poten-
tial for Hartree–Fock (HF) exchange, considers the exact mixing
of both the HF and PBE exchange only for short-range interac-
tions. This mixing allows the exchange hole to become delo-
calized among its nearest neighbors, which in turn results in Eg
values which are reported to be closer to experimental obser-
vations in contrast to the same being performed with PBE
functional.98

The Eg values of CeMoN3 and CeWN3 compounds are pre-
dicted to be ∼1.55 and 1.76 eV from RFR ML model for the
G0W0@HSE06 input of 1.60 and 1.81 eV respectively. While the
DFT calculations at HSE06 and G0W0@HSE06 level of theories
can closely predict the experimentally observed Eg values of the
systems within <1% error,40,42,45,48,97,99,100 the predicted Eg values
© 2024 The Author(s). Published by the Royal Society of Chemistry
of CeBN3 (B = Mo, W) compounds as obtained from RFR ML
model are estimated within an error of ∼3% with standard
deviation of ∼0.035. The selective choice of G0W0@HSE06 level
of theory in the DFT calculation as input for the prediction of
band gaps is thus meaningful, given its efficacy in reproducing
the experimental band gaps of many such compounds as re-
ported elsewhere.14,101–103
3.5. Optical properties of CeBN3 (B = Mo, W) systems

Electronic band structures are intrinsically linked with the
optoelectronic properties of the systems in general. The opto-
electronic properties of CeBN3 (B=Mo, W) crystal systems have
been estimated from the frequency (u) dependent complex
dielectric function [3(u)]. Since, the Pmc21 phase of the
compounds is structurally anisotropic, the incident electro-
magnetic (EM) eld components along the direction of a, b and
c-crystallographic axes are designated as xx, yy and zz, respec-
tively in the consequent calculations. Fig. 6(A) and (B) show the
variations of real part of 3(u) [31(u)] as a function of incident EM
wave energy (~EM), so obtained from G0W0@HSE06 level of
theory, for CeMoN3 and CeWN3 compounds respectively. From
the upper panel of Fig. 6, static values of 31(u) [31(0)] have been
estimated to be ∼5.85 (5.80), 4.77 (5.99) and 5.93 (5.90) for
CeMoN3 (CeWN3) system along xx, yy and zz polarization
directions respectively of the incident EM wave. These non-zero
RSC Adv., 2024, 14, 6385–6397 | 6393
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Fig. 7 Left panel: (A) Optical absorption and (a) conductivity as a function of incident EM wave energy for CeMoN3 compound. Right panel: (B)
Optical absorption and (b) conductivity as a function of EM wave energy for CeWN3 compound.
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values of 31(0) for all the three polarization directions indicate
their semiconducting nature so attained from the E–k diagrams
[vide ante, Fig. 5]. The most intense structure band of 31(u) for
CeMoN3 (CeWN3) compound is obtained at ~EM ∼1.45 (1.85) eV
which corresponds to maximum dispersion of the EM wave.
However, beyond ~EM ∼3.75 (6.86) eV, 31(u) values of CeMoN3

(CeWN3) system gradually decrease and attain negative values
within the energy window ~EM ∼4.72 (7.86)–10.42 (13.39) eV. The
negative values of 31(u) signify metallic Drude – like behaviour
of the compounds within the said energy windows.42,43,104

32(u) is known to correlate directly with the band gaps of the
compounds in general. Fig. 6(a) and (b) depict the variations of
32(u) as a function of ~EM for CeMoN3 and CeWN3 systems
respectively, so attained from G0W0@HSE06 level of theory.
From Fig. 6(a and b) the critical or take-off values of 32(u) have
been observed at ~EM ∼1.60 (1.81) eV for CeMoN3 (CeWN3)
compound for all the three polarization directions. The critical
or take-off values of 32(u) are in exact agreement with the Eg
values of the systems, as obtained from the G0W0@HSE06 level
of theory (vide ante, Table 2). Interestingly, the take-off values of
32(u) are found to be independent of polarization directions of
EM wave. Moreover, nite values of 32(u) between ~EM ∼2.30
(2.40) and 10.01 (12.50) eV for CeMoN3 (CeWN3) crystal
6394 | RSC Adv., 2024, 14, 6385–6397
corroborate strong attenuation of the incident EM wave inside
the crystal systems within the said energy window.42,43

The response of strong attenuation of the incident EM wave
inside the CeBN3 (B = Mo, W) compounds, so reected in the
32(u)–~EM plots (Fig. 6), can also be attributed from their absorption
coefficients [a(u)] and optical conductivities [s(u)]. Fig. 7 shows the
variations of a(u) and s(u) as function of ~EM for the referred
systems. Akin to 32(u)–~EM plots, the critical values of both a(u) and
s(u) are found at ~EM ∼1.60 (1.81) eV for CeMoN3 (CeWN3) crystal
system for all the three polarization directions. Hence the esti-
mations of a(u) and s(u) help to recheck the Eg values as obtained
from electronic band structures and 32(u)–~EM plots. From Fig. 7,
nite values of a(u)/s(u) have been observed within ~EM∼2.30/2.30
to 11.43/10.01 eV, 16.47/16.55 to 18.77/18.64 eV and 2.40/2.40 to
17.90/12.50 eV for CeMoN3 and CeWN3 compounds, respectively.
The nite values of a(u) and/or s(u) within the specied energy
window signify large opacity and high optical conductivity of the
said systems.42,43 Moreover, the high transparency of CeMoN3

(CeWN3) compound within the energy window ∼0–1.60 eV (0–1.81
eV) has also been noticed in a(u)–~EM and s(u)–~EM plots (Fig. 7).
The high transparency of the said systems covering visible and
Infrared (IR) regions of the EM wave may promote them as
potential candidates for optical luminescent materials and IR
detectors.43,105,106
© 2024 The Author(s). Published by the Royal Society of Chemistry
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4. Conclusions

The band gaps of ABN3 perovskites have been predicted from
ML models based on the feature descriptors. The dataset of
1563 ABN3 perovskites, which show Ef <−0.026 eV and Eg values
spanning in the range from 1.0 to 3.1 eV, have been selected
from initial 5566 samples for ML model evaluation. The Eg
values of the compounds are found to be linked with 117 feature
descriptors. The top 10 feature descriptors have been selected
by eliminating those features which show absolute correlation
values <0.89 and low rank of importance. Correlations between
the band gap and the topmost 3 features such as electronega-
tivity, mean covalent radius and d valence electrons have also
been discussed. Four supervised ML models such as MLP,
GBDT, SVR and RFR have been considered to predict the band
gaps of these nitride perovskite compounds. The accuracy of
each model has been tested from MAE, RMSE and R2 values.
The RFR algorithm shows lowest RMSE (=0.11 eV) and highest
R2 (=0.94) values in comparison to other models. R2 values and
the corresponding bivariate plots suggest the superiority of RFR
algorithm as an effective ML model is predicting the band gaps
of ABN3 perovskites in contrast to SVR, GBDT and MLP algo-
rithms. Two newly synthesized ABN3-type perovskites CeBN3 (B
= Mo, W) have been further chosen and their electronic band
structures and optoelectronic properties have been studied
from DFT calculations. The Eg values of CeBN3 (B = Mo, W)
compounds have been estimated from DFT calculations at PBE,
HSE06, G0W0@PBE and G0W0@HSE06 level of theories. The Eg
values of CeMoN3 and CeWN3 compounds have been predicted
to be 1.55 and 1.76 eV from RFR algorithm for the
G0W0@HSE06 input of 1.60 and 1.81 eV respectively. The Eg
values of the systems have also been veried from their
respective optoelectronic parameters such as 32(u), a(u) and
s(u). We believe that this study will help to unveil the efficacy of
ML models in predicting the band gaps of nitride perovskites
which in turn will bear potential applications as photovoltaic
and optical luminescent materials.
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